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Enhancing the Performance of Global Model by Improving the Adaptability of
Local Models in Federated Learning

Wujun Zhou , Shu Ding , Zelin Li and Wei Wang∗

National Key Laboratory for Novel Software Technology, Nanjing University, China
School of Artificial Intelligence, Nanjing University, China
{zhouwujun, dings, lizelin, wangw}@lamda.nju.edu.cn

Abstract
Federated learning enables the clients to collabo-
ratively train a global model, which is aggregated
from local models. Due to the heterogeneous data
distributions over clients and data privacy in fed-
erated learning, it is difficult to train local models
to achieve a well-performed global model. In this
paper, we introduce the adaptability of local mod-
els, i.e., the average performance of local models
on data distributions over clients, and enhance the
performance of the global model by improving the
adaptability of local models. Since each client does
not know the data distributions over other clients,
the adaptability of the local model cannot be di-
rectly optimized. First, we provide the property of
an appropriate local model which has good adapt-
ability on the data distributions over clients. Then,
we formalize the property into the local training
objective with a constraint and propose a feasible
solution to train the local model. Extensive exper-
iments on federated learning benchmarks demon-
strate that our method significantly improves the
adaptability of local models and achieves a well-
performed global model that consistently outper-
forms the baseline methods.

1 Introduction
Owing to the accessibility of large-scale datasets, deep neu-
ral networks have achieved great success over the years [He
et al., 2016]. However, a vast amount of training data may
be distributed across plenty of clients, posing challenges on
how to effectively utilize the client data [Li et al., 2019;
Kairouz et al., 2019]. To handle these challenges, fed-
erated learning [McMahan et al., 2017] has emerged as a
distributed learning paradigm with privacy-preserving prop-
erty. Federated learning enables the clients to collabora-
tively learn a well-performed global model by sharing local
updates. It demonstrates the strength in fully utilizing data
from the clients without requiring the upload of private data
to the server. Due to its communication efficiency and pri-
vacy preservation, federated learning has been widely used

∗Wei Wang is the corresponding author.

in multiple domains [Hard et al., 2020; Kang et al., 2020;
Jiang et al., 2021; Zheng et al., 2020; Khan et al., 2021;
Adnan et al., 2022].

However, the generalization performance of federated
learning relies on the assumption that the client data are in-
dependent and identically distributed (IID) [McMahan et al.,
2017]. In real scenarios, federated learning often encoun-
ters data heterogeneity, where the clients hold Non-IID data.
As mentioned in earlier studies, data heterogeneity affects
the effectiveness of federated learning [Zhao et al., 2018;
Li et al., 2020]. Recent studies have proposed numerous
methods to address the issue of degradation of model gener-
alization performance in Non-IID settings. A line of work
relies on clients uploading extra auxiliary variables during
the model upload phase, such as gradients [Karimireddy et
al., 2020; Dai et al., 2023], statistical distribution information
[Duan et al., 2021], etc., to modify server-side model updates.
However, these methods introduce additional communication
costs and the reliability of the uploaded information may im-
pact the effectiveness of federated learning [Li et al., 2022].

Another line of work focuses on aligning the local models
with the global model. [Li et al., 2020; Acar et al., 2021] pro-
pose adding penalty terms to local objectives to prevent local
models from deviating from the global model during local
training. [Chen and Chao, 2022; Zhang et al., 2022] propose
replacing the local loss with a balanced loss to improve the lo-
cal model’s performance on classes with few samples. These
methods aim to make local models converge near the global
optimal stationary point. However, since each local model is
trained with its own data and does not know the data distribu-
tions over other clients, these methods still struggle to achieve
effective alignment between the global and local models.

In this paper, we introduce the adaptability of local mod-
els, i.e., the average performance of local models on data dis-
tributions over clients, and enhance the performance of the
global model by improving the adaptability of local mod-
els. Since each client does not know the data distribu-
tions of other clients, the adaptability of the local model
cannot be directly optimized. First, we provide the prop-
erty of an appropriate local model which has good adapt-
ability on the data distributions over clients. Then, we for-
malize the property into the local training objective with a
constraint and propose a feasible solution to train the local
model. During the model aggregation phase, we further pro-
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pose a model aggregation method that allows local models
with good adaptability to have large aggregation weights. We
call this method Federated Learning with Adaptability over
Client Distributions (FedACD). Extensive experiments on
federated learning benchmarks demonstrate that our method
significantly improves the adaptability of local models and
leads to a well-performed global model that consistently out-
performs the baseline methods.

2 Related Works
Federated learning [Li et al., 2019; Kairouz et al., 2019] en-
ables clients to collaboratively learn a global model by shar-
ing local updates conducted on the local data. The general
federated learning method, FedAvg[McMahan et al., 2017],
introduces an iterative model averaging approach. However,
previous studies demonstrate that the robust generalization
performance of federated learning relies on the assumption
that the client data are independent and identically distributed
(IID) [McMahan et al., 2017]. In Non-IID scenarios, the
learned model may experience degradation in the generaliza-
tion performance [Zhao et al., 2018].

Many methods based on FedAvg have been proposed to
tackle data heterogeneity. One line of work relies on clients
to upload extra auxiliary variables during the model upload
phase to modify the server-side model updates. Scaffold
[Karimireddy et al., 2020] requires clients to upload extra
gradient information besides the updated model, utilizing
control variates (variance reduction) to correct client drift in
local updates, thereby improving the convergence rate of FL.
CReFF [Shang et al., 2022] uses the gradient information
uploaded by the clients to train the virtual features [Luo et
al., 2021] on the server to retrain the classifier of the global
model. FedNH [Dai et al., 2023] initializes uniform class
prototypes on the server and then sends the fixed prototypes
to clients to guide training. However, these methods intro-
duce additional communication costs, and the model’s per-
formance heavily relies on the reliability of the auxiliary vari-
ables. In scenarios with severe data heterogeneity or partial
client sampling, the reliability and update frequency of aux-
iliary variables decrease, leading to undecent generalization
performance [Li et al., 2022].

Another line of work focuses on that data heterogeneity
leads to a misalignment between local models and the global
model and attempts to adjust local training loss to align local
and global models. FedProx [Li et al., 2020] proposes adding
a proximal term into local objectives and penalizing gradient
updates far from the global model. FedNova [Wang et al.,
2020] employs a normalized averaging approach to eliminate
objective inconsistency while preserving rapid error conver-
gence. FedROD [Chen and Chao, 2022] proposes to view
each client’s local training as an independent class imbalance
problem and utilizes the balanced loss to replace the cross-
entropy loss to adjust local objectives. FedLC [Zhang et al.,
2022] introduces a deviation bound to measure the gradient
deviation after local updates and then calibrates the logit of
each class before softmax cross-entropy based on local label
distribution to alleviate the deviation. However, the alignment
of local and global models remains an ongoing exploration.

3 Methods
We consider the following Federated Learning (FL) scenario.
There are M clients with distribution D1,D2, ...,DM and
each client m has data Sm = {(xm

k , ymk )}Nm

k=1 drawn from
distribution Dm, where xm

k ∈ Rd is the d dimension sam-
ple , ymk ∈ [1, 2, ..., C] is the label of xm

k , and Nm = |Sm|
is the local sample size, m ∈ [M ]. The goal of FL is to
learn a global model ϕw with parameters w over all training
data S ≜

⋃
mSm without data transmission. For a sample x,

fw(x) is the logit vector of the global model ϕw on x. The
probability output, denoted p(x) = (p1, . . . , pC), is derived
from fw(x), where pi is the i-th element of p(x) and pi =

ef
i
w(x)∑C

k=1 ef
k
w(x)

, where fk
w(x) is the k-th element of fw(x). The

predicted label is given by ϕw(x) = argmax(p1, . . . , pC). In
federated learning, the global model ϕw is to minimize the
following risk over client distributions:

R(ϕw) =
M∑

m=1

1

M
E

(x,y)∼Dm
[P (ϕw(x) ̸= y)]. (1)

Let P (ϕw(x) ̸= y | y = i) represent the error rate of the
global model ϕw on class i and P (y = i) represent the prior
probability of class i, i ∈ [C]. We can get that P (ϕw(x) ̸=
y) =

∑C
i=1 P (ϕw(x) ̸= y | y = i)P (y = i). For simplicity

of notation, let ϵϕw = (ϵϕw

1 , ..., ϵϕw

C ) denote the error rate of
the global model ϕw, where ϵϕw

i ≥ 0 represents the error rate
of the global model on class i, i.e., ϵϕw

i = P (ϕw(x) ̸= y|y =
i). Let πm = (πm

1 , . . . , πm
C ) denote the prior distribution of

client m, where πm
i represents the prior distribution of class

i on client m. From Equation (1), we get that

R(ϕw) =

M∑
m=1

1

M
E

(x,y)∼Dm
[P (ϕw(x) ̸= y)]

=
M∑

m=1

1

M
E

(x,y)∼Dm

[
C∑
i=1

P (ϕw(x) ̸= y | y = i)P (y = i)

]

=
M∑

m=1

1

M

C∑
i=1

ϵϕw

i · π
m
i =

M∑
m=1

1

M
ϵϕw · πm.

(2)
In federated learning, the global model is aggregated from

local models. Prior works attempt to enhance global model
performance by aligning local models with the global model,
e.g., introducing regularization terms [Li et al., 2020; Acar
et al., 2021] or using balanced losses [Chen and Chao, 2022;
Zhang et al., 2022]. However, since clients have heteroge-
neous data distributions, and each client does not know the
data distributions of other clients, these methods have strug-
gled to achieve effective alignment. The global model ϕw

is to minimize the risk on the data distributions π1, . . . ,πM

over clients in Equation (2). Let ϕwm denote the local model
of client m with parameters wm, m ∈ [M ]. This motivates
us that the local model ϕwm should also achieve small risk on
the data distributions π1, . . . ,πM over clients:

R(ϕwm
) =

M∑
n=1

1

M
ϵϕwm · πn. (3)
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R(ϕwm) implies the adaptability of local model ϕwm . If
R(ϕwm) is small, i.e., ϕwm has good average performance
on the data distributions π1, . . . ,πM , we say that ϕwm has
good adaptability. Unfortunately, since client m does not
know the data distributions π1, . . . ,πm−1,πm+1, . . . ,πM ,
it is impossible to directly minimize Equation (3) to guide
the training process of ϕwm

. Here, we discuss how to find
a surrogate loss for Equation (3). For client m, we con-
sider the specific model ϕw∗ whose error rate ϵϕw∗ satisfies
ϵϕw∗
i = ϵϕw∗

j for i ̸= j and i, j ∈ [C]. The risk R(ϕw∗) over
the client distributions for ϕw∗ is:

R(ϕw∗) =
M∑
n=1

1

M

C∑
k=1

∑C
i=1 ϵ

ϕw∗
i

C
· πn

k

=
M∑
n=1

∑C
i=1 ϵ

ϕw∗
i

MC
·

C∑
k=1

πn
k =

∑C
i=1 ϵ

ϕw∗
i

C
=
∥ϵϕw∗ ∥1

C
.

(4)
From Equation (4), we can find that R(ϕw∗) = ∥ϵϕw∗ ∥1

C for
any client distributions π1, . . . ,πM . This implies that ϕw∗

may be a good choice for serving as the local model. Now,
we provide the following theorem:

Theorem 1. For client m, let πm denote the data distribu-
tion of client m, and ϕwm

is the local model on client m
with error rate ϵϕwm . Suppose ∥ϵϕwm ∥1 = ∥ϵϕw∗ ∥1 = ϵ∗.
If ϵϕwm does not satisfy the condition that ϵϕwm

i = ϵ
ϕwm
j

for i ̸= j and i, j ∈ [C], there exist sets of client distribu-
tions π̂1, . . . , π̂m−1,πm, π̂m+1, . . . , π̂M on which the risk
R(ϕwm) > R(ϕw∗).

Proof. Without loss of generality, we assume that πm =
( 1
C + δm1 , . . . , 1

C + δmC ) where − 1
C ≤ δm1 , . . . , δmC ≤ 1− 1

C

and
∑C

k=1 δ
m
k = 0. Let r = argmaxk∈[C] ϵ

ϕwm

k be the class
index with maximal error rate, s = argmink∈[C] ϵ

ϕwm

k is the
class index with minimal error rate. Since ϵϕwm does not sat-
isfy the condition that ϵϕwm

i = ϵ
ϕwm
j for i ̸= j and i, j ∈ [C],

we have ϵ
ϕwm
r > ϵ

ϕwm
s . Now we construct distribution π̂n =

(π̂n
1 , . . . , π̂

n
C) where π̂n

k = 1
C+δnk for k ∈ [C], n ∈ [M ]\{m}

with − 1
C ≤ δnk ≤ 1− 1

C and
∑C

k=1 δ
n
k = 0. Let 0 < θ < 1

C
be a constant. If δnk , k ∈ [C], n ∈ [M ]\{m} satisfy the fol-
lowing condition 1:

∑
t ̸=m

δtk =


−δmk , if k ∈ [M ]\{r, s}
θ − δmk , if k = r

−θ − δmk , if k = s

(5)

then the riskR(ϕwm
) over client distributions is

R(ϕwm
) =ϵϕwm ·

πm +
∑

n∈[M ],n̸=m π̂n

M

=
ϵ∗

C
+

θ

M

(
ϵ
ϕwm
r − ϵ

ϕwm
s

)
>

ϵ∗

C
.

1Here, we consider the non-trivial case that the number of clients
M is larger than the number of class C.

It is easy to find that the condition in Equation (5) can be
satisfied, e.g.,

δtk =


−δmk
M−1 , if k ∈ [M ]\{r, s}
θ−δmk
M−1 , if k = r
−θ−δmk
M−1 , if k = s

for k ∈ [C] and t ∈ [M ]\{m}. Since ∥ϵϕw∗ ∥1 = ϵ∗,
with Equation (4) we get R(ϕw∗) = ϵ∗

C . Thus, we have
R(ϕwm) > R(ϕw∗).

Theorem 1 indicates that for the model ϕwm
with the same

generalization ability as ϕw∗ , i.e., ∥ϵϕwm ∥1 = ∥ϵϕw∗ ∥1 =
ϵ∗, if the model ϕwm

does not satisfy the condition that
ϵ
ϕwm
i = ϵ

ϕwm
j for i ̸= j and i, j ∈ [C], ϕw∗ is a better

choice than ϕwm . The reason is that there exist sets of client
distributions π̂1, . . . , π̂m−1,πm, π̂m+1, . . . , π̂M on which
R(ϕwm

) > ϵ∗

C , while R(ϕw∗) is always ϵ∗

C for any distri-
butions. In federated learning, the clients have heterogeneous
data distributions, and each client does not know the distri-
butions of other clients. In this way, we can train the local
model according to the optimization in Equation (6) for each
client m, m ∈ [M ]:

min ∥ϵϕwm ∥1,

s.t. ϵ
ϕwm
i = ϵ

ϕwm
j , ∀i ̸= j.

(6)

Minimizing ∥ϵϕwm ∥1 can be achieved by minimizing the
cross-entropy (CE) loss over samples of local data Sm. How-
ever, ensuring that the error rate ϵϕwm satisfies the constraints
ϵ
ϕwm
i = ϵ

ϕwm
j for i ̸= j is challenging. In the following

section, we propose a feasible solution for this. As defined,
ϵ
ϕwm
i = P (ϕwm

(x) ̸= y | y = i) =
∑

j ̸=i P (ϕwm
(x) = j |

y = i), where P (ϕwm
(x) = j | y = i) represents the prob-

ability that local model ϕwm
predicts a sample of class i as

class j and can be computed by averaging the j-th element of
the probability outputs of the samples of class i. Therefore, it
is possible to optimize the probability outputs of local model
ϕwm to force the error rate ϵϕwm to meet the constraints in
Equation (6). First, we introduce the probability matrix Pm

for client m:

Pm =


Pm
11 Pm

12 . . . Pm
1C

Pm
21 Pm

22 . . . Pm
2C

...
...

. . .
...

Pm
C1 Pm

C2 . . . Pm
CC

 ,

where Pm
ij = P (ϕwm(x) = j | y = i). Pm

ij can be evalu-
ated as: Pm

ij = 1
Nm

i

∑
(x,y)∼Dm

i
pj , i, j ∈ [C], where pj is

the j-th element of the probability output p(x) of sample x.

Specifically, pj = ef
j
wm (x)∑C

k=1 e
fk
wm

(x)
, where fk

wm
(x) is the k-th

element of the logit vector fwm
(x) of sample x. It is easy to

find that ϵϕwm
i = 1−Pm

ii , i ∈ [C]. In this way, the constraints
ϵ
ϕwm
i = ϵ

ϕwm
j , i ̸= j, in Equation (6) become the probabil-

ity constraints: Pm
ii = Pm

jj , i ̸= j. We make the constraints
hold during the local training process in the following way:
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Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

NonIID (β) 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

FedAvg 75.63±0.75 68.35±2.43 60.47±3.74 41.97±0.24 39.57±0.60 38.12±0.11 45.76±0.21 40.24±0.31 36.09±0.33

FedProx 75.54±0.91 68.80±2.60 62.18±0.20 41.70±0.16 39.33±0.05 38.15±0.07 45.47±0.09 40.35±0.35 35.64±0.19

FedNova 75.19±1.15 67.02±2.90 56.63±1.88 41.63±0.12 39.38±0.46 37.88±0.39 45.72±0.12 40.36±0.24 35.47±0.43

CReFF 76.07±0.85 69.40±2.17 61.71±3.57 37.60±0.27 37.71±0.59 38.03±0.17 44.75±0.23 39.74±0.49 35.26±0.55

FedROD 77.53±0.86 71.12±1.33 62.46±3.29 42.02±0.15 40.15±0.44 38.37±0.18 46.18±0.26 42.02±0.14 37.81±0.39

FedNTD 76.01±0.47 70.41±0.76 60.48±1.41 43.05±0.22 39.90±0.31 37.70±0.29 46.86±0.18 41.89±0.30 36.86±0.28

FedDecorr 74.51±0.37 71.80±1.81 61.19±1.79 38.85±0.34 38.89±0.19 37.50±0.18 45.89±0.12 40.69±0.38 35.64±0.25

FedLC 76.76±0.56 69.40±1.40 52.71±4.09 41.92±0.39 39.85±0.52 35.27±0.16 46.66±0.12 41.37±0.14 36.63±0.38

FedNH 75.30±0.84 68.11±2.15 60.54±2.61 44.74±0.14 41.74±0.24 39.61±0.43 45.09±1.95 42.31±0.85 38.87±0.21

FedACD 79.57±0.02 73.13±0.52 63.57±0.46 49.08±0.08 46.24±0.17 43.22±0.46 49.62±0.32 45.29±0.14 41.44±0.85

Table 1: Performance(%) of the global models on test sets with uniform data distribution. The best in each setting is highlighted in bold, and
the second best is highlighted in underline.

first, we force the probability matrix Pm to have the form of
Pm
ij =

1−Pm
ii

C−1 , i ̸= j; then, we make Pm
ii = Pm

jj for i ̸= j by

adjusting Pm
ij = Pm

ji , i.e., 1−Pm
ii

C−1 =
1−Pm

jj

C−1 .
The local probability matrix Pm is evaluated by averaging

the probability outputs of each class’s samples of the local
data. Therefore, to force the local probability matrix Pm to
have the form of Pm

ij =
1−Pm

ii

C−1 , i ̸= j, we flatten the misclas-
sification probability for each sample . For a sample x with
label y, its probability output p(x) = (p1, ..., pC), where py
is the correct classification probability, and pk, k ̸= y, is the
misclassification probability. Based on the probability out-
put p(x), we construct the target vector q(x) = (q1, ..., qC),
where the misclassification probability qk, k ̸= y, is flat-
tened. Specifically, qy = py and qk =

1−py

C−1 for k ̸= y. Thus,
we minimize the Kullback-Leibler (KL) divergence between
p(x) and q(x) shown in Equation (7) to flatten the misclas-
sification probability for the sample x.

L1 =
1

|Sm|
∑

(x,y)∼Dm

KL(p(x)∥q(x))

=
1

|Sm|
∑

(x,y)∼Dm

C∑
i=1

pi log

(
pi
qi

)
,

qk =

{
py, if k = y,
1−py

C−1 , if k ̸= y.

(7)

In this way, by adjusting the probability output p(x) of each
sample x with label y to (

1−py

C−1 , ..., py, ...,
1−py

C−1 ), the proba-

bility matrix Pm has the form of Pm
ij =

1−Pm
ii

C−1 for i ̸= j.
To ensure that the local probability matrix Pm meets the

probability constraints Pm
ii = Pm

jj for i ̸= j, for the pair
of classes (i, j), the local probability matrix Pm should fur-
ther satisfy Pm

ij = Pm
ji . With the condition Pm

ij =
1−Pm

ii

C−1

for i ̸= j, Pm
ij = Pm

ji is equivalent to 1−Pm
ii

C−1 =
1−Pm

jj

C−1 , i.e.,
Pm
ii = Pm

jj , i ̸= j. To make Pm
ij = Pm

ji , if Pm
ij > Pm

ji , Pm
ij

should be decreased; otherwise, Pm
ij should be increased. Di-

rectly adjusting Pm
ij and Pm

ji during the local training process
is difficult. Since Pm is evaluated based on the sample’s logit

vector, we can implicitly adjust Pm
ij and Pm

ji by modifying
the logit margin between f i

wm
(x) and f j

wm
(x) for sample x.

Based on previous work [Menon et al., 2021], we dynam-
ically adjust the cross-entropy (CE) loss by modifying the
logit margin term {f i

wm
(x) − fy

wm
(x)} for each sample x

with label y with the following loss function:

L2 = 1
|Sm|

∑
(x,y)∼Dm

log

[
1 +

∑
i̸=y

e
fi
wm

(x)−fy
wm

(x)+log

(
Pm
yi

Pm
iy

)]
.

(8)
For simplicity, we define ∆yi =

Pm
yi

Pm
iy

. If ∆yi < 1, the logit

margin term {f i
wm

(x) − fy
wm

(x)} will be reduced to sup-
press class y’s relative margin towards class i, causing an in-
crease of ∆yi. Conversely, if ∆yi > 1, the logit margin term
{f i

wm
(x) − fy

wm
(x)} will be increased to relax class y’s rel-

ative margin towards class i, leading to a decrease of ∆yi.
Finally, ∆yi = 1 implies that Pm

ii = Pm
jj for i ̸= j. Thus, the

loss function to guide the local training process of ϕwm
is:

L = L1 + λL2, (9)

where the parameter λ controls the contribution of L1 and L2.

When confronted with severe data heterogeneity, certain
classes of some clients may hold limited samples or even no
samples. If class k is a missing class with Nm

k = 0, ∆yk in
Equation (8) is unknown due to the unknown value of Pm

ky .
To deal with missing classes, previous work [Zhang et al.,
2022] suggests that the gradient updates of missing classes
should be constrained, which inspires us to set ∆yk as a small
value. The evaluation of the local probability matrix relies
on averaging the probability outputs of samples, while the
means of the probability outputs of the samples belonging to
the classes with limited samples may deviate from the true
means. To address this issue, we incorporate Input Mixup
[Zhang et al., 2018] into the training process. Specifically,
within each local training epoch’s minibatch, the data mixup
technique is employed to increase the occurrence frequency
of samples for the classes with limited samples.

During the model aggregation phase, local models with
good adaptability should be assigned with large aggregation
weights. For client m, m ∈ [M ], if the local model ϕwm
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Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

NonIID (β) 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

FedAvg 76.29±2.19 70.75±1.93 62.67±2.62 41.68±0.26 39.72±0.67 38.58±0.16 45.66±0.51 40.30±0.60 36.52±0.86

FedProx 75.99±1.95 70.52±2.10 62.27±2.53 41.57±0.20 39.67±0.13 38.48±0.22 45.39±0.20 40.09±0.14 36.18±0.74

FedNova 75.89±2.09 67.27±5.83 55.44±2.52 41.84±0.09 39.67±0.54 38.23±0.17 45.71±0.37 40.14±0.40 36.19±0.98

CReFF 76.27±1.56 69.08±2.74 60.49±5.37 37.85±0.16 37.96±0.64 38.17±0.45 44.77±0.38 39.77±0.89 35.65±0.74

FedROD 77.71±0.98 71.53±1.86 62.84±3.16 42.09±0.23 40.12±0.68 38.36±0.33 46.02±0.30 42.27±0.58 38.00±0.78

FedNTD 76.69±1.26 67.92±2.10 59.26±4.13 43.60±0.12 40.33±0.78 38.70±1.03 47.19±0.12 41.56±0.04 37.19±0.48

FedDecorr 75.84±2.04 70.74±2.21 62.48±2.52 42.15±0.29 39.63±0.62 38.26±0.66 45.47±0.26 40.13±0.37 36.19±0.52

FedLC 77.08±1.47 70.61±1.99 56.52±5.13 41.67±0.16 39.49±0.79 35.58±0.15 45.90±0.21 41.32±0.24 36.21±0.25

FedNH 75.89±1.57 69.70±1.38 61.73±3.12 44.54±0.30 41.78±0.60 39.70±0.57 46.25±0.19 43.06±0.11 39.66±0.27

FedACD 79.39±0.85 74.05±3.00 63.56±2.88 48.94±0.16 46.30±0.38 43.96±0.67 48.01±0.23 45.07±0.54 42.17±0.69

Table 2: Performance(%) of the global models on the test sets constructed based on the data distribution of each client.

has good adaptability, the constraints in Equation (6) should
hold, implying that the probability matrix Pm satisfies that
Pm
ii = Pm

jj for i ̸= j. In this way, we can assign the aggrega-
tion weights by measuring the degree to which the constraints
are satisfied. We set a template matrix Q, where Qii = Qjj

for i ̸= j, and measure the degree to which the constraints are
satisfied by calculating the KL divergence between the local
probability matrix Pm and the template matrix Q. Intuitively,
the ideal template matrix is the identity matrix I, but we can
not calculate the KL divergence between Pm and I. Hence,
we define a template matrix Q as that shown in Equation (10).
For client m, we compute its aggregation score Vm by calcu-
lating the KL divergence between the local probability matrix
Pm and the template matrix Q as follows:

Vm = Sigmoid
(

1

KL(Pm||Q)

)

= Sigmoid

 1∑C
i=1

∑C
j=1 P

m
ij log

(
Pm

ij

Qij

)
 ,

Q =


τ 1−τ

C−1 . . . 1−τ
C−1

1−τ
C−1 τ . . . 1−τ

C−1
...

...
. . .

...
1−τ
C−1

1−τ
C−1 . . . τ

 ,

(10)

where 0 < τ < 1 is a parameter. Our Federated Learning
with Adaptability over Client Distributions (FedACD) fol-
lows the rules below:

Local: w⋆
m ← argminw L1 + λL2, initialized with w;

Global: w ←
∑

m∈[M ]

Vm∑
k∈[M ] Vk

w⋆
m.

(11)
After local training, client m uploads the aggregation score
Vm to the server. It is noteworthy that Vm is a scalar, and the
server cannot infer the local probability matrix or any privacy-
sensitive information from Vm, which effectively protects the
privacy of the client data.

4 Experiments
4.1 Settings
Datasets and Models. We perform extensive experi-
ments on three benchmark datasets: CIFAR-10, CIFAR-100
[Krizhevsky, 2009], and Tiny-ImageNet [Deng et al., 2009;
Le and Yang, 2015]. Tiny-ImageNet is a subset of ImageNet
with 100k samples of 200 classes. Following [Chen and
Chao, 2022], we adopt a simple Convolutional neural net-
work for CIFAR-10 and CIFAR-100, while using Resnet18
[He et al., 2016] for the Tiny-ImageNet. We implement all
compared federated learning methods with the same model
for a fair comparison.
Client settings. We employ Dirichlet sampling to generate
Non-IID data for each client. Dirichlet sampling is a com-
mon technique used in FL for creating Non-IID data [Chen
and Chao, 2022; Zhang et al., 2022; Dai et al., 2023]. It
yields distinct label distributions for each client, with the de-
gree of data heterogeneity controlled by β. Smaller β refers
to severer heterogeneity and when β < 1, some clients may
lack samples of certain classes. In our experiments, we adopt
β ∈ {0.3, 0.1, 0.05}.
Hyper-parameters. For the local training process, SGD op-
timizer is used with a 0.01 initial learning and 0.9 momen-
tum. We employ a weight decay of 10−5 for CIFAR-10 and
CIFAR-100, and 10−3 for TinyImageNet to mitigate overfit-
ting. The batch size is set as 64. The number of clients is
set as 20 and the participation ratio is set as 40%. The local
training epoch is set as 5 and the total communication round
is set as 200. λ is set as 1 and τ is set as 1− 10−5.
Baselines. We select three types of FL methods as the base-
lines. 1) Generic FL: FedAvg [McMahan et al., 2017]; 2)
Classical FL with Non-IID data: FedProx [Li et al., 2020],
FedNova [Wang et al., 2020]; 3) FL methods most related
to us: FedROD [Chen and Chao, 2022], CReFF[Shang et
al., 2022], FedNTD[Lee et al., 2022], FedLC [Zhang et al.,
2022], FedDecorr[Shi et al., 2023], FedNH [Dai et al., 2023].

4.2 Main results
We evaluate the performance of the global model on the test
set with uniform data distribution (shown in Table 1) and the
test sets constructed based on the data distribution of each
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Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

NonIID (β) 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

FedAvg 0.41±0.033 0.57±0.019 0.70±0.020 0.69±0.006 0.77±0.006 0.82±0.001 0.68±0.004 0.79±0.006 0.86±0.004

FedProx 0.41±0.034 0.58±0.019 0.70±0.020 0.69±0.005 0.77±0.006 0.82±0.001 0.68±0.003 0.79±0.006 0.86±0.004

FedNova 0.41±0.032 0.56±0.030 0.69±0.030 0.69±0.005 0.77±0.007 0.82±0.002 0.68±0.005 0.79±0.006 0.86±0.003

CReFF 0.41±0.033 0.57±0.019 0.70±0.020 0.69±0.006 0.77±0.006 0.82±0.001 0.68±0.004 0.79±0.006 0.86±0.004

FedROD 0.30±0.014 0.38±0.020 0.47±0.031 0.64±0.001 0.70±0.005 0.78±0.003 0.66±0.002 0.76±0.002 0.83±0.004

FedNTD 0.31±0.030 0.46±0.028 0.59±0.030 0.65±0.001 0.71±0.004 0.79±0.010 0.66±0.002 0.77±0.001 0.84±0.003

FedDecorr 0.41±0.033 0.58±0.019 0.70±0.021 0.69±0.003 0.77±0.006 0.82±0.001 0.66±0.003 0.79±0.003 0.86±0.003

FedLC 0.30±0.026 0.39±0.023 0.49±0.062 0.64±0.002 0.72±0.004 0.83±0.001 0.67±0.004 0.77±0.005 0.87±0.002

FedNH 0.40±0.031 0.55±0.020 0.69±0.021 0.66±0.004 0.74±0.007 0.79±0.002 0.67±0.001 0.76±0.003 0.82±0.004

FedACD 0.25±0.017 0.31±0.012 0.39±0.031 0.60±0.003 0.67±0.005 0.74±0.010 0.64±0.001 0.73±0.002 0.80±0.004

Table 3: The average risk on the distributions over clients of local models.

Client Num K 20 40 60 80 100

Participation Ratio γ 0.2 0.4 0.6 0.4 0.4 0.4 0.4

FedAvg 36.87±0.38 39.57±0.60 40.05±0.84 39.64±0.46 38.47±0.13 37.77±0.25 35.76±0.20

CReFF 38.60±0.52 37.71±0.59 36.40±0.45 31.28±0.50 26.50±0.23 23.26±0.18 20.86±0.31

FedROD 39.85±0.29 40.15±0.44 40.56±0.35 38.50±0.19 36.97±0.10 34.78±0.16 33.01±0.11

FedNTD 39.11±0.25 39.90±0.31 40.55±0.15 39.34±0.15 37.69±0.19 37.48±0.14 36.35±0.04

FedDecorr 37.80±0.61 38.89±0.19 39.87±0.15 39.09±0.18 38.34±0.25 37.82±0.21 35.62±0.19

FedNH 39.99±0.12 41.74±0.24 42.10±0.61 40.76±0.46 39.48±0.15 38.21±0.17 37.43±0.12

FedACD 44.42±0.33 46.24±0.17 46.70±0.03 44.27±0.46 42.49±0.17 41.30±0.12 40.33±0.04

Table 4: Ablation study for number of clients and participation ratio. All experiments are conducted on CIFAR-100 with Non-IID β = 0.1.

client (shown in Table 2). Our method achieves the best per-
formance across three datasets with diverse data heterogene-
ity. To further demonstrate that our method improves the
adaptability of local models, we also calculate the average
risk on the distributions over clients of local models (shown
in Section 4.1). The results show that the risk over client dis-
tributions of the local models in our method is consistently
lower than that in the baseline methods with diverse data het-
erogeneity. This confirms that our method enhances the per-
formance of the global model by improving the adaptability
of local models. Classical FL methods with Non-IID data,
such as FedProx and FedNova, show similar results to Fe-
dAvg, which indicates that it is hard to align the local models
that are trained on data with different distributions. The clas-
sifier re-training method, CReFF, fails to demonstrate effec-
tiveness under various settings, which could be attributed to
the unreliability of synthesized features. The prototype-based
method, FedNH, exhibits only marginal improvement in set-
tings with severe data heterogeneity, which indicates that pro-
totype learning is also impacted by data heterogeneity. Fed-
Decorr focuses on representation learning with data hetero-
geneity, but also fails to achieve significant performance im-
provements. FedROD and FedLC demonstrate an improve-
ment in accuracy compared to FedAvg on CIFAR-10, which
indicates that the balanced loss helps alleviate the impact of
data heterogeneity to some extent. However, the balanced
loss fails to exhibit effectiveness when confronted with chal-
lenging scenarios, such as CIFAR-100 and TinyImageNet.

4.3 Ablation Study
Different number of clients K with various participation
ratio γ. We select the best baselines in Table 1 and conduct
experiments on skewed CIFAR-100 under different number
of clients K with various participation ratio γ. As shown
in Table 4, to validate the impact of client number, we set
γ = 0.4 and K ∈ {20, 40, 60, 80, 100}. As the number of
clients gradually increases, achieving convergence in FL be-
comes harder. Most methods experience a decline in accu-
racy, while our method consistently outperforms the baseline
methods. To validate the impact of the participation ratio, we
set K = 20 and γ ∈ {0.2, 0.4, 0.6}. When γ is small, the
client data distributions among different rounds vary signifi-
cantly, leading to divergent gradient directions. However, our
method consistently achieves the best performance. All ex-
periments demonstrate that our method performs well under
different numbers of clients with partial participation ratios.
Input Mixup. We incorporate Input Mixup into local train-
ing. For a fair comparison, we select several methods com-
patible with Input Mixup in Table 1 and incorporate Input
Mixup into the training process. As shown in Table 5, our
method without Input Mixup outperforms the baseline meth-
ods without Input Mixup under all settings. After incorpo-
rating Input Mixup, our method consistently outperforms the
baseline methods with Input Mixup by a large margin under
various data heterogeneity. Unlike other methods where In-
put Mixup mainly augments data diversity, we leverage it to
improve the reliability of the evaluation process of the local
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Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

NonIID (β) 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

FedAvg w/o Input Mixup 75.63±0.75 68.35±2.43 60.47±3.74 41.97±0.24 39.57±0.60 38.12±0.11 45.76±0.21 40.24±0.31 36.09±0.33

FedAvg w/ Input Mixup 73.44±2.20 66.13±2.62 59.25±2.89 46.43±0.49 41.41±0.54 37.17±1.13 47.36±0.36 41.61±1.13 34.99±0.43

FedROD w/o Input Mixup 77.53±0.86 71.12±1.33 62.46±3.29 42.02±0.15 40.15±0.44 38.37±0.18 46.18±0.26 42.02±0.14 37.81±0.39

FedROD w/ Input Mixup 76.71±0.18 71.70±0.92 61.76±0.14 42.38±0.15 40.06±0.64 38.13±0.23 46.19±0.17 41.83±0.16 37.08±0.11

FedLC w/o Input Mixup 76.76±0.56 69.40±1.40 52.71±4.09 41.92±0.39 39.85±0.52 35.27±0.16 46.66±0.12 41.37±0.14 36.63±0.38

FedLC w/ Input Mixup 76.22±0.41 69.82±0.31 55.39±0.58 45.37±0.19 42.38±0.42 38.01±0.25 47.33±0.13 43.22±0.14 37.51±0.31

FedNH w/o Input Mixup 75.30±0.84 68.11±2.15 60.54±2.61 44.74±0.14 41.74±0.24 39.61±0.43 45.09±1.95 42.31±0.85 38.87±0.21

FedNH w/ Input Mixup 74.16±1.73 66.87±3.33 58.16±2.50 46.80±0.47 43.11±0.29 40.58±0.70 47.47±0.44 42.62±0.71 39.85±0.37

FedACD w/o Input Mixup 77.97±0.41 72.59±0.38 62.64±0.32 45.53±0.30 42.61±0.26 40.76±0.24 46.94±0.36 43.40±0.38 39.67±0.25

FedACD w/ Input Mixup 79.57±0.02 73.13±0.52 63.57±0.46 49.08±0.08 46.24±0.17 43.22±0.46 49.62±0.32 45.29±0.14 41.44±0.85

Table 5: Ablation study for Input Mixup.

Local Epochs E 3 5 7 9 11 13 15

FedAvg 40.76±0.68 39.57±0.60 38.89±0.40 38.51±0.13 37.81±0.24 37.41±0.21 37.32±0.36

CReFF 36.93±0.52 37.71±0.59 38.38±0.37 38.48±0.28 38.23±0.15 38.78±0.22 38.24±0.10

FedROD 41.72±0.38 40.15±0.44 39.23±0.28 38.84±0.28 37.28±0.07 37.47±0.09 38.00±0.24

FedNTD 41.61±0.33 39.90±0.31 39.25±0.22 39.42±0.21 39.30±0.33 39.03±0.29 38.51±0.18

FedDecorr 40.22±0.44 38.89±0.19 38.33±0.28 38.18±0.28 37.84±0.29 36.87±0.25 36.92±0.33

FedLC 41.40±0.15 39.85±0.52 39.53±0.60 38.68±0.15 37.20±0.23 37.63±0.40 36.74±0.17

FedNH 42.17±0.55 41.74±0.24 41.34±0.42 39.62±0.31 39.55±0.30 39.93±0.24 39.36±0.32

FedACD 46.12±0.39 46.24±0.17 45.46±0.01 45.36±0.25 44.73±0.35 44.68±0.29 44.85±0.14

Table 6: Ablation study for different local epochs. All experiments are conducted on CIFAR-100 with Non-IID β = 0.1.

λ 0.5 1 1.5 2

FedACD 46.05±0.21 46.24±0.17 45.79±0.18 45.35±0.28

Table 7: Ablation study for parameter λ. All experiments are con-
ducted on CIFAR-100 with Non-IID β = 0.1.

NonIID(β) 0.3 0.1 0.05

FedACDbase 48.63±0.41 45.51±0.21 42.76±0.45

FedACD 49.08±0.08 46.24±0.17 43.22±0.46

Table 8: Ablation study for the aggregation method. All experiments
are conducted on CIFAR-100 with Non-IID β ∈ {0.3, 0.1, 0.05}.

probability matrix by ensuring that the means of the prob-
ability outputs of samples belonging to classes with limited
samples are closer to the true means, thus incorporating Input
Mixup can improve the performance of our method.
Different local epoch E. We select the best baselines in
Table 1 and vary the number of local training epoch E ∈
{3, 5, 7, 9, 11, 13, 15} for each client in every round. As
shown in Table 6, our method consistently achieves the best
performance across different settings. Meanwhile, it is note-
worthy that as the local training epoch E increases, the per-
formance of most methods exhibits a declining trend. How-
ever, our method maintains relatively stable performance
for different local epochs, especially with a large E ∈
{9, 11, 13, 15}. The reason is that with the increase of lo-
cal training epochs, the local models tend to overfit the local

data distributions. This increases the risk of local models on
heterogeneous data distributions over clients, i.e., the adapt-
ability of local models becomes worse.
Parameter λ. Parameter λ in Equation (9) controls the
contribution of L1 and L2. We conduct experiments with
λ ∈ {0.5, 1, 1, 5, 2.0}. As shown in Table 7, our method
performs best with λ = 1 and remains robust to variations of
λ. Therefore, we set λ = 1 in all experiments.
Aggregation method. We propose an aggregation method
that allows local models with good adaptability over client
distributions to have large aggregation weights. We con-
duct experiments by comparing our aggregation method with
the aggregation method with uniform weights (denoted as
FedACDbase). As shown in Table 8, our aggregation method
consistently outperforms FedACDbase under various data het-
erogeneity, demonstrating its effectiveness.

5 Conclusion
In this paper, we introduce the adaptability of local models,
i.e., the average performance of local models on data dis-
tributions over clients, and focus on improving the adapt-
ability of local models to enhance the performance of the
global model. Extensive experiments on federated learning
benchmarks demonstrate that our method achieves the well-
performed global model that outperforms the baseline meth-
ods.
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