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Abstract

Large language models have demonstrated remark-
able generalization capabilities and strong perfor-
mance across various fields. Recent research has
highlighted their significant potential in time se-
ries forecasting. However, time series data of-
ten exhibit complex periodic characteristics, pos-
ing a substantial challenge in enabling these mod-
els to effectively capture latent patterns. To ad-
dress this challenge, we propose a novel frame-
work, LLM-TPF, which leverages individuality and
commonality fusion to enhance time series fore-
casting. In the frequency domain, periodic features
are extracted to reveal the intrinsic periodicity of
the data, while textual prototypes are used to in-
dicate temporal trends. In the time domain, care-
fully designed prompts are employed to guide the
models in comprehending global information. A
commonality fusion mechanism further aggregates
heterogeneous information across dimensions, and
three distinct language models are utilized to in-
dependently process different types of information.
Extensive real-world experiments demonstrate that
LLM-TPF is a powerful tool for time series fore-
casting, achieving superior performance compared
to state-of-the-art specialized models and exhibit-
ing exceptional generalization ability in zero-shot
scenarios. Code is available at https://github.com/
switchsky/LLM-TPF.

1 Introduction
Time series forecasting holds a pivotal position in data sci-
ence and machine learning as a critical technique for ana-
lyzing and predicting data patterns that evolve over time. It
finds widespread applications across various domains, such
as power system load prediction in energy sectors [Copiaco
et al., 2023], climate weather modeling [Huang et al., 2023],
and traffic flow analysis [Medina-Salgado et al., 2022]. In
recent years, pre-trained large language models (LLMs) have
demonstrated remarkable potential across multiple fields, es-

∗Xiangjie Kong is the corresponding author.
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Figure 1: Difference between our approach and other integrations
with LLMs. (a) Simply decomposing time series data leaves LLMs
incapable of effectively understanding the periodic characteristics of
the data. (b) Our approach, by integrating textual information (in-
cluding prompts and textual prototypes) with time series informa-
tion.

pecially excelling in few-shot and even zero-shot tasks [Zhao
et al., 2023].

Given that both time series and textual data share sequen-
tial characteristics, leveraging the strengths of LLMs in time
series forecasting is a logical and promising direction. Nu-
merous successful cases have already validated the efficacy
of LLMs in this domain. For instance, [Tian Zhou, 2023]
proposed a unified framework based on pre-trained language
models, achieving significant performance improvements in
various time series analysis tasks and laying a solid founda-
tion for future research. TIME-LLM [Jin et al., 2024] en-
riched the semantic representation of time series data through
reprogramming, while CALF [Liu et al., 2025] addressed the
differences between text and time series data by processing
these two modalities through separate branches, thus opti-
mizing performance. Despite achieving impressive perfor-
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mance in time series forecasting, the aforementioned meth-
ods still exhibit notable limitations. In particular, they fail
to consider the periodic characteristics inherent in time series
data (e.g., the Electricity dataset demonstrates clear season-
ality and daily cycles). As shown in Figure 1, S2IP-LLM
[Pan et al., 2024] and TEMPO [Cao et al., 2024] incorporate
trend decomposition to integrate time series data into large
language models. However, since large language models are
primarily trained on textual data, their ability to understand
and model the periodic characteristics of time series remains
limited.

To address these issues, we propose LLM-TPF, a pre-
trained LLM-based time series forecasting framework that
explores how to extract temporal periodic information at dif-
ferent scales and bridge the gap between periodic features and
the semantics of LLMs by integrating personalized and com-
mon feature fusion. To overcome the difficulty that LLMs
face in interpreting periodic patterns in time series data, we
propose the Personalized Frequency Domain Representation
(PFD) module. This module extends time series data in the
frequency domain and, by integrating refined textual proto-
types, captures periodic features across different frequency
ranges, thereby assisting the model in better grasping long-
term trends and short-term fluctuations. Given the diffi-
culty in capturing external information in time series, we
further propose the Personalized Time Domain Representa-
tion (PTD) module, which uses carefully designed prompts to
guide LLMs in perceiving and integrating external features,
thereby generating time-domain representations with richer
contextual semantics. Finally, to address potential redun-
dancy or conflicts between frequency and time domain fea-
tures, we design the Cross-Modal Common Feature Fusion
(CMF) module, which efficiently integrates and extracts com-
mon representations from both feature types through a cross-
modal attention mechanism. This fully leverages the advan-
tages of multi-source features and significantly enhances the
model’s forecasting performance.

In summary, the contributions of our paper can be summa-
rized as follows:

• We propose a novel framework named LLM-TPF that
enhances semantic information by integrating the peri-
odic characteristics of time series data. To the best of
our knowledge, this is the first approach to address the
integration of frequency and time domain understanding
within large language models for time series analysis.

• The three proposed modules integrate temporal periodic
information from the frequency domain and external in-
formation from the time domain. By freezing or fine-
tuning the large language model, these modules effec-
tively uncover latent features in time series data, enhanc-
ing its comprehension and modeling capabilities.

• Extensive experiments are conducted on seven real-
world datasets, demonstrating that LLM-TPF achieves
state-of-the-art performance in both long-term and
short-term time series forecasting tasks. These results
validate the effectiveness and practicality of our pro-
posed method.

2 Related Work
2.1 Temporal Periodicity Analysis in Time Series
Latent features such as periodicity play a crucial role in im-
proving the prediction accuracy of time series data. For
instance, Autoformer [Wu et al., 2021a] employs adaptive
decomposition to separate trends and seasonal components,
while FEDformer [Zhou et al., 2022] enhances long-term
forecasting using frequency-domain transformations. Times-
Net [Wu et al., 2023] further captures periodic features by
transforming time series into a 2D frequency-domain rep-
resentation, integrating multi-scale temporal and frequency
information. The latest breakthrough, CycleNet [Lin et al.,
2024], explicitly models the periodic characteristics of data,
achieving state-of-the-art performance across multiple do-
mains using simple linear layers or shallow MLPs. Although
numerous methods exist for extracting latent periodic features
from time series data, such information remains challenging
for large language models to comprehend effectively.

2.2 Time Series Forecasting Using LLMs
With the rise of LLMs, an increasing number of researchers
have attempted to apply them to the field of time series fore-
casting. Tian Zhou and colleagues pioneered the integra-
tion of pretrained large models into time series prediction
[Tian Zhou, 2023], designing adapter modules tailored for
various downstream tasks, thereby enabling efficient trans-
fer and application of LLMs in this domain. Following
this, many researchers further explored prompt optimization
strategies. For instance, TIME-LLM [Jin et al., 2024] refor-
mulates time series data into text-like representations more
suitable for LLM processing, while CALF [Liu et al., 2025]
independently processes textual and time series data, employ-
ing sophisticated modules to bridge the gap between modal-
ities.In contrast, models like S2IP-LLM [Pan et al., 2024]
and TEMPO [Cao et al., 2024] analyze latent periodic fea-
tures within time series data and incorporate them into LLMs.
However, current research has yet to fully exploit the periodic
characteristics of time series data and lacks in-depth analysis
across multiple scales.

2.3 Cross-modal Information Integration
Traditional multimodal fusion methods primarily focus on in-
tegrating data from different modalities. For instance, CLIP
[Radford et al., 2021] employs a dual-encoder to encode text
and images separately, achieving cross-modal understanding
via contrastive learning, while TCSP [Wu et al., 2021b] en-
hances inter-modality interaction by optimizing modality fu-
sion during feature extraction. In semantic segmentation,
[Maiti et al., 2023] introduces a framework tailored to spe-
cific scenarios, minimizing lossy preprocessing and boosting
fusion efficiency. At the same time, UV-Mamba [Li et al.,
2024] utilizes deformable convolution networks to suppress
state-space models and integrates multimodal features at the
model level, fully leveraging the strengths of multiple mod-
els. Additionally, LLaVA [Liu et al., 2023a] aligns segmented
image data with prompt-based inputs and trains them using
large language models. These studies provide valuable in-
sights into exploring the integration of time-series data with
large language models.
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3 Methodology
3.1 Problem Definition
In traditional time series forecasting tasks, the dy-
namic features at time t can be represented as Xt =
(xt,1, xt,2, · · · , xt,N )⊤ ∈ RN×C , where xt,c is the feature
vector of the c-th variable at time t, and C denotes the di-
mension of the feature variables. Additionally, we introduce
a text prompt V to guide a large model in generating more
precise time series forecasts. Specifically, V ∈ RL×D serves
as the input prompt, where L represents the prompt length
and D represents its dimensionality. Therefore, the time se-
ries forecasting problem can be simplified as follows: given
the feature matrix of the past Tk time steps and the prompt
information, predict the feature matrix for the next Tp time
steps. This problem can be formalized as:

(Xt−Tk+1:t, V )
f−→ Xt+1:t+Tp

, (1)

where Xt−Tk+1:t ∈ RTk×N×C represents the feature matrix
of the past Tk time steps, V ∈ RL×D is the prompt matrix,
and Xt+1:t+Tp

∈ RTp×N×C denotes the predicted feature
matrix for the next Tp time steps.

3.2 Overall Architecture
Figure 2 shows the architecture of LLM-TPF, comprising
three modules: the Personalized Representation of Frequency
Domain (PFD), the Personalized Representation of Time Do-
main (PTD), and the Cross-Modal Common Feature Fusion
(CMF). The PFD extracts periodic features, while the PTD
generates personalized representations using prompt tokens
[Jin et al., 2024]. These features are fused by the CMF and
decoded by a large language model, facilitating alignment
and information sharing across modalities for better tempo-
ral and semantic modeling.

3.3 PFD Module
Frequency Domain Analysis
Traditional STL decomposition struggles with multi-scale
and long-period time series. To address this, we use Fast
Fourier Transform (FFT) to decompose the time series in the
frequency domain, enabling effective analysis of different fre-
quency components, as shown in Figure 3.

For a univariate time series Xpd ∈ RT×C , its frequency
domain representation is defined as:

Aj =
C∑

c=1

wc · |FFT(Xpd,c)|j , (2)

where FFT(·) represents the Fast Fourier Transform, and Aj

denotes the weighted absolute amplitude at frequency fj ,
highlighting the significance of the periodic components. We
apply a softmax function with a temperature parameter τ to
convert amplitudes into a probability distribution, allowing
us to prioritize the most significant frequencies. Specifically,
the top-k frequencies {f1, . . . , fk} are selected based on the
highest probabilities P (f∗), where f∗ ∈ {1, . . . , ⌊T/2⌋}.
The probability P (fj) is calculated as:

P (fj) =
exp(Aj/τ)∑

f∗∈{1,··· ,⌊T/2⌋} exp(Af∗/τ)
. (3)

Due to the ability of 2D convolution to capture periodic
characteristics at different scales [Wu et al., 2023], effectively
handling both long-term and short-term patterns, we adopt 2D
convolution to reconstruct the time series into a 2D structure
for aligning with periodic patterns and extracting temporal
features:

X̂i
2D = Reshapepi,fi

(Padding(Xpd)) , (4)

X̂i
pd = Reshape1,(fi×pi)

(
Conv2D

(
X̂i

2D

))
. (5)

Here, X̂i
2D represents the padded and reshaped input with di-

mensions pi × fi, where pi and fi are the selected period
and frequency, respectively. The Conv2D operation extracts
multi-scale periodic features, which are reshaped back into
1D as X̂i

pd.

Text Prototype Fusion
To address the challenge of accurately representing
frequency-domain temporal information in large language
models, we introduce PCA-based text prototype modeling
method. By applying PCA to the vocabulary embedding
matrix A ∈ RV×D, we compress it into a lower-dimensional
text prototype E ∈ RV ′×D:

E = PCA(A), V ′ ≪ V. (6)

PCA focuses on retaining key components during dimension-
ality reduction, highlighting periodic and seasonal features
while eliminating redundant noise. Subsequently, we fuse the
temporal features X̂i

pd with the text prototype E using a lin-
ear transformation and multi-head cross-attention mechanism
to capture their deep associations:

Zpd,i = softmax

(
(WXX̂i

pd + bX)E⊤
√
dk

)
E,

Zpd =

k∑
i=1

αiZpd,i.

(7)

Here, WX and bX are learnable parameters, and Zpd rep-
resents the aggregated periodic representation. The multi-
head attention mechanism enables fine-grained fusion be-
tween temporal features and textual semantics, enriching the
expression of periodic information. For example, when the
time series data shows an upward trend over a specific period,
it can be semantically represented as “growth” or “expansion”
through text descriptions.

3.4 PTD Module
Prompts play a crucial role in generative AI models, serving
as guides to steer the generation of desired outputs [Liu et al.,
2023b]. In the context of time-domain data, prompts can ef-
fectively assist large language models in capturing temporal
information, thereby enhancing their prediction accuracy. To
leverage this, we introduce time series data Xpd ∈ RT×C ,
which is projected into the textual semantic space through a
projection function H(·). The resulting representation is then
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Fusion (CMF) module that integrates and interacts with the two personalized representations.

Top𝐾𝐾1
Top𝐾𝐾2 M

u
lti-H

e
a

d
 A

tte
n

tio
n

M
u

lti-H
e

a
d

 A
tte

n
tio

n

kText Proton

n

n

1

1

1

Word embedding

Frequency Domain

𝑋𝑋𝑝𝑝𝑝𝑝

1D-2D Reshape

C
O

N
V

2
D�𝑋𝑋2𝐷𝐷𝑖𝑖

�𝑋𝑋𝑝𝑝𝑝𝑝𝑖𝑖

k 𝑍𝑍𝑝𝑝𝑝𝑝

…

2D-1D Convolution

Periodic Extractor

…
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concatenated with the prompt V ∈ RL×P , creating a person-
alized prompt representation. This process is formalized as
follows:

Zpt = Concat(V,H(Xpd)) (8)

Where Zpt ∈ R(L+T )×D represents the concatenated person-
alized prompt representation, and H(Xpd) ∈ RT×D denotes
the projected time series representation. Clear and precise
prompts are essential for guiding large language models. We
divide prompt construction into four components:

1. Summarizing the dataset in natural language;

2. Analyzing batch-specific parameters;

3. Incorporating temporal segmentation and date informa-
tion;

4. Specifying task instructions.
Unlike [Jin et al., 2024], which relies on batch statistics, our
approach focuses on temporal segmentation and date factors,
avoiding pattern traps [Satpute et al., 2024]. This integra-
tion leverages the general knowledge of LLMs to infer deeper
temporal insights, such as distinguishing between peak and
off-peak electricity demand.

3.5 CMF Modules
Temporal information in the frequency and time domains rep-
resents two distinct modalities with significant differences.
Drawing inspiration from the interactive fusion of individual
and shared features across modalities, as explored in [Wu et
al., 2021b] for natural language and other modal data, we
map these modalities into a unified feature space to learn a
cohesive representation. Specifically, Zpt is modeled using
a multi-head self-attention mechanism to effectively capture
interdependencies among the elements. The resulting fused
representation, Ẑpt, is computed as follows:

Ẑpt = MHSA(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V,

Q = WQZpt, K = WKZpt, V = WV Zpt.

(9)

Here, WQ, WK , and WV are linear projection matrices that
map the concatenated features into the attention space. This
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mechanism enhances cross-modal interactions and enables
more accurate representation of temporal patterns. After ob-
taining the fused feature representation Ẑpt, redundant infor-
mation may still persist. To refine cross-modal feature fu-
sion, Ẑpt is sparsified to remove redundancy before being
processed alongside the frequency-domain representation Ẑpd
using the cross-modal attention mechanism (XMA). XMA
compensates for missing periodicity and trends, producing a
shared representation of the two modalities. The process is
defined as:

Z̃pt = Dropout(Ẑpt),

Zsh = XMA(WQZ̃pt,WKẐpd,WV Ẑpd).
(10)

Here, Zsh represents the shared representation between the
temporal data and the prompts, achieving efficient cross-
modal feature integration by fusing critical information from
different modalities.

3.6 Fine-Tuning Strategy and Loss Design
We have designed differentiated fine-tuning strategies for dif-
ferent LLMs to better accommodate the needs of personalized
and generalized representations. For personalized representa-
tions, since personalized data often contains domain-specific
details that do not require frequent updates, we choose to
freeze the parameters of components handling personalized
representations. This approach reduces computational over-
head during training while preserving the model’s original
semantic understanding capabilities. For generalized repre-
sentations, given their cross-domain nature and the need to
adapt to diverse semantic environments, we employ Low-
Rank Adaptation [Hu et al., 2022] to achieve lightweight fine-
tuning.

To ensure training stability and balance between person-
alized and generalized representations, we designed a three-
branch guiding mechanism and introduced a feature regular-
ization loss. The feature regularization loss is defined as:

Lfeature =
L∑

i=1

γ(L−i)
∑

b∈{pd,pt}

sim
(
φb
i (Y

i
b ), φ

sh
i (Y

i
sh)
)
, (11)

The outputs Y i
pd, Y i

pt, and Y i
sh represent the features from

the i-th Transformer block for the PFD (pd), PTD (pt), and
CMF (sh) modules. Here, φb

i (·) applies transformations to
branch b, γ(L−i) assigns layer-specific weights, and sim(·, ·)
measures feature similarity to encourage alignment. The total
loss is defined as:

Ltotal = λ1Lfeature + λ2Llm. (12)
where Lfeature is the feature alignment loss and Llm represents
the label alignment loss for multi-task learning. The weights
λ1 and λ2 control the contribution of each loss term, with
λ2 ≫ λ1 to prioritize task label alignment.

4 Experiments
In this section, we comprehensively evaluate our model on
various benchmark datasets covering long-term, short-term,
and zero-shot forecasting tasks. We also analyze the model’s
design and present experimental results demonstrating its ef-
fectiveness and robustness across different scenarios.

4.1 Experimental Setup
Datasets. We will perform our experiments on eight di-
verse datasets from different domains with broad application
contexts. For long-term forecasting, we utilize the ETT se-
ries with its four subsets (ETTh1, ETTh2, ETTm1, ETTm2),
along with Weather, Traffic, and Electricity datasets, same as
[Wu et al., 2021a]. For short-term forecasting, we employ the
M4 dataset, which includes marketing data spanning various
years, quarters, and months.

Baseline. We conduct experiments with a selection of rep-
resentative baseline models from recent years. These mod-
els can be categorized into four main types: (1) LLM-
based methods: including Time-LLM [Jin et al., 2024], OFA
[Tian Zhou, 2023] and GPT-2 [Radford et al., 2019]; (2)
Transformer-based methods: including iTransformer [Liu et
al., 2024] and PatchTST [Nie et al., 2023]; (3) CNN-based
methods: including TimesNet [Wu et al., 2023]; (4) Linear
model-based methods: including DLinear [Zeng et al., 2023].

Implementation Details. The experiments are performed
on an NVIDIA RTX 3090 GPU with 24GB of memory. The
Adam optimizer is employed to minimize the L1 loss, with
the learning rate fixed at values within the set {1× 10−3, 5×
10−4, 1 × 10−4}. The large language model uses GPT-2 as
the base model and employs LoRA for fine-tuning the large
language model. A random seed of 2021 is used consistently
throughout all experiments to ensure reproducibility.

4.2 Long-term and Short-term Forecasting
Long-term Forecasting
Table 1 highlights the significant superiority of LLM-TPF
in long-term forecasting. As observed, our proposed model
outperforms all baselines in most scenarios, particularly ex-
celling on the ETT and Electricity datasets. TIME-LLM, a
recent work, was the first to introduce the reprogramming of
textual prototypes. Compared to TIME-LLM and TimesNet,
we observed a 4% and 18% degradation in overall perfor-
mance (measured by MAE) on the ETTh2 dataset, respec-
tively. On the multivariate Electricity dataset, our model’s
performance dropped by 10% compared to another SOTA
model, iTransformer. Nevertheless, these results underscore
the notable advantages of our model in effectively handling
multivariate and periodic data.

Short-term Forecasting
Our experimental results, which are presented in Table 2,
demonstrate that our method outperforms other baselines on
80% of the evaluation metrics and achieves a 5.6% overall im-
provement compared to the state-of-the-art TIME-LLM. This
advantage is likely due to our method’s consideration of fea-
ture patterns across different time series scales.

4.3 Zero-shot Learning
Compared to traditional time series forecasting models, large
language model-driven frameworks are expected to demon-
strate zero-shot prediction capabilities. Specifically, a model
optimized on a dataset X should exhibit strong predictive per-
formance on an unseen target dataset Y , without requiring
any prior exposure to samples from Y . As shown in Table 3,
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Categories LLM-based Transformer-based CNN-based Linear-based

Models LLM-TPF TIME-LLM OFA GPT-2 iTransformer PatchTST TimesNet Dlinear
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.368 0.386 0.383 0.412 0.379 0.402 0.422 0.428 0.386 0.405 0.385 0.408 0.384 0.402 0.386 0.400
192 0.421 0.418 0.408 0.435 0.415 0.424 0.466 0.450 0.441 0.436 0.431 0.432 0.436 0.429 0.437 0.432
336 0.425 0.429 0.426 0.443 0.435 0.440 0.488 0.464 0.487 0.458 0.485 0.462 0.491 0.469 0.481 0.459
720 0.451 0.455 0.443 0.463 0.441 0.459 0.485 0.478 0.503 0.491 0.497 0.483 0.521 0.500 0.519 0.516

ETTh2

96 0.271 0.326 0.297 0.357 0.289 0.347 0.318 0.368 0.297 0.349 0.343 0.376 0.340 0.374 0.309 0.359
192 0.343 0.373 0.349 0.390 0.358 0.392 0.383 0.407 0.380 0.400 0.405 0.417 0.402 0.414 0.390 0.406
336 0.350 0.387 0.373 0.408 0.383 0.414 0.406 0.427 0.428 0.432 0.448 0.453 0.452 0.452 0.426 0.444
720 0.398 0.422 0.400 0.436 0.438 0.456 0.420 0.446 0.427 0.445 0.464 0.483 0.462 0.468 0.445 0.464

ETTm1

96 0.283 0.343 0.291 0.346 0.296 0.353 0.330 0.372 0.334 0.368 0.339 0.377 0.338 0.375 0.335 0.372
192 0.321 0.372 0.336 0.375 0.335 0.373 0.371 0.394 0.377 0.391 0.376 0.392 0.374 0.387 0.372 0.387
336 0.353 0.381 0.362 0.390 0.369 0.394 0.398 0.409 0.426 0.420 0.408 0.417 0.410 0.411 0.403 0.411
720 0.405 0.417 0.410 0.421 0.418 0.424 0.454 0.440 0.491 0.459 0.499 0.461 0.478 0.450 0.461 0.442

ETTm2

96 0.173 0.251 0.184 0.275 0.174 0.265 0.192 0.281 0.180 0.264 0.192 0.273 0.187 0.267 0.176 0.266
192 0.235 0.295 0.238 0.310 0.231 0.306 0.245 0.317 0.250 0.309 0.252 0.314 0.249 0.309 0.240 0.307
336 0.275 0.334 0.286 0.340 0.280 0.339 0.302 0.352 0.311 0.348 0.318 0.357 0.321 0.351 0.304 0.345
720 0.361 0.387 0.379 0.403 0.373 0.402 0.399 0.408 0.412 0.407 0.413 0.416 0.408 0.403 0.406 0.400

Weather

96 0.153 0.207 0.158 0.210 0.162 0.212 0.181 0.232 0.174 0.214 0.171 0.230 0.172 0.251 0.159 0.218
192 0.201 0.247 0.197 0.245 0.204 0.248 0.222 0.266 0.221 0.254 0.219 0.271 0.219 0.279 0.211 0.266
336 0.243 0.291 0.248 0.285 0.254 0.286 0.270 0.299 0.278 0.296 0.277 0.321 0.280 0.332 0.267 0.310
720 0.318 0.342 0.319 0.334 0.326 0.337 0.338 0.345 0.358 0.347 0.365 0.367 0.365 0.378 0.345 0.362

Electricity

96 0.132 0.238 0.137 0.244 0.139 0.238 0.138 0.234 0.148 0.240 0.159 0.268 0.168 0.288 0.159 0.268
192 0.149 0.252 0.158 0.266 0.153 0.251 0.152 0.247 0.162 0.253 0.177 0.278 0.184 0.295 0.177 0.278
336 0.163 0.261 0.183 0.292 0.169 0.266 0.168 0.263 0.178 0.269 0.195 0.296 0.198 0.312 0.195 0.296
720 0.200 0.301 0.247 0.348 0.206 0.297 0.207 0.295 0.225 0.317 0.215 0.317 0.220 0.335 0.215 0.317

Traffic

96 0.378 0.273 0.380 0.277 0.388 0.282 0.390 0.272 0.395 0.268 0.583 0.319 0.593 0.329 0.570 0.310
192 0.392 0.284 0.399 0.288 0.407 0.290 0.403 0.277 0.417 0.276 0.591 0.331 0.617 0.345 0.577 0.321
336 0.413 0.281 0.408 0.290 0.412 0.294 0.447 0.298 0.433 0.283 0.599 0.332 0.629 0.339 0.588 0.324
720 0.447 0.293 0.445 0.308 0.450 0.312 0.447 0.298 0.467 0.302 0.601 0.341 0.640 0.348 0.597 0.337

Table 1: Long-term forecasting results. We set the lookback window size Tk to 96 and the prediction length Tp ∈ {96, 192, 336, 720}. The
best results are in bold, and the second-best are underlined.

Models LLM-TPF TIME-LLM OFA GPT-2 TimesNet Dlinear

Yearly
SMAPE 13.366 13.419 13.531 15.11 15.378 16.965
MASE 2.99 3.005 3.015 3.565 3.554 4.283
OWA 0.786 0.789 0.793 0.911 0.918 1.058

Quarterly
SMAPE 10.117 10.11 10.177 10.597 10.465 12.145
MASE 1.179 1.178 1.194 1.253 1.227 1.52
OWA 0.889 0.891 0.898 0.938 0.936 1.106

Monthly
SMAPE 12.854 12.98 12.894 13.258 13.089 13.514
MASE 0.953 0.963 0.956 1.003 0.996 1.037
OWA 0.895 0.903 0.897 0.931 0.922 0.956

Others
SMAPE 4.626 4.795 4.94 6.124 6.599 6.709
MASE 3.116 3.178 3.228 4.116 4.43 4.953
OWA 0.982 1.006 1.029 1.259 1.393 1.487

Avg.
SMAPE 11.915 11.983 11.991 12.69 12.25 13.639
MASE 1.587 1.595 1.6 1.808 1.698 2.095
OWA 0.854 0.859 0.861 0.94 0.896 1.051

Table 2: Short-term Forecasting on the M4 Dataset. Prediction hori-
zons range from [6, 48], with forecasting windows set to twice the
lookback windows. Results are weighted averages across different
sampling intervals.

we compare our proposed model with four baseline large
language model-driven frameworks. Our model consistently
outperforms the baselines in most scenarios. For instance,
our approach achieves a reduction of 6.2% and 5.1% in error
rates across all datasets compared to TIME-LLM and OFA,
respectively. These results validate the effectiveness of our
three-channel large language model design, which enables
robust predictions without the need for task-specific training
samples.

Models LLM-TPF TIME-LLM OFA GPT-2
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

h1→ m1 0.748 0.557 0.847 0.565 0.785 0.567 0.798 0.574

h1→ m2 0.314 0.354 0.315 0.357 0.305 0.347 0.317 0.359

h2→ m1 0.761 0.570 0.868 0.595 0.877 0.601 0.920 0.610

h2→ m2 0.311 0.354 0.322 0.363 0.324 0.375 0.331 0.371

Table 3: Zero-shot learning results. The datasets ”h1”, ”h2”, ”m1”
and ”m2” represent ETTh1, ETTh2, ETTm1 and ETTm2. All results
are weighted averages across four different prediction lengths.

4.4 Model Analysis
Ablation Study
To validate the effectiveness of the proposed method, we
conducted an ablation study on the ETTh2 and Electricity
datasets, analyzing the model from four perspectives:
(1) w/o PTD and PFD: The personalized feature extraction
modules are removed, and the raw temporal data are directly
processed through self-attention before being passed to the
large model.
(2) w/o PFD: The periodic features of the temporal data are
omitted, leaving periodic information unextracted.
(3) w/o CMF: Cross-Modal Common Feature Fusion module
is removed, and the model is restructured to a dual-channel
processing framework.
(4) w/o LF: The weight of the regularization loss function is
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Components Datasets
PTD PFD CMF LF ETTh2 Electricity

w/o or with 96 / 192 / 336 96 / 192 / 336
✗ ✗ ✓ ✓ 0.295 / 0.379 / 0.405 0.151 / 0.165 / 0.184
✓ ✗ ✓ ✓ 0.279 / 0.358 / 0.364 0.140 / 0.152 / 0.165
✓ ✓ ✗ ✓ 0.285 / 0.364 / 0.387 0.141 / 0.160 / 0.174
✓ ✓ ✓ ✗ 0.276 / 0.351 / 0.358 0.137 / 0.154 / 0.165

LLM-TPF 0.271 / 0.343 / 0.350 0.135 / 0.149 / 0.163

Table 4: MSE Performance Evaluation on ETTh2 and Electricity
Datasets with Ablation Analysis of Four Key Modules.

set to 0, effectively disabling the regularization constraint.
As shown in Table 4, the proposed LLM-TPF consistently

outperforms all other ablation settings. In particular, the CMF
module plays a critical role in the model’s ability to effec-
tively capture latent temporal features and guide the large
language model. Furthermore, the appropriate use of regu-
larization loss contributes to enhancing the model’s stability,
enabling it to perform robustly in complex temporal tasks.

The Effectiveness of the CMF Module
Figure 4 presents a comprehensive case analysis of the CMF
module applied to the Electricity dataset for 96-step predic-
tions. The top four subplots, labeled (a) through (d), illustrate
the optimization trajectory of the CMF module over different
training epochs. The bottom section, represented by subplot
(e), provides an in-depth analysis of attention scores during
epoch 13.

The left panel specifically explores the correlation be-
tween textual prompts and frequency-domain information,
highlighting that textual features exhibit a stronger associa-
tion with frequency-domain characteristics compared to time-
domain data. By analyzing specific variables across various
time steps and prompts, it becomes apparent that prompts en-
riched with external information, such as temporal context
and dataset segmentation, are particularly effective in reveal-
ing latent temporal patterns, including periodicity, under cer-
tain conditions.

The right panel explores temporal representations within
the time domain. Regions with high attention scores promi-
nently exhibit periodic features, consistent with observations
in the frequency domain, whereas regions with low atten-
tion scores lack discernible latent patterns. These findings
highlight the complementary relationship between textual
prompts, frequency-domain features, and temporal represen-
tations.

Hyperparameter Sensitivity
In this section, we investigate the impact of two key parame-
ters in LLM-TPF on the overall performance of the model: 1)
The Top-k parameter in the periodic layer of the PFD mod-
ule, which determines the number of text prototypes intro-
duced and the number of frequency domain layers considered
during temporal feature analysis. 2) The regularization loss
weight coefficient λ1. In our experiments, we fixed λ2 = 1
in the loss function and set the other two regularization loss
weights to be equal for a more comparative analysis.

Figure 5 illustrates the overall performance of the model on
the ETTh1 and Electricity datasets with respect to the two key
parameters. It can be observed that when the top-k parameter

共性融合
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Figure 4: Visualization of Cross-Attention Maps of the CMF Mod-
ule for 96-Step Predictions on the Electricity Dataset.
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Figure 5: Hyperparameter Study of Top-k Frequency Domain Lay-
ers and Regularization Loss Weight λ1. (Prediction length: 96)

falls within the range of 4 to 6, the model achieves relatively
better performance. This is because an appropriate number
of textual prototypes facilitates the effective integration of la-
tent temporal features. Conversely, a smaller top-k value may
distort critical characteristics of the time series, such as peri-
odicity or trends. The analysis further reveals that a moderate
regularization loss weight coefficient λ1 can effectively mit-
igate the learning bias of large language models. However,
an excessively large λ1 can prevent the model from correctly
learning sample labels. In summary, hyperparameter design
has limited impact, indicating the model’s robustness to vari-
ations in top-k and λ1.

5 Conclusion
In this paper, we propose LLM-TPF, a model with two per-
sonalized branches to capture latent features in time series
data, including periodicity. Carefully designed prompts fur-
ther guide the language model to generate more accurate
time series predictions. Furthermore, we incorporate a shared
branch to integrate temporal and frequency domain data, en-
abling LLMs to produce more accurate data representations.
Experiments conducted on various datasets demonstrate the
accuracy and effectiveness of our model. We hope that future
research will further advance the application of LLM-TPF in
larger-scale real-world scenarios.
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