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Abstract

Change detection aims to identify land cover
changes by analyzing multitemporal images that
cover the same area. However, It may be dif-
ficult to effectively obtain high-quality multitem-
poral images with the same modality in real dy-
namic scenarios. The rapid development of re-
mote sensing technology enables collaborative ob-
servation of multimodal images, but it is challeng-
ing for uni-modal image-specific methods to over-
come modal discrepancy and achieve complemen-
tary advantage detection. To this end, we pro-
pose a bidirectional diffusion guided collaborative
change detection model (Bi-DiffCD) for arbitrary-
modal images, which eliminates the modal dis-
crepancy between arbitrary-modal images through
the bidirectional diffusion and makes full use
of the multilevel complementary advantage fea-
tures to improve the detection accuracy. Specif-
ically, a conditional diffusion-based bidirectional
modal alignment module (CDBMA) is designed to
step-wise align the modal attribute bidirectionally
while preserving the multimodal complementary
features. Furthermore, a multilevel complemen-
tary feature collaborative change detection mod-
ule (MLCCD) is proposed to collaborate the mul-
tilevel enhanced complementary change informa-
tion from transformed images and potential fea-
tures for change detection. Experiments have
been conducted on three widely used and one self-
made multimodal datasets to demonstrate the ef-
fectiveness of the proposed method with different
combinations of modalities. Code is available at
https://github.com/Jiahuiqu/Bi-DiffCD.

1 Introduction

With the rapid development of remote sensing imaging tech-
nology, the types and quantities of remote sensing images are
increasing, which provides strong support for Earth observa-
tion [Qu et al., 2025b; Yang et al., 2024]. Change detection,
as an attractive topic within the Earth observation domain,
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can identify the changes between the multitemporal images
covering the same area [Chen et al., 2023]. It has been widely
used in a lot of fields, such as disaster monitoring [Zhang and
Xia, 2022], environmental monitoring [Chang et al., 2021],
and urban planning [Basavaraju ef al., 2022].

However, due to the limitations of atmospheric conditions
and satellites revisit period, it is difficult to obtain the multi-
temporal images with same modality covering the same area
timely and efficiently [Longbotham et al., 2012]. This limi-
tation significantly hampers the application of change detec-
tion. The rapid development of remote sensing technology
makes multi-satellite collaborative observation possible [Liu
et al., 2019]. Therefore, especially for disaster emergency re-
sponse, multimodal change detection has received increasing
attention. It aims to use multitemporal images with differ-
ent modalities (e.g., multispectral images and synthetic aper-
ture radar (SAR) images) to provide change information of
ground objects [Sun ez al., 2021b]. However, since the imag-
ing mechanisms are different, multimodal images depict the
same object in varying ways, leading to significant modal dis-
crepancy [Sun et al., 2024al. Thus, it is difficult to accurately
detect changes between multimodal images by directly apply-
ing methods designed for uni-modal images.

In recent years, many multimodal change detection ap-
proaches have been developed [Qu er al, 2025a]. These
methods can be generally divided into three categories,
i.e., classification-based methods [Lv et al., 2022], feature
transformation-based methods [Li e al., 2021al, and image
regression-based methods [Liu er al., 2022]. Classification-
based methods can provide the category information, but they
excessively rely on the performance of the classifier, which
easily leads to cumulative errors. The feature transformation-
based methods aim to transform the multimodal images into
a common space where the change information can be cap-
tured by measuring the similarity of the features [Sun et al.,
2021al. However, it is difficult to capture the common fea-
ture space when remote sensing images cover a large area
with complex types of ground objects. This imposes limita-
tion on the accuracy of change detection. Recently, the image
regression-based methods have gradually attracted the atten-
tion of researchers. They can eliminate modal discrepancy by
converting images from one modality to another, so that the
unique features of multimodal images are preserved [Chen
et al., 2022]. However, these deep learning methods typi-
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cally use Generative Adversarial Networks (GANs) for modal
transformation. They fail to utilize the features in potential
space, and the model training process is unstable, which is
prone to mode collapse. Moreover, most existing methods
lack experimental validation on high-dimensional data, like
hyperspectral image (HSI).

In this paper, we propose a bidirectional diffusion
guided collaborative change detection model (Bi-DiffCD) for
arbitrary-modal remote sensing images. Specifically, we first
transform the “uncomparable” multimodal images into the
high fidelity “comparable” uni-modal images through the
bidirectional diffusion to eliminate the modal discrepancy be-
tween arbitrary-modal images. Then, the complementary ad-
vantage difference information can be obtained from the two
pair uni-modal images and the process of potential feature
space during the modal alignment, which is collaborated to
improve the detection accuracy. Furthermore, we have cre-
ated an RGB-HSI multimodal dataset to evaluate the effec-
tiveness of the proposed method on high dimension data. The
main contributions are summarized as follows,

* We propose a bidirectional diffusion guided collabora-
tive change detection model (Bi-DiffCD) for arbitrary-
modal remote sensing images, which utilizes the bidirec-
tional diffusion mechanism to perform modal alignment
and effectively leverages the multilevel complementary
information to improve the detection accuracy.

A conditional diffusion-based bidirectional modal align-
ment module (CDBMA) is proposed, which gradually
generates two pairs of uni-modal images with high fi-
delity semantic and modal information through the U-
Attention-based conditional diffusion mechanism, so as
to eliminate the modal discrepancy.

We propose a multilevel complementary feature collab-
orative change detection module (MLCCD), in which
a bitemporal anti-attention-based difference feature ex-
tractor is designed to mine the difference information of
potential feature level and two image levels for multi-
modal collaborative change detection.

We create a real RGB-HSI multimodal image change de-
tection dataset, i.e., Liyukou dataset, to further demon-
strate the superiority of the proposed method.

2 Related Work
2.1 Classification-Based Methods

The classification-based change detection methods first clas-
sify the multimodal images separately, and then compare the
classification results of the corresponding areas between the
multimodal images to derive changed information [Mubea
and Menz, 2012; Hedhli et al., 2014]. Wan et al. [Wan et al.,
2019b] proposed a post-classification comparison method for
SAR and optical images change detection, which first cap-
tures homogeneous objects through multitemporal segmenta-
tion, and then utilizes compound classification at the object
level to obtain the changed information. Afterwards, they im-
proved the previous work by integrating cooperative multi-
temporal segmentation and hierarchical compound classifica-
tion [Wan ef al., 2019a]. Han et al. [Han et al., 2021] pro-

posed multimodal change detection method based on post-
classification, which utilizes the improved training of hierar-
chical extreme learning machine to obtain meaningful feature
representations and achieve high learning efficiency. How-
ever, these methods are rely on the accuracy of classification
results and are sensitive to the misclassification.

2.2 Feature Transformation-Based Methods

The feature transformation-based methods transform the mul-
timodal images into a common feature space and capture
change information by measuring the similarity of features
in this shared space [Volpi et al., 2015; Hedhli er al., 2014].
Some of these methods manually construct the modality-
invariant similarity measurement between the multimodal
images [Touati and Mignotte, 2018; Mercier et al., 2008;
Prendes et al., 2015; Volpi et al., 2015]. Others learn the com-
mon feature space through deep learning technology [Wu er
al., 2022]. Liu et al. [Liu et al., 2018a] proposed a deep con-
volutional coupling network, which leverages symmetric net-
work with a convolutional layer and coupling layers to trans-
form the input heterogeneous images into the same feature
space. Jiang et al. [Jiang er al., 2022] proposed a transfer
learning-based change detection network for heterogeneous
images, which uses a transfer learning strategy to freeze low-
level features and learn deep features of heterogeneous im-
ages, and extracts homogeneous features for change detec-
tion. The accuracy of feature transformation-based methods
heavily depends on the quality of extracted features. When
dealing with complex scenes or being seriously disturbed by
image noise, the difficulty of feature extraction increases.

2.3 Image Regression-Based Methods

Regression-based methods map the domain of one image to
another, which transform the task into uni-modal change de-
tection [Li et al., 2021b; Luppino et al., 2024; Liu et al.,
2018b]. Luppino et al.[Luppino et al., 2019] proposed a
framework based on the comparison of affinity matrices and
image regression, which quantifies the similarity of affinity
matrices to identify the unchanged pixels for transformation
process learning. Furthermore, they designed an adversarial
cyclic encoder network (ACE-Net) to improve the detection
accuracy [Luppino et al., 2022]. Niu et al. [Niu et al., 2019]
proposed a conditional adversarial network (cGAN) to realize
modal transformation, and used an approximation network to
reduce the pixel difference. Gong et al. [Gong et al., 2019]
proposed a coupling translation network for change detection,
which used coupled generative adversarial networks (GANs)
associated with a coupling variational autoencoder (VAE) to
translate the heterogeneous images into homogeneous. Al-
though these methods have made some progress, they fail to
make full use of the features in potential space during the
modal transformation, and the model training process is un-
stable, which is prone to mode collapse.

3 Methods

3.1 Overview

Given a pair of arbitrary-modal remote sensing images ac-
quired at different times, we denote the image patch with
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Figure 1: The illustration of the bidirectional diffusion guided collaborative change detection model (Bi-DiffCD) for arbitrary-modal remote
sensing images. X ™1 and Y2 represent two images with different modalities taken at different times (X # Y).

modality X obtained at time T as XTt € RH=xWzxCa "apd
the image patch with modality Y obtained at time Ty as
Y'2 € REVWuxCy where X # Y, {H,, H,} is the height,
{W,, Wy} represents the width, and {C,, C,} is the num-
ber of channels. Due to different imaging mechanisms, the
same ground object is represented differently in multimodal
images, leading to a significant modal discrepancy between
multimodal images. It is difficult to overcome the modal dis-
crepancy and achieve high detection accuracy with the model
designed specifically for uni-modal images.

To this end, we propose a bidirectional diffusion-
guided collaborative change detection model (Bi-DiffCD)
for arbitrary-modal remote sensing images, which performs
bidirectional modal alignment through conditional diffusion
mechanism and makes full use of the multilevel complemen-
tary advantage features to achieve the high accuracy. To be
specific, as shown in Figure 1, The modal discrepancy can be
gradually mitigated through the conditional diffusion mecha-
nism while preserving the distinctive benefits of multimodal
images. In addition, the difference information obtained from
the potential feature space and the two image domains can be
extracted for multilevel complementary feature collaborative
change detection. The proposed method can achieve the re-
mote sensing change detection in arbitrary modality, thereby
expanding the application scope of the change detection.

3.2 Conditional Diffusion-Based Bidirectional
Modal Alignment

The CDBMA is pretrained with the unchanged patch pairs,
which contains two process (forward diffusion and reverse
denoising).

Forward Diffusion Process for Adding Noise to
MultiModal Images

The forward diffusion process aims to add stochastic noise to
the clean multimodal images step by step through a Markov
chain to generate the noisy images that subject to Gaussian
distribution [Ho er al., 2020]. Supposing that the clean mul-
timodal patch pairs X' = X' and Y™ = Y 2 sub-
ject to the distribution of ¢(X3') and ¢(Y,?), i.e., Xt ~
q(XT1) and YT2 ~ ¢(Y?). After T time steps, the for-
ward diffusion process can transform the data distribution of
multimodal images into standard Gaussian distribution, i.e.,
X7~ N (0,1) and Y72 ~ N (0,1).

Reverse Denoising Process for Bidirectional Modal
Alignment

The reverse denoising process aims to reduce the modal dis-
crepancy by gradually removing the noise added in the for-
ward diffusion process. In this process, the bidirectional dif-
fusion mechanism guide to generate the image X2 with the
semantic information of Y™ and the modal attribute infor-
mation of X', and generate the image Y™ with the seman-
tic information of X1t and the modal attribute information of
Y T2, viz., the pair of “uncomparable” multimodal images are
transformed into two pairs of “comparable” uni-modal im-
ages ({(X™,YT2)} — {(X™,XT2) (Y™, Y")}). The
process can be expressed as follows,

YT2 Diff(Y—X) XT2
YT ¢ X Tt (D

Diff(Y+X)

where Dif f(Y — X) represents the transformation process
from Y12 to X2, in which the clean image Y2 and
the noisy image XITJ are concatenated as the input, and
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Figure 2: The illustration of Bi-DiffCD in the ¢-th time step.

Diff (Y < X) is the transformation process from X'* to
Y™, in which the clean image X' and the noisy image Y 7.2
are concatenated as the input.

The posterior probability distribution of the reverse process
can be encoded into the deep network, that is,

po (X241 XP, Y™2) = fo (X2, Y™) 2
po (Y [V, XT) = £, (Y, XT) 3)
where  “=" represents the encoding operation,

fo (XEZ,YTZ‘) represents the Diff(Y — X) branch,

and f,, (Y;F 1,XT1) represents the Dif f(Y + X) branch.

Each time step of the reverse denoising process can provide
the prediction of X § and YtT 0

Specifically, to obtaln the images with high fidelity seman-
tic information and modal attribute information, we design
a U-Attention block to encode the posterior conditional dis-
tribution of modal transformation process. The U-Attention
block is consisted of K-layer self-attention (SA) [Vaswani et
al., 2023] units with skip connection, in which the SA unit
can fully couple the semantic feature of conditional image
and the modal attribute feature of the noisy image, and skip
connection between the shallow and deep layers can prevent
information loss during the transition process. The modal
transition process in each time step can be expressed as,

XT3 = fo (XP2, Y2

:F&T,e[ ?Aﬁe(’ - glﬁ,e( S e(XT2 YTQ)))] *

YT6 — 1 (Y;Fl7XT1

=rim L (i e )]
where flsf}i,e and f’giw represent the k-th SA unit in the ¢-th

time step, and Fy;r , and F};1 . denote the time step embed-

ding and the skip connection.
The transformed images can be further optimized through
continuous iteration. The input for the next time step can be

calculated from the variance and mean of the posterior distri-
bution as follows,

L
xpz, = YIELE L= o) (g, yre)

1 — Q¢ X
5 (6)
\/ (1-ar1x) (1 —anx) _

Ja 1—ay
+ t,X( tl,X)Xth+

1—oy x I—aix
— 1
¥, = YT )y ()
_ - @)
n Vary (1_aH’Y)YT1+ (I—apay) (1_at,Y)€
1—@,&7}/ t l_o_ft,Y

where ¢ € N (0,1), oy x = H::O 0y X, Qgy = Hf:o Qs

{ai,x,a; vy} is the hyperparameter.

3.3 Multilevel Difference Feature Complementary
Collaborative Change Detection

Bidirectional modal transformation processes progressively
achieve the modal alignment by step-wise denoising opera-
tion. The features in potential space during the transformation
process can usually provide more abstract high-dimensional
information. The two image domains content abundant shape
structure and texture information, which is conducive to pro-
viding details of changes. To maximize the change detec-
tion accuracy, we design a multilevel complementary fea-
ture collaborative change detection module (MLCCD) to col-
laboratively utilize the discriminative features in both image
domains and potential feature spaces. Thus, the model can
achieve high-accuracy change detection by fully exploiting
the features with complementary advantages at multiple lev-
els. Specifically, to effectively capture the discriminative dif-
ference information, we design a bitemporal anti-attention-
based difference feature extractor (BA>DFE) as shown in Fig-
ure 2, which highlights the changed information and suppress
the unchanged information by re-weighting the similarity of
bitemporal inputs.

Take the feature extraction process of bitemporal images
with modal X in the ¢-th time step serves as an illustrative
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Figure 3: Visualization results of different methods on four datasets. (a) The image captured at time T';. (b) The image captured at time T's.
(c) GSP. (d) INLPG. (e) IRG-McS. (f) SDIR (g) DTCDN. (h) SUNet. (i)HAFF. (j) Bi-DiffCD. (k) Ground Truth (GT).

example. We assign lower weights to regions exhibiting high
similarity and higher weights to regions displaying low simi-
larity. The weight matrices can be obtained by follows,

Vi
T T
L (KT%)
T
T
T3 (k7Y

where WtT}( and WtT§( are the weight matrices of bitemporal

Wik =E-f,
®)
Wi =E—-f,

images, QE}(, KE}(, and VE}( are the feature matrices ob-
tained by projecting X ! into different spaces through con-
volutional operation, Qt % KtTj(, and VE& are the feature
matrices obtained by projecting X;FQ into different spaces
through convolutional operation, E is the identity matrix, and

fo (+) is the activation function. The difference feature ex-
traction process can be formulated as follows,

T T
Ft _ Wt}( VTI . ij{ VT2 9)
Dx \/E t, X \/E t,X
where Ft Dy is the difference feature obtained from the im-

ages with modal X in the ¢-th time step, [; -] represents the
concatenation operation, and B is the scale factor.

Similarly, BA’DFE is used to extract the difference
features from output features of the K-layer SA units.
The difference features obtained from the potential fea-
ture space in the modal alignment process are denoted as

t,1
{FDSA7 a FtDkSA’ \ FtD’IS{A
feature captured from the bitemporal images with modal Y
can be denoted as F7, . The difference feature from the ¢-th
time step can be obtained by the concatenate operation,
Fi, = [F% 3 Qi FOR 1 10

DSA’.. DSA7-..

Fi, = [F} ;FY_  FY | (11)

}. In addition, the difference

where F7,_ is the feature during the bidirectional modal

alignment process, F%, is the multilevel difference feature.
Further, we select the difference features with n (n < T)
time steps to construct the enhanced difference feature Fp.
The results can be obtained from F p through the classifier,

Z = fc (Fp) (12)
where Z is the change detection result.

3.4 Training Objective

Given a training set { (X', Y!2,Z,)|n € [1, N]}, where
{XT, YT} is the n-th training samples, Z,, is the corre-
sponded ground truth, and N is the number of training sam-
ples. To ensure the high fidelity of semantic information and
modal attributes during the modal alignment process, the con-
sistency constraint strategy is used for model training,

N
1
L= 37 (X7 = X+ Y Y] a3
n=1
Additionally, the cross-entropy loss measures the proximity
between prediction results and ground truth values,

Ly = _% i (znmgin +(1—2Z,)log (1 N Zn))
n=1

(14
where Z,, is the prediction of n-th sample pair. Therefore,
the consistency constraint and cross-entropy loss are used to
optimize the model for optimal performance. The total loss
function L can be expressed as follows,

L={Ly, Ly} (15)

When the loss function value converges to the minimum value
and remains relatively unchanged during model training, the
model achieves optimization.
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Dataset Liyukou (RGB-HSI) Sardinia (NIR-RGB) Yellow River (SAR-PAN) | Shuguang (SAR-RGB)
Index OA KC F1 OA KC F1 OA KC F1 OA KC Fl1
GSP 0.8436  0.6294 0.7398 | 0.9605 0.6822 0.7033 | 0.9770 0.7061 0.7180 | 0.9763 0.7489 0.7611

INLPG 0.8126  0.5669 0.7036 | 0.9605 0.6821 0.7003 | 0.9763 0.6878 0.7002 | 0.9656 0.6523 0.6703

IRG-McS | 0.7499 0.4321 0.6181|0.9720 0.7522 0.7670 | 0.9736 0.6197 0.6333 | 0.9801 0.8066 0.8171

SDIR 0.8085 0.5084 0.6225|0.9679 0.6910 0.7075| 0.9804 0.7378 0.7479 | 0.9803 0.8014 0.8116

HAFF 0.9702 0.9329 0.9553 | 0.9823 0.8557 0.8652 | 0.9901 0.8666 0.8718 | 0.9811 0.7983 0.8080

SUNet 0.9860 0.9686 0.9790 | 0.9748 0.8187 0.8320| 0.9811 0.7926 0.8022 | 0.9817 0.8526 0.8621

DTCDN | 09717 0.9359 0.9571|0.9768 0.8233 0.8357 | 0.9763 0.6878 0.7003 | 0.9823 0.8395 0.8489
Bi-DiffCD | 0.9935 0.9853 0.9901 | 0.9877 0.8991 0.9056 | 0.9918 0.8884 0.8927 | 0.9926 0.9300 0.9339
Table 1: Quantitative results obtained by different methods on the four datasets.

4 Experiment Dataset Number | OA KC Fl
4.1 Datasets ' 1 0.9858 0.9676 0.9781
. \ . Liyukou 3 0.9892 0.9755 0.9835
Liyukou Dataset (RGB-HSI): Liyukou dataset is a self- (RGB-HSI) 5 0.9935  0.9853 0.9901
made dataset, which describes the changes in Liyukou Vil- 7 0.9914 0.9804 0.9868
lage, Xi’an, Shaanxi Province, China. The dataset includes 1 09819 08510 08607
a HSI taken by the Headwall VNIR hyperspectral camera on Sardinia 3 0.9859 08861 08936
April 6, 2023 and a RGB image captured by the FILR DUO (NIR-RGB) 5 0.9877 0.8991  0.9056
Rro R sensor on November 18, 2022. The RGB image con- 7 0.9874 0.8986 09053
tains 729 x 351 pixels. The HSI contains 243 x 117 pixels and I 0.9%65 09330 08399
has 270 bands covering a spectral coverage of 0.4 ~ 1.0um. Yellow River 3 0.9906 08755 0.8804
194 bands were selected for change detection. In this paper, (SAR-PAN) 5 09918 08884 0.8927
the HSI is upsampled to the same size as the RGB image be- 7 09911 08739 08785
fore being fed into the model. I 09889 0.8994 0.9053
Sardinia Dataset (NIR-RGB): Sardinia dataset describes Shuguang 3 09901 0.9034 09086
the changes due to lake overflows in the region of Sardinia, (SAR-RGB) 5 0.9926 0.9300 0.9339
Italy. The dataset consists of a near-infrared (NIR) image 7 0.9918 0.9257 0.9301

taken by Landsat-5 in September 1995 and a RGB image cap-
tured on Google Earth in July 1996. Each image has 3 bands,
and contains 405 x 297 pixels.

Yellow River Dataset (SAR-PAN): Yellow River dataset de-
scribes the changes along the Yellow River, China. The
dataset contains a SAR image and a Panchromatic (PAN) im-
age. The SAR image was captured by Radarsat-2 in June
2008, and the PAN image was obtained from Landsat-7 in
September 2010. Each image has 3 bands, and contains
324 x 270 pixels.

Shuguang Dataset (SAR-RGB): Shuguang dataset de-
scribes the changes caused by the construction of Shuguang
Village in Dongying, China. The dataset contains a SAR im-
age and a RGB image. The SAR image was taken by the
Radarsat-2 satellite in June 2008, and the RGB image was
obtained from Google Earth in September 2012. Each image
has 3 bands, and contains 810 x 540 pixels.

4.2 Experimental Settings and Competing
Methods

All experiments were conducted with the PyTorch framework
on two NVIDIA GeForce RTX 3090 GPU. Adam optimizer
was chosen to train the model. The batch size was set to 64.
The CDBMA module has been pre-trained for 1000 epochs
with a learning rate of 0.0001. The time step T was set to
2000, and the uniform increment range of hyperparameter se-
quence {ag, ag,...,a,} was 0.98 ~ 1. The MLCCD mod-
ule has been pre-trained for 2000 epochs with a learning rate

Table 2: Experimental results of Bi-DiffCD with different number
of self-attention (SA) units in U-Attention block.

of 0.0001. The difference features obtained at the time step
t = 1,1000, 2000 are used for change detection.

To verify the superiority of the proposed method, seven
representative methods are selected for comparison experi-
ments, including GSP [Sun et al., 2022a], INLPG [Sun et
al., 2022bl, IRG-McS [Sun et al., 2021al, SDIR [Sun et al.,
2024b], HAFF [Lv et al., 2023], SUNeT [Shao et al., 2021],
and DTCDN [Li et al., 2021b]. Three widely used indexes are
used for quantitative evaluation of the experiments, including
overall accuracy (OA), Kappa coefficient (KC) and F1-score
(F1). The higher the values of OA, KC, and F1, the better the
detection performance of the method.

4.3 Quantitative and Qualitative Comparison

The visualization results in Figure 3 show that for the
Liyukou dataset (RGB-HSI), yellow pixels represent un-
changed areas, green pixels indicate changed areas, and blue
pixels represent unmarked areas. For the other three datasets,
blue pixels indicate unchanged areas, and yellow pixels de-
note changed areas. The first three methods show significant
missing detections. The changed areas, especially in river
detection, cannot be accurately identified. The deep learning-
based methods can achieve the great performance in multi-
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Dataset Model OA KC F1 Dataset Model OA KC F1
Liyukou w/ U-Net | 0.9892 0.9756 0.9836 Liyukou w/ Conv | 0.9850 0.9658 0.9768
(RGB-HSI) | Bi-DiffCD | 0.9935 0.9853 0.9901 (RGB-HSI) | Bi-DiffCD | 0.9935 0.9853 0.9901
Sardinia w/ U-Net | 0.9873 0.8905 0.8973 Sardinia w/ Conv | 0.9827 0.8545 0.8637
(NIR-RGB) | Bi-DiffCD | 0.9877 0.8991 0.9056 (NIR-RGB) | Bi-DiffCD | 0.9877 0.8991 0.9056
Yellow River | w/ U-Net | 0.9911 0.8797 0.8843 Yellow River | w/Conv | 0.9889 0.8488 0.8546
(SAR-PAN) | Bi-DiffCD | 0.9918 0.8884 0.8927 (SAR-PAN) | Bi-DiffCD | 0.9918 0.8884 0.8927
Shuguang w/ U-Net | 0.9899 0.8712 0.8764 Shuguang w/ Conv | 0.9919 0.9244 0.9286
(SAR-RGB) | Bi-DiffCD | 0.9926 0.9300 0.9339 (SAR-RGB) | Bi-DiffCD | 0.9926 0.9300 0.9339

Table 3: Experimental results of Bi-DiffCD and its variant with U-
Net (w/ U-Net) on four datasets.

Dataset Model OA KC F1
Liyukou wioF}, | 09879 09726 0.9815
(RGB-HSI) | Bi-DiffCD | 0.9935 0.9853 0.9901
Sardinia w/o Fi 0.9819 0.8432 0.8528
(NIR-RGB) | Bi-DiffCD | 0.9877 0.8991 0.9056
Yellow River | w/o F, | 0.9885 0.8424 0.8483
(SAR-PAN) | Bi-DiffCD | 0.9918 0.8884 0.8927
Shuguang | w/o F,_ | 0.9883 0.8933 0.8994
(SAR-RGB) | Bi-DiffCD | 0.9926 0.9300 0.9339

Table 4: Experiments results of Bi-DiffCD and its variant that with-
out i, (w/o Fi, ,) on four datasets.

modal change detection tasks. Among all methods, SUNet
and DTCDN can detect the changes of river in the lower right
corner of Shuguang dataset. However, there are more noise
in the change map from DTCDN. Bi-DiffCD demonstrates
optimal performance across all datasets.

To further evaluate the performance of different methods,
the values of OA, KC, and F1 for detection results are calcu-
lated as shown in Table 1. The best performance is labeled in
bold. GSP and INLPG achieve similar results. The detection
performance of deep learning-based methods is usually bet-
ter than that of traditional methods. Bi-DiffCD exhibits the
best performance across four datasets, and achieves a good
balance between accuracy and recall. Especially on Liyukou
dataset, the proposed method achieves high values of 0.9935,
0.9853, and 0.9901 for OA, KC, and F1 respectively. It is
particularly effective in detecting subtle changes.

4.4 Ablation Study

Number of SA Units in U-Attention Block

Insufficient units can weaken the capability of feature extrac-
tion, while too many units can increase training complexity
and risk overfitting. To find an appropriate number of SA
units, we designed variants of Bi-DiffCD with different num-
ber of SA units. Results in Table 2 show that the model per-
forms best with 5 SA units in the U-Attention block.

Effectiveness of U-Attention Block

To verify the effectiveness of U-Attention block, we designed
a variant of Bi-DiffCD (w/ U-Net), in which the U-Attention

Table 5: Experimental results of Bi-DiffCD and its variant replacing
BA’DFE with convolutional layers (w/ Conv) on four datasets.

block is replaced with the widely used denoising framework,
U-Net. Experimental results are shown in Table 3. Since the
U-Attention block can fully couple semantic information and
modal attributes to obtain high-quality modal transformation
results, Bi-DiffCD can achieve the better detection results.
This can demonstrate the effectiveness of U-Attention block.

Effectiveness of Difference Features in Potential Feature
Space

To verify the effectiveness of difference features extracted
from potential feature space, we designed a variant of the
proposed model that did not use FtDSA for change detection
(w/o F%SA), and conducted experiments on four datasets.
The experimental results are shown in Table 4. The proposed
method can achieve better performance with the difference in-
formation of the potential feature domain, which proved that
difference features extracted from potential feature space is
useful for change detection.

Effectiveness of BA’DFE

To verify the effectiveness of BAZDFE, we replaced the
BA’DFE with convolution layers that have an equal number
of parameters to construct a variant of Bi-DiffCD (w/ Conv).
Compared with the variant, Bi-DiffCD designs a bitemporal
anti-attention mechanism that assigns larger weights to dis-
similar features to obtain enhanced difference features. The
experimental results are shown in Table 5, the detection per-
formance of the proposed method is better than the variant,
which demonstrates the effectiveness of BA>DFE.

5 Conclusion

We propose a change detection model (Bi-DiffCD) for
arbitrary-modal remote sensing images. The modal align-
ment can be first achieved through the bidirectional condi-
tional diffusion process. Then, the multilevel difference in-
formation from the potential feature level and two image lev-
els in the modal alignment process can be fully exploited for
change detection. Extensive experiments are conducted on
four datasets with different modality combination to demon-
strate the effectiveness of Bi-DiffCD. It is proved that Bi-
DiffCD is not limited to a specific data source, and can ef-
fectively expand the application scope of change detection.
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