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Abstract

Federated graph learning is focused on aggregating
knowledge from multi-source graph data and train-
ing graph neural networks. Unlike the data that tra-
ditional federated learning needs to deal with, fed-
erated graph learning also needs to face additional
topological information. Further, there are also bi-
ases in features and topologies among clients, in-
creasing the difficulty of training models. Previ-
ous methods usually seek global calibration infor-
mation, however, this approach may suffer from in-
formation bias caused by data skews, and it is also
difficult to naturally combine feature and topology
information. Therefore, adjusting the bias before
it occurs will hopefully address the learning diffi-
culties caused by the skew. In view of this, we
employ background graph data, which works as
reference information for local training, to proac-
tively correct bias before it occurs. As a kind of
graph data, background graphs are naturally capa-
ble of combining feature and topology information
to accomplish bias correction among clients in a
comprehensive way. Mixing strategy is employed
on the background graph to additionally provide
privacy-preserving capabilities. Graph generation
methods are employed to restore the diversity of
background graphs that are blurred by the mixing
strategy. Extensive experiments on two real-world
datasets demonstrate the sufficient motivation and
effectiveness of the proposed method.

1 Introduction
As graph data are generated more and more frequently,
there is a growing need for data analysis [Liu et al., 2023;
Liu et al., 2025] on them [Zhuang et al., 2024]. Graph
neural networks, as a machine learning paradigm for graph
data [Yang et al., 2022; Xia et al., 2022], have been used in
very many areas where artificial intelligence techniques are
needed, e.g., financial analysis [Yang et al., 2021], social rec-
ommendation [Liao et al., 2022], bioinformatics [Yi et al.,

∗ Corresponding author.

2022] and so on. However, many existing graph neural net-
work solutions that require centralizing data in one place have
difficulty in meeting privacy requirements, due to the huge
growth in the amount of data [Hu et al., 2021] and the in-
creasing concern for privacy by many parties [Wang et al.,
2022b]. For example, in the case of social media, the ex-
change of data among different countries may encounter ob-
stacles in terms of policy. As a privacy-secure solution, fed-
erated learning can utilize the knowledge provided by more
data to build better-performing models without exchanging
the original data. Therefore, exploring the combination with
federated learning, which enables graph neural networks to
access the knowledge provided by more data and obtain more
powerful models, is a worthwhile research topic.

Federated Graph Learning (FGL) is a privacy-preserving
paradigm for training graph neural networks [Peng et al.,
2022; Cai et al., 2024b; Wang et al., 2022a; Cai et al.,
2024a]. It improves the performance of the models, by
extracting local information on individual clients with the
graph data they have and aggregating the information in the
communication process. FedAvg [McMahan et al., 2017],
as a widely adopted base method for federated learning,
can be used for global model aggregation [Qi et al., 2023;
Qi et al., 2025], but the problems encountered on traditional
federated learning are reproduced on FGL as well. Because
of the distributed property of the data, the variability of the
optimization objectives in individual clients is widespread in
federated learning, and this inconsistency disturbs the gener-
ation of federated models [Ye et al., 2023]. And this likewise
adversely affects the performance of federated models con-
structed by FGL. Specifically, the data show different distri-
butions due to their different sources [Zhang et al., 2024c].
For example, social media in different countries may have
significantly different exogenous features due to cultural dif-
ferences, while endogenous friendship preferences may also
have differences. In the resulting graph data, such distribu-
tional properties may not only be manifested in feature skews,
but also in topological variations. And node relationships
in the graphs may exist across clients [Guo et al., 2023], so
that the propagation paths of some nodes would be lost, and
feature skews may result in feature-based composition rules
that are not generalizable across clients, which poses a further
challenge to FGL.

Similar to previous federated learning methods, the main
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Figure 1: An overview of the proposed FedBG framework. The graph data owned by each client is condensed into background data and
then be uploaded to the server, and the mixing operation is performed on the server side to further protect the privacy. The clients use the
distributed background data to recover the diversity data before mixing by the graph generation method, and use it as the background for local
training to adjust the training process of the local model. The global model is still aggregated from the local models, and the background
graph data is intended to provide model tuning before aggregation. They maintain the properties of the graph data and do not need to be
dependent on the model being trained (GNN Model).

focus of methods addressing client shifts in graph data is to
obtain reference information from other clients and use it to
regulate the process of federated training [Liao et al., 2024;
Fu et al., 2025]. The simple approach for FGL can be to re-
place the backbone network in traditional federated learning
methods with a graph neural network. Based on this, meth-
ods such as FedAvg, FedProx [Li et al., 2020], MOON [Li et
al., 2021], etc. can be easily applied to graph data. However,
these traditional federated methods ignore an important prop-
erty in graph data, i.e., topology. Federated methods designed
specifically for graph data usually incorporate the consider-
ation of topology, which is learned in order to recover the
relationship information between nodes and adjust the train-
ing and aggregation process of the models [Xie et al., 2021;
Fu and King, 2023; Hu et al., 2024]. Since the graph data are
different from client to client, the models obtained by each
client are also varied. This type of methods usually adjust
the differences only after they have occurred, and predictably
such adjustments can lead to a compromise on the knowl-
edge integrity of the models. Further, when dealing with
cross-domain graph data, the skewing of feature and topo-
logical information among domains would inevitably affect
the construction of relationship information between nodes,
and would further interfere with the training of the models.
In addition, dealing with cross-domain data usually requires
the construction of domain calibration information, such as

prototypes, which is a common practice in federated learn-
ing [Huang et al., 2023b; Zhang et al., 2024a]. In the face
of cross-domain graph data, not only feature calibration in-
formation, but also topological knowledge needs to be pro-
vided for calibration, while combining and utilizing feature
and topological information in order to ensure the complete-
ness of the graph data. Moreover, since calibration informa-
tion is usually obtained and aggregated from models that have
already shifted, this leads to model tuning being based on bi-
ased calibration information. Therefore, exploring the natu-
ral combination of feature and relationship information, and
proactively adjust the model before the skew occurs is a way
to enhance the performance of cross-domain FGL.

Based on the above analysis, the following objectives need
to be achieved: First, in order to construct accurate calibration
information, it needs to be extracted directly from the source
of information, i.e., the data, rather than indirectly from the
model. Second, it is necessary to investigate how to ex-
tract common knowledge in cross-domain information in or-
der to counteract the performance damage caused by domain
skew. Finally, in order for the provided calibration informa-
tion to have accurate node relationship information, we need
to use calibration information with strong coupling between
the feature and topology. Therefore, in this paper, we pro-
pose a framework to mitigate the federated graph domain shift
problem using background graph data in a proactive manner,
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called FedBG (Federated graph learning with BackGround
data). An overview is shown in Figure 1. Background graphs
extracted from the data sources do not rely on models that
have been biased, and naturally fused with feature and topol-
ogy information. A mixing strategy is used to blur the data
from individual clients before receiving the background data
to further preserve privacy. Training is performed with the
background data and the local data to fully utilize all the in-
formation, and graph generation techniques are employed to
extract common knowledge in the cross-domain data to help
FGL counteract the performance degradation caused by do-
main bias. The contributions of this paper are summarized as
follows:

• A method for tuning models on the client side using
background data is proposed to mitigate drift proactively
before aggregation.

• Employing mixing strategy to blur the background data
of individual clients for further privacy protection.

• Utilizing graph diversity generation method to fully ex-
tract common knowledge from cross-domain data, and
also to defend against performance degradation from
mixing strategy.

• Extensive experiments are performed on two real-world
datasets, and the results show the advantages of the pro-
posed FedBG over existing state-of-the-art FL and FGL
methods.

2 Related Work
2.1 Federated Learning
Federated learning, as a distributed privacy-preserving learn-
ing paradigm, has a very high research value in the con-
text of the increasing demand for data privacy protection.
FedAvg [McMahan et al., 2017], as a foundational method
for federated learning, however, faces the challenge of data
heterogeneity. The skewed data distribution tends to nega-
tively affect the effectiveness of federated models, so how
to counteract this effect is a key research focus. Limiting
the drift caused by heterogeneous data to model training
by controlling the updating of model parameters are widely
adopted practices [Li et al., 2020; Karimireddy et al., 2020;
Wang et al., 2020]. This type of approach are relatively
straightforward and therefore have the potential to be im-
proved even further. Using representations generated by the
model to guide the updating process can mitigate the infor-
mation missing due to data heterogeneity [Lin et al., 2020;
Li et al., 2021]. This kind of approach improves the per-
formance of federated models by passing information be-
tween global and local models. Exploring how to learn
about local client data distributions is an interesting solu-
tion [Xiong et al., 2023; Huang et al., 2024], which is
used to smooth out the heterogeneity of distributions among
clients and promote proper model updating. There are many
ways of constructing global prototypes to align the repre-
sentation space of individual clients [Zhang et al., 2024b;
Huang et al., 2023b], which can also be used as a federated
model building solution for cross-domain data. The above at-
tempts at federated learning to overcome heterogeneity have

achieved encouraging success and facilitated the development
of federated learning for heterogeneous data. However, these
methods do not achieve satisfactory performance in the face
of more complex graph data. Since graph data has addi-
tional relational information compared with traditional image
or text data, how to solve the federated model construction
for graph data is a worthy research topic.

2.2 Federated Graph Learning
FGL is a specialized solution for distributed graph data, and
unlike traditional federated learning, FGL needs to addition-
ally consider the relationship information between nodes.
There are usually two kinds of tasks for graph data, graph-
level tasks and node-level tasks, for this paper we focus on
the latter. Due to the specificity of graph data, there may
also be potential relational links between clients, but due to
the inaccessibility of the data, this creates a new challenge
for the construction of federated models. Learning the po-
tential links of nodes located between subgraphs of various
clients can compensate for the imbalance of data distribution
to some extent [Zhang et al., 2021]. Extracting topological
information of graph data between clients and using it for
cross-client optimization enhancement can boost the perfor-
mance of graph learning [Baek et al., 2023; Li et al., 2024;
Zhu et al., 2024]. Exploring global calibration information
among clients can assist in local model training [Wan et al.,
2024; Huang et al., 2023a]. Seeking calibration information
where features are naturally combined with topological in-
formation is beneficial for graph learning. Taking a direct
approach from the data side may be able to minimize the in-
terference of bias. Further exploring how to extract common
knowledge from cross-domain data can be an effective solu-
tion for FGL against domain bias.

3 Methodology
3.1 Preliminaries
In the federated setting, given a graph G(p) =
(V(p), E(p), T (p)) located on p-th client, where V(p) de-
notes a node set, E(p) denotes the set of edges connected
between nodes, and T (p) is the attributes of the nodes, which
includes X(p) ∈ RN(p)×D and Y(p) ∈ RN(p)

, indicating
the features and labels of each node, respectively. E(p) can
be converted to an affinity matrix A(p), i.e., A

(p)
i,j set to

1 when there is a connected edge between nodes i and j,
and 0 otherwise. Based on the graph data G(p), each client
constructs its own graph neural network. Specifically, in the
graph node classification task, for the current representation
of each node on the graph, which can usually be regarded as
the result of message passing, the process can be formalized
as the following equation:

hl+1
i = UPD(p),l

(
hl
i,AGG

({
hl
j : ∀j ∈ {j|A(p)

i,j = 1}
}))

, (1)

where hl
i means the representation of i-th node in l-th layer

and h1
i = X

(p)
i . AGG aggregates the neighbor representa-

tions of i-th node, and UPD(p),l updates the l-th layer’s rep-
resentation with the aggregated feature.
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For a federated task, we expect all participating clients to
jointly construct a global model F̂ = {UPDl}l=1,2,··· ,L such
that it can achieve adaptability over the global data. There-
fore, the following loss function needs to be minimized for
constructing this federated model:

min
θ̂

L
(
θ̂;G

)
= min

θ̂

P∑
p=1

α(p)L(p)
(
θ̂;G(p)

)
, (2)

where θ̂ is the parameter of F̂ and G = {G(p)}p=1,2,··· ,P
means the overall graph data, α(p) means the aggregation
weight, which is determined by the number of nodes on the
corresponding client. L denotes the task-related loss func-
tion, e.g., the cross-entropy loss.

However, in a distributed environment, there are two crit-
ical phenomena that occur in graph data: feature skew and
topology skew. Feature skew: There exist clients i and
j, whose distributions of node features x are different by
sampling nodes under the conditions of the same label dis-
tribution, i.e., Pi(x|y) ̸= Pj(x|y), s.t. Pi(y) = Pj(y).
Topology skew: Unlike traditional data, there are also dif-
ferent underlying relationship rules among the graph data
at the clients, thus, even with the same feature and label
distributions, it may lead to differences in topology, i.e.,
Pi(A|x, y) ̸= Pj(A|x, y), s.t. Pi(x, y) = Pj(x, y) or
Pi(A|y) ̸= Pj(A|y), s.t. Pi(y) = Pj(y).

The skew among clients leads to dispersion in local model
training, which is predictably exacerbated with the cross-
domain graph data. Graph data has not only features, but
more importantly also relational information, and thus, build-
ing a unified global aggregation model for cross-domain
graph data is a critical challenge.

3.2 Using Graph Background Data to Provide
Calibration Information among Clients

The inability to exchange raw data among different clients
makes it difficult for local models to obtain accurate global
information as a reference object to regulate the optimization
process of local models. At this point, aggregating local mod-
els leads to hard calibration, i.e., forcibly merging models
with different preferences. As a trade-off between accuracy
and privacy, federated learning for general data usually adopts
auxiliary representations or model parameters as guidelines
for local model tuning. However, since graph data itself has
additional relational information, previous approaches have
not yet taken this property into account and would ignore this
part of the information. Moreover, using imperfect global
information as a criterion for local model tuning may lead
to a wrong optimization direction. Therefore, considering
the characteristics of graph data and exploring the corrective
measures before local model aggregation from the original
data, it could be expected to solve the phenomenon of client-
side shifts caused by graph data skew.

As an intuitive solution, we can calibrate the local model
by auxiliary information, which needs to contain both feature
and topology information. Moreover, this auxiliary informa-
tion should be used in a soft way, i.e., not as a constrained
way of calibration, so that it is more flexible for the adjust-

ment. Therefore, graph condensation technique is a very suit-
able solution, which can extract as much feature and struc-
tural information as possible from the original graph data to
the new graph without exposing the original data. The con-
densed graphs can be used on the client side to softly tune the
local model in order to reduce the bias of individual clients
before aggregating. We refer to these new graphs as back-
ground graphs because they provide the environmental con-
text for federated learning. The node features of the back-
ground graph can be constructed using gradient matching.
Specifically, for each of the original and background graphs,
the gradients g(p) and g′(p) at the model θ(p) on the p-th client
are shown in the following equations, respectively:

g(p) = ∇θ(p)L(p)
T

(
θ(p);A(p),X(p),Y(p)

)
, (3)

g′(p) = ∇θ(p)L(p)
T

(
θ(p);A′(p),X′(p),Y′(p)

)
, (4)

where A′(p),X′(p) and Y′(p) denote the affinity matrix, fea-
tures and expected output of the background graph, respec-
tively. L(p)

T means the task loss, e.g. cross-entropy loss. Here,
the features of the background graph are set as learnable pa-
rameters, while the affinity matrix of the background graph
is fixed, then the learnable parameters can be solved by min-
imizing the following loss function:

L(p)
GF (X

′(p)) = D(g(p), g′(p)), (5)
where D(·, ·) is a distance function that can be set to Eu-
clidean distance. At this point, the features of the background
graph are optimized in a direction that can simulate the opti-
mized properties of the original graph.

The topological construction pattern of the graph as a po-
tential knowledge, which can be acquired by mining the fea-
ture relationships between nodes and fitting the client envi-
ronment in which the nodes are located. Therefore, relational
sampler is employed to construct topology information in the
current environment:

A
′(p)
i,j = σ

(
[Sf (Fi,j), Se(i, j)] + [Sf (Fj,i), Se(j, i)]

2

)
, (6)

here, Fi,j = X
′(p)
i ||X′(p)

j and “·||·” is the concatenation op-
eration, [·, ·] means the merge operation, e.g. dot product, σ
denotes the Sigmoid function, Sf = S

(p)
f denotes the feature

relational sampler that focuses on learning the compositional
knowledge originating from the features, and Se = S

(p)
e de-

notes the node relational sampler that focuses on learning
the native compositional knowledge originating from the re-
lationships among the nodes, and both of them can be instan-
tiated using multilayer perceptrons. The relational sampler
samples from feature space and node space, and generates the
topology of the background graph based on the compositional
knowledge fused in the model parameters.

Using gradient matching, the constructed topological infor-
mation is aligned with the original graph in order to learn the
knowledge of graph construction in the current environment.
At this point, the process is accomplished by minimizing the
following loss function:

L(p)
GT (A

′(p)) = D(g(p), g′(p)). (7)
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The generated background graphs are collected by the
server, and distributed to each client for further operations.
Towards additional privacy security, the background graphs
generated by the individual clients will also be mixed be-
fore being distributed. To reduce the resulting performance
degradation, cluster mixing is employed. Similar background
graphs are mixed to avoid knowledge loss due to conflicting
information. Since the topological characterizations are de-
pendent partly on the node features during the generation of
the background graphs, the node features of the background
graph at each client are therefore adopted as the criterion for
the mixing operation. The clustering operation on the col-
lected node features of the background graph can result in the
corresponding clustering labels:

C = Cluster({X′(p)}p=1,2,··· ,P ), (8)

where C ∈ RP denotes the cluster labels of feature matrices,
and intra-cluster fusion of features and the relational sampler
parameters is performed using the cluster labels:

F′(p) =
∑

i∈{k|Ck=Cp}

α(i)∑
j∈{k|Ck=Cp} α

(j)
F(i), (9)

where F′(p) means the the fused node features and the pa-
rameters of the relational sampler for the p-th client, and
F(p) = {X′(p), S

(p)
f , S

(p)
e } denotes the original data. The fu-

sion result in the new background graph which can be utilized
for distribution and used on the client side.

3.3 Background Graph Diversity Adjustment
Strategy

After the server completes the collecting and processing of
the background graphs, they are distributed to the clients.
Based on the received background graphs, each client can
perform a client-side tuning process in order to be able to use
the global information to provide an optimized reference dur-
ing local training, and to reduce model differences between
clients. There is a necessity to utilize the knowledge of the
background graph as fully as possible to explore common
knowledge among cross-domain data. And, we note that a
mixing strategy is used for the background graphs to preserve
privacy, thus, on the client side, additional strategies need to
be employed to mitigate the adverse effects of the mixing
strategy on client tuning. Inspired by [Wu et al., 2022], we
found that for each background graph generated by a client,
it can be regarded as the exogenous representations of the
compositional endogenous factors generated in a particular
environment. Hence, a background graph after fusion should
still be able to be extracted with the same number of exoge-
nous representations as the number of environments before
fusion. Mining compositional endogenous factors from mul-
tiple background graphs helps to train models adapted to a
wider range of data among clients and reduces models vari-
ance after training. We activate different exogenous represen-
tations through graph generation methods to restore the envi-
ronment in which the original data are generated, and expect
local models to adapt to different environments. The process
can be implemented using a generative adversarial approach,

where a richer set of environments need to be simulated for
the graph generator to interfere to the local model, while the
local model needs to learn to eliminate the interference and
find the accurate compositional endogenous factors. The fol-
lowing optimization objective is adopted to complete the op-
timization process:

min
θ(p)

max
A

Var{L(p)
T

(
θ(p);Ai,X

′(i),Y′(i)
)
}i={1,2,··· ,P}, (10)

where Ai = G
(p)
i (A′(i),X′(i)) denotes the i-th generated

background graph affinity matrix, which is generated by the
graph generator G(p)

i (·), and Ai ∈ A. For local models, it is
also necessary to minimize the base loss additionally:

min
θ(p)

1

P

P∑
i=1

L(p)
T

(
θ(p);Ai,X

′(i),Y′(i)
)
, (11)

The calibration of the local model is performed through
the adversarial training between the graph generator and the
local model. And the above calibration process is performed
to assist the following training process for local data:

min
θ(p)

L(p)
T

(
θ(p);G(p)

)
. (12)

With the auxiliary adjustment effect of the background
graphs, the local model is able to accomplish calibration be-
fore aggregation and adapt to a wider range of data. The com-
plete algorithm is shown in Appendix.

4 Evaluation
4.1 Datasets and Methods
The evaluations are performed on two real-world datasets, in-
cluding Twitch and Facebook100. 10% of the nodes of each
domain’s graph data in Facebook100 are sampled as the train-
ing data to make Facebook100-lite. On Twitch dataset, we
additionally use the Louvain algorithm to divide the graph of
each domain into 2 or 20 subgraphs, in order to simulate a
larger number of clients and to boost the difficulty of the fed-
erated task. And, we also provide the experimental results
under another setup.

We perform the comparative experiments with seven fed-
erated learning methods, including three traditional federated
learning methods (FedAvg [McMahan et al., 2017], FedProx
[Li et al., 2020] and MOON [Li et al., 2021]), and four fed-
erated graph methods (FedPUB [Baek et al., 2023], FGGP
[Wan et al., 2024], FedTAD [Zhu et al., 2024] and FedGTA
[Li et al., 2024]), for a comprehensive comparison.

4.2 Experimental Results
The results obtained by the proposed FedBG and all the com-
parison methods on the two real-world datasets are displayed
in Table 1 and Table 2. As can be seen from the data in
the table, the traditional enhancements applied to FedAvg do
not yield as effective a boost on the graph datasets as pre-
vious non-graph datasets, which can be considered as a lack
of capturing additional relational information on the graph
data. In the smaller dataset Twitch, both FGL methods are
able to achieve some advantages over traditional FL meth-
ods like FedAvg. However, the proposed FedBG is able to
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Twitch Facebook100
Type Method

EN ES FR PT RU DE AVG ∆ F-AVG ∆ L-AVG ∆

FL
FedAvg 56.40 68.87 57.57 66.67 66.59 57.61 60.55 - 54.66 - 52.71 -
FedProx 56.37 68.76 57.50 66.67 66.48 57.66 60.51 - 54.64 - 52.68 -
MOON 56.40 68.82 57.54 66.67 66.59 57.53 60.51 - 55.22 - 53.64 -

FGL

FedPUB 45.70 71.45 62.38 67.06 76.05 57.68 60.85 0.30 57.71 3.05 53.21 0.50
FGGP 60.12 66.34 57.38 64.84 60.83 62.58 61.48 0.93 OOM - 49.07 -3.64

FedTAD 56.05 70.38 56.31 67.19 69.10 63.82 62.52 1.97 OOM - 52.01 -0.70
FedGTA 50.61 71.61 62.11 69.28 75.66 58.66 62.19 1.64 55.49 0.83 55.49 2.78

FGL FedBG 59.38 71.99 61.20 69.28 74.34 65.71 65.69 5.14 58.20 3.54 57.19 4.48

Table 1: The results (ACC-%) of two datasets for FedBG and all comparison federated learning methods. Bold and underlined results are the
best and the second best. F-AVG: Average values over all domains of the Facebook100 dataset. L-AVG: Average values over all domains of
the Facebook100-lite dataset.

Twitch Facebook100
Type Method

EN ES FR PT RU DE AVG ∆ AVG ∆

FL
FedAvg 53.53 66.13 58.07 65.36 66.76 58.29 59.81 - 53.64 -
FedProx 53.56 66.08 58.22 65.49 66.70 58.21 59.81 - 53.62 -
MOON 53.53 66.13 58.22 65.49 66.82 58.29 59.85 - 53.64 -

FGL

FedPUB 45.88 70.16 62.57 65.36 75.94 59.55 61.15 1.34 54.76 1.12
FGGP 54.58 65.11 52.80 60.65 56.44 63.11 58.63 -1.18 51.06 -2.58

FedTAD 54.54 68.76 57.34 65.36 67.33 62.18 61.39 1.58 53.17 -0.47
FedGTA 48.97 70.48 62.27 67.58 75.20 57.61 61.27 1.46 55.07 1.43

FGL FedBG 56.23 71.72 60.74 66.14 72.18 64.74 64.18 4.37 57.66 4.02

Table 2: The results (ACC-%) of different data setup for FedBG and all comparison federated learning methods. Bold and underlined results
are the best and the second best.

achieve more significant improvements, due to the sufficient
and correct utilization of cross-domain graph data by the pro-
posed background graph data and its series of processing
methods. There are some methods that expose their high re-
source requirements in the more difficult and larger dataset
Facebook100. After reducing the training cost by random
sampling, the FGL methods tend to decline more compared
to the FL method because of the large amount of relation-
ship information lost. The proposed method FedBG, on the
other hand, works from the data and is able to mitigate the
model learning misinterpretation due to data variations with
better accuracy. The convergence curves of the training pro-
cess for all methods are presented in Figure 2. It can be seen
that FedBG is able to obtain stable performance improvement
with increasing communication rounds in both datasets. On
the more difficult dataset Facebook100, the proposed method
is also able to obtain stable training results compared to other
methods.

4.3 Communication Cost Reduction
Since the method proposed in this paper uses background
graph data as calibration information across domains, and the
generation of each background data is done only on the re-
spective client, there is no need to use information from other
clients. Therefore, it can be assumed that most of the infor-
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Figure 2: The classification accuracy curves as the increasing com-
munication round for all comparative methods.

mation carried by the background data is already captured at
the time of local generation. Naturally, we believe that the use
of background data can be done without the need for the same
frequent communication as before. Excellent performances
can be obtained by using the background data as reference in-
formation for local training. To verify this hypothesis, we set
the communication frequency of the background graphs and
the network parameters to different values, and the results are
shown in Figure 3. It can be seen that the final performance
suffers slight degradations due to the reduced communication
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frequency. However, the performance degradations are in-
significant compared to the huge reduction in communication
cost. Therefore, FedBG has potential in reducing the commu-
nication. The generation of background data does not need to
rely on the to-be-trained model with bias. Due to the process
of utilizing background information enables the extraction of
cross-domain commonality information and calibration of the
to-be-trained model to be done locally, there is no longer a
need for frequent communication across the clients to obtain
more accurate training directions.
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Figure 3: Comparison of classification accuracies and corresponding
communication costs of the proposed FedBG for different commu-
nication frequencies. FedBG can maintain high classification accu-
racies even with a significant reduction in the communication cost.

4.4 Ablation Study
By introducing the involved modules in stages, the different
results they yield are presented in Figure 4. Since there is a
progressive relationship between the modules, the addition of
each module is dependent on the previous one. First, the per-
formance of the initial model is significantly increased after
providing it with background data, which is the main reason
for the effectiveness of the method. Then, in order to im-
prove the privacy, the mixing strategy is employed to blur the
background data from different clients. However, this oper-
ation impairs the performance, which is particularly notice-
able in the Facebook100 dataset. Therefore, graph generation
techniques are needed to recover the diversity of background
data in order to obtain performance recovery. With the back-
ground data diversity restored, we are surprised to find that
the performance can even be higher than the model that only
uses the original background data. We believe that this graph
generation approach is able to additionally introduce more
perturbations, which improves the feature extraction capabil-
ity of the model in a adversarial training. In order to verify
whether it is practicable to employ background data training
only on the server, we train the federated model by aggregat-
ing sufficiently trained background graph data on the server
without local data. However, this training approach does not
work due to the lack of extensive knowledge of the local data.
Thus with the validation of these experiments, the modules
of the proposed method are sufficiently motivated. The visu-
alization results of the average distance of the local models
when trained independently with or without the addition of
background data are displayed in Figure 5. It is clear from
the figures that with the assistance of background data, the

independently trained local model is able to obtain a smaller
model average distance, effectively slowing down the drift
among clients. The experimental results reflect the fact that
the background data has a local pre-calibration effect on the
federated model at each client, which is a key reason for the
effectiveness of the proposed method.

BG Mix GG Twitch Facebook100 Facebook100-lite
× × × 60.55 54.66 52.71

BG Mix GG Twitch Facebook100 Facebook100-lite
√ × × 65.31 57.51 55.64

BG Mix GG Twitch Facebook100 Facebook100-lite
√ √ × 65.15 56.33 54.98

BG Mix GG Twitch Facebook100 Facebook100-lite
√ √ √ 65.69 58.20 57.19

Introducing background data for performance improvement

The mixing strategy improve privacy but impair performance

The diversity of background data is restored by graph generators

Used for

Used for

Training with 
BG only

Twitch Facebook100 Facebook100-lite
53.07 50.70 50.60

Figure 4: The ablation study with three components. BG: back-
ground data, Mix: mixing strategy, GG: graph generation strategy.
Mix and GG need to be dependent on BG and Mix, respectively, and
are therefore added in sequence so as to explore the sufficiency of
the motivation.
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Figure 5: Curves of the average distance among all client models
with increasing local epoch in two settings during local training. The
use of background data effectively mitigates drift among models.

5 Conclusion
In this paper, we propose a FGL method that uses background
graph data to mitigate the bias caused by cross-domain data.
The method provides a workable solution to the skew prob-
lem in FGL from the data perspective, which improves the
effectiveness of cross-domain bias correction from the source
rather than from the subsequent part. Background data, as
a type of graph data, is naturally capable of combining fea-
ture and topological information. The combination of mixing
strategy and graph diversity recovery strategy providing addi-
tional privacy protection while being able to mine the knowl-
edge of the background data as much as possible, further
enhances the utility of the background graph. Experiments
are conducted to demonstrate the superiority of the proposed
FedBG, as well as the sufficient motivation and effectiveness
of each proposed module.
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