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Abstract
Due to the high cost of data collection and train-
ing, the well-performed hyperspectral image (HSI)
classification models are of great value and vulner-
able to piracy threat during transmission and use.
Model watermarking is a promising technology
for intellectual property (IP) protection of models.
However, the existing model watermarking meth-
ods for RGB image classification models ignore
the complexity of ground objects and high dimen-
sion of HSIs, which makes trigger samples easy to
be detected and forged. To address this problem,
we propose a signature diffusion embedded dual-
verification watermarking method, which generates
imperceptible trigger samples with explicit owner
information to achieve dual verification of both
model ownership and legality of trigger set. Specif-
ically, the subpixel-space owner signature diffusion
incorporated imperceptible trigger set generation
method is proposed to manipulate owner signature
incorporated to the abundance matrix of seeds via
diffusion model in subpixel space, thus balancing
the perceptual quality of trigger samples and signa-
ture extraction capability. To resist ownership con-
fusion, dual-stamp ownership verification is pro-
posed to query the suspicious model with trigger
samples for ownership verification, and further ex-
tracts signature from trigger samples to guarantee
their legality. Extensive experiments demonstrate
the proposed method can effectively protect IP of
HSI classification models.

1 Introduction
Deep learning (DL) techniques have tremendously devel-
oped and achieved great success in various hyperspectral im-
age (HSI) processing tasks, e.g. classification [Yang et al.,
2024a], change detection [Luo et al., 2024; Qu et al., 2025a],
super-resolution [Qu et al., 2025b] and so on. HSI classifi-
cation models, which accurately identify objects on the Earth

∗Corresponding author

Figure 1: The illustration of model watermarking for intellectual
property protection.

surface, play a crucial role in environmental monitoring and
military [Li et al., 2019a]. To fully mine the capability of
HSI classification models, network architectures need to be
delicately designed, and substantial computational resources
is required. Additionally, considering the specialized equip-
ment for HSI acquisition and expert knowledge for data no-
tation, it is hard to obtain sufficient training data. Therefore,
a well-performed HSI classification model is of great values.
The illegal use of HSI classification model may result in the
leakage of sensitive information, thereby threatening to the
national security. The intellectual property (IP) protection of
HSI classification models has emerged as a pressing demand.

Inspired by the idea of digital watermarking [Fang et al.,
2021], model watermarking methods are developed to pro-
tect the IP of deep models (shown in Figure 1). Generally,
according to the information accessible to the verifier, the
model watermarking methods are divided into white-box wa-
termarking and black-box watermarking. White-box water-
marking methods embed the watermark information into the
weights or the activations of the model [Rouhani et al., 2019;
Li et al., 2021]. However, the adversaries may not willing
to provide the internal parameters and structure of model to
verifiers, which limits the practicability in real-world scenar-
ios. Black-box watermarking can be verified easier, which
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only requires API access to the suspicious model. Black-box
watermarking methods train the model with a set of carefully
crafted trigger samples and the designated labels to embed a
secret watermark [Li et al., 2023; Kim et al., 2023]. The own-
ership of the model is verified by comparing the outputs of the
model with the pre-defined labels of the trigger samples.

However, mainstream black-box methods construct trig-
ger set by embedding a noticeable pattern to clean samples,
which is easily detected by human inspection. Although some
researches try to generate imperceptible trigger samples, they
ignore the data characteristic of HSIs, which may result in
spectral distortion of trigger samples. Moreover, the existing
model watermarking methods fail to verify ownership when
trigger sets generated by different parties provide the same
mapping relationship, leading to a successful forgery attack.

To address these problems, we propose a signature diffu-
sion embedded dual-verification watermarking for IP protec-
tion of HSI classification models, which constructs impercep-
tible trigger set with owner signature to verify the ownership
of the model against forgery attack. Specifically, the seeds
near decision boundary are selected to capture the informa-
tion of the protected model while avoiding significant impact
to the classification task. The owner signature is incorporated
to the abundance matrix of the selected seeds via diffusion
model in subpixel space, thus ensuring the imperceptibility
of trigger samples. To resist the forgery attack, a dual-stamp
ownership verification strategy is proposed to make the wa-
termark traceable. The contributions of this paper are:

• We propose a signature diffusion embedded dual-
verification watermarking method, which is the first to
introduce the IP protection problem into HSI classifica-
tion tasks.

• We propose a subpixel-space owner signature diffu-
sion incorporated imperceptible trigger set generation
method to hide the owner signature into the abundance
of the seeds in subpixel space via diffusion model, thus
ensuring the imperceptibility of trigger samples with ex-
plicit owner information.

• We design a dual-stamp ownership verification strategy
to verify both the ownership of the model and the legal-
ity of trigger set, effectively resisting forgery attack.

2 Related Work
Model Watermarking
Various model watermarking methods have been proposed for
the IP protection of deep models, which can be divided into
white-box watermarking and black-box watermarking.

White-box watermarking methods embed the watermark
into the parameters of the target model. [Uchida et al., 2017]
first proposed watermarking deep models by embedding a bit
string into a middle layer. [Rouhani et al., 2019] embedded
the watermark information in the probability density func-
tion of activation map. [Liu et al., 2021] greedily selected a
few and important model parameters for watermarking em-
bedding to improve the robustness. [Fan et al., 2022] added
a special passport layer to the model, which performs unsat-
isfactory when the weights of passport are incorrect. [Zhao

et al., 2021] pruned the internal channels of the model with
pruning rates controlled by watermark. The verification pro-
cess of white-box watermarking methods requires the internal
details of suspicious model, severely limiting its applicability.

Black-box watermarking methods facilitate ownership ver-
ification without detailed information of the parameters or
structures of the model [Li et al., 2024]. [Adi et al., 2018]
embedded abstract images as backdoor watermark into the
model to verify the ownership. A blind watermark frame-
work [Li et al., 2019b] guaranteed the key samples with sim-
ilar distribution of the original samples. [Li et al., 2022] ver-
ified the ownership of suspicious model with the knowledge
of defender-specified external features. CosWM [Charette et
al., 2022] embedded a cosine signal into the output of teacher
model to defend against model distillation. [Lin et al., 2024]
utilized logistic chaos mapping to chunk and dislocate trig-
ger samples with original labels. An unambiguous backdoor
watermarking method [Hua et al., 2023a] increased the cost
of ambiguity attacks to exponential complexity. [Liu et al.,
2024] modified clean samples in frequency domain to gener-
ate trigger sample without noticeable artifacts. However, IP
protection for HSI classification models is unexplored. How
to generate imperceptible trigger set to protect HSI classifica-
tion models remains an important open question.

Diffusion Model
Diffusion models [Sohl-Dickstein et al., 2015] are proposed
as generative model with high flexibility, which destroy the
structure in a data distribution, and recover the data via a
gradually denoising process.[Ho et al., 2020] proposed de-
noising diffusion probabilistic models (DDPMs) to simplify
this process. DDPMs use a Markov chain to convert the in-
put image into Gaussian noise in the forward process, and
adopt a denoising network to predict the added noise in the re-
verse process. Denoising diffusion implicit models (DDIMs)
[Song et al., 2020] provide an alternative noising process
without Markov chain constraints, enabling faster sampling
than DDPMs. Diffusion models have shown remarkable re-
sults in various computer vision tasks including image trans-
lation [Zhao et al., 2022], steganography [Yu et al., 2024;
Yang et al., 2024b], etc. In this paper, the potential of dif-
fusion model is explored to embed the owner signature into
HSI to generate imperceptible trigger samples.

3 Proposed Method
3.1 Threat Model
In the threat model, we consider a attack-defense setting
with two parties: model owner O and adversary A. The
model owner aims to train a well-performed HSI classifi-
cation model FO and provide API for clients. The adver-
sary may illegally construct a stolen model FA that has sim-
ilar performance (Acc(FA) ≈ Acc(FO)). Therefore, the
model owner intends to design an effective model IP protec-
tion method to verify the ownership of suspicious model.
Adversary’s Capability. The adversary steals a model and
removes its watermark without affecting its functionality, but
has limited computational resources and data. Moreover,
aware of the input-output relationships of trigger set, the ad-
versary may forge a trigger set and claim ownership.
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Figure 2: The framework of the proposed signature diffusion embedded dual-verification watermarking method for IP protection of HSI
classification model.

Defender’s Capability. The defender, who is the legitimate
developer and owner of the model, embeds a watermark to
assert ownership for unauthorized use. The defender has full
access to the inner details of the model, while only API of the
suspicious model is available for ownership verification.

3.2 Overview
We assume the HSI classification model FO is trained with
N labeled samples, and learns a function FO : X → Y
to classify each pixel in HSI Xi ∈ X into corresponding
class yi ∈ Y = {1, 2, ..., c}. The problem of HSI classifi-
cation model IP protection is defined as: given the model FO,
the watermark is embedded into FO to obtain watermarked
model FWM

O , and the owner can extract the watermark to ver-
ify whether the suspicious model FSP is stolen from FWM

O .
In this paper, the subpixel-space signature diffusion em-

bedded dual-verification watermarking method is proposed
for HSI classification model protection. The core idea is
to generate imperceptible trigger samples that encode owner
signature in the subpixel space for model watermarking, thus
enabling ownership verification with both model stamp and
trigger stamp to resist the forgery attack. As shown in Figure
2, the proposed method can be formalized into two steps:
1) Signature Incorporated Trigger Set Generation and Wa-
termark Embedding: The model owner selects seeds S =

{(Xs, ys)}Ss=1 near decision boundary and incorporates
owner signature Sig into the abundance of seeds in the sub-
pixel space (shown in Figure 3) to obtain trigger set, which
harnesses the diffusion model to ensure stealthiness. The gen-
erated trigger set with pre-defined labels R = {(X̂r, yr)}Rr=1
are embedded into model FO as model watermark:

FWM
O (θ∗) = argmin

θ0

R∑
r=1

L(FO(θ0; X̂r), yr) (1)

where θ∗ and θ0 are the parameters of the watermarked model
FWM
O and the model without watermark FO.

2) Dual-Stamp Ownership Verification: The owner first ver-
ifies the ownership of the suspicious model FSP remotely
with the generated trigger set R. To avoid forgery attack, the
owner further verifies if the signature extracted from trigger
set Ŝig matches the embedded signature Sig. The dual-stamp
ownership verification can be formulated as:

{V erify1(FSP ,R)≥ε}&
{
V erify2

(
Sig, Ŝig

)
≥η

}
(2)

3.3 Subpixel-Space Owner Signature Diffusion
Incorporated Imperceptible Trigger Set
Generation

Seeds Selection
To avoid significant changes of decision boundaries of model
FO in watermark embedding process, the samples that be
easily misclassified to the target class are selected as seeds
S = {(Xs, ys)}Ss=1. This ensures the generated trigger sam-
ples with imperceptible perturbation R = {(X̂s, yr)}Rr=1 are
still near the decision boundaries. Since the samples with
small difference between the top two predicted probability
values are regarded to be near decision boundaries, we select
seeds Xs according to the following rule shown in Figure 4:

Xs=Mini
top(Proyn(Xn)−Proysec(Xn)), yr=ysec (3)

where Mini
top(·) selects the top i samples belong to class ci

with the smallest difference, Proa denotes the probability of
class a, and ysec is the label of second-highest class.

Subpixel Information Diffusion Based Signature Hiding
A subpixel information diffusion based signature hiding
method is proposed to embed signature Sig into selected
seeds Xs in subpixel space, which adopts diffusion model
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Figure 3: Overview of the subpixel-space owner signature diffusion incorporated imperceptible trigger set generation method.

to make trigger samples indistinguishable from seeds. The
foundation lies in changing abundance of HSIs only involves
partial spectral information, making perturbation in subpixel
space subtler than in pixel space.

Specifically, the spectral signature of each pixel is decom-
posed into endmember signatures U and corresponding abun-
dance in subpixel space. The endmember matrix is estimated
by vertex component analysis (VCA), and under the extended
linear mixture model assumption, the abundant matrix A of
HSI X is obtained by solving the following problem:

X = U(Ψ ◦A) +E (4)

where Ψ is the scaling factor, and E is the additive noise.
Given the abundant matrix of seeds As,0 ∼ q(A), the dif-

fusion model is adopted to embed the signature to the abun-
dant of the seeds in the subpixel space. The forward pro-
cess gradually adds Gaussian noise to a real data distribution
through T steps to obtain a noisy representation As,T :

As,t =
√
ᾱtAs,0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (5)

where As,t is the noisy representation of the t-th step, ᾱt is a
noise scheduler, and ϵ is Gaussian noise.

In the reverse process, the proposed method maps the
Gaussian representation As,T to an abundance matrix Âs,0 ∼
q(A) through DDIM, while injecting the signature to the esti-
mated As,t via signature encoders. In this way, the signature
is embedded to the generated abundance Âs,0, and can be ex-
tracted by the signature decoders to confirm the legality of
the trigger sets. The signature encoder of the t-th step Enct
is designed to learn the embedding signature Zt:

Zt = Enct(Sig), t < τ (6)

For each step t, the input is obtained by concatenating the
embedding signature with the estimated As,t, denoted as
(As,t ⊙ Zt), and the embedding signature is replaced with
a null signature N when t > τ to minimize the influence on
visual quality of the generated abundance Âs,0. The noise

predictor ϵθ is adopted to estimate the noise added to As,0,
and the estimation of As,0 is formulated as:

Ât
s,0=


(As,t⊙N)−

√
1−ᾱt ϵθ(As,t⊙N)√
ᾱt

, t≥τ

(As,t⊙Zt)−
√
1−ᾱt ϵθ(As,t⊙Zt)√
ᾱt

, t<τ

(7)

The estimated noise is reintroduced to the approximated Ât
s,0

to obtain As,t−1:

As,t−1=

{√
ᾱt−1Â

t
s,0+

√
1−ᾱt−1ϵθ(As,t⊙N),t≥τ

√
ᾱt−1Â

t
s,0+

√
1−ᾱt−1ϵθ(As,t⊙Zt),t<τ

(8)

The signature decoder Dect is trained to extract the signature
Ŝigt concealed in As,t−1:

Ŝigt = Dect(As,t−1), t < τ (9)

The trigger sample X̂s is obtained by adjusting the gener-
ated abundance of seeds Âs,0 with the scaling factors Ψ and
multiplying with the endmember U:

X̂s = U(Ψ ◦ Âs,0) (10)

Loss Function
Two key aspects warrant attention in the training process, i.e.,
visual quality of trigger samples and extraction accuracy of
signature. Specifically, the trigger reconstruction loss Ltrig

minimizes the mean absolute error between trigger samples
Âs,0 and seeds As,0. The signature extraction loss constrains
the cross entropy between the extracted signature Ŝigt and
original signature Sig. The total loss Ltotal is defined as:

Ltotal = αLtrig + β
∑
τ

Lext

=α
∥∥∥Âs,0−As,0

∥∥∥
1
+β

0∑
t=τ

(
Siglog Ŝigt+(1−Sig)log(1−Ŝigt)

)
(11)

where α and β (set as 1 and 0.1) are loss weights.
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Figure 4: The illustration of the seeds selection rules.

3.4 Watermark Embedding
Once the trigger samples X̂s with the signature information
Sig is generated, the model owner can obtain the water-
marked model FWM

O by training the model with clean sam-
ples and trigger samples. Based on the over-parameterization
property of the owner model FO, the training process is able
to force the model to learn the mapping between the trigger
samples and the pre-defined labels. The watermark embed-
ding process can be formulated as:

X̂s 7→ yt ̸= FO(X̂s) (12)

3.5 Dual-Stamp Ownership Verification
Assuming the watermarked model FWM

O is leaked, the owner
can verify the ownership by extracting the watermarking from
the suspicious model FSP and comparing with the original
watermarking. In this paper, a dual-stamp ownership verifi-
cation strategy is proposed to confirm the owner of the sus-
picious model and further verify the generator of trigger set,
which can be seen as a dual-stamp process to resist ownership
confusion caused by forgery attack.
Definition 1. Given the suspicious model FSP , the model
owner queries the predicted results of FSP with the trigger
samples. The model owner claims that the ownership of the
suspicious model if the accuracy of FSP on the trigger set
R = {(X̂s, yr)}Rr=1 is lager than the threshold ε:

Num(FSP (X̂s) = yr)

R
≥ ε (13)

where Num(·) denotes the function calculating the number
of trigger samples classified into the pre-defined class.
Definition 2. Given the trigger samples to be verified as X̂′

s,
the model owner claims the legality of the trigger samples
if the distance between the extracted signature Sig′ and the
original signature Sig is smaller than the threshold η:

d
(
Sig,Sig′) = ∥∥∥Dec(X̂′

s)− Sig
∥∥∥
2
≤ η (14)

4 Experiment
4.1 Implementation Details
We evaluate the performance of the proposed method on three
datasets. Pavia University dataset contains 9 classes and

Dataset Model w/o watermark watermarked

OA KC WSR OA KC WSR

Pavia
University

MCNN 99.02% 98.91% 0.0% 98.95% 98.84% 100%
DBDA 99.01% 98.91% 2.0% 98.95% 98.84% 100%
SSFTT 99.33% 99.26% 0.0% 99.02% 98.92% 100%

Indian
Pines

MCNN 94.72% 94.39% 0.0% 95.16% 94.86% 100%
DBDA 97.15% 96.97% 7.0% 97.10% 96.92% 100%
SSFTT 98.07% 97.95% 0.0% 97.90% 97.78% 100%

Salinas
MCNN 99.92% 99.91% 0.0% 99.92% 99.91% 100%
DBDA 99.76% 99.75% 0.0% 99.89% 99.88% 96.0%
SSFTT 99.90% 99.89% 5.0% 99.82% 99.81% 100%

Table 1: The fidelity and effectiveness of the proposed method.

Figure 5: Visualization of the extracted signature on three datasets.

has 610×340 pixels with 103 spectral bands. Indian Pines
dataset is composed of 224 bands and the spatial dimension
is 145×145, which includes 16 land-cover types. Salinas
dataset is of size 512×217×224 and contains 16 classes. We
conduct experiments on three models, i.e., MCNN [Zheng et
al., 2021], DBDA [Li et al., 2020], and SSFTT [Sun et al.,
2022] to comprehensively evaluate the performance across
different backbones (2D-CNN, 3D-CNN, and Transformer).

In the experiments, HSI is divided into 27×27 and owner
signature is fixed as the same spatial size. The DDIM sampler
with 200 sampling steps is adopted. The batch size is 128 and
learning rate of 1e-3. The number of epochs is set as 500.

OA and Kappa coefficient (KC) indicate the classification
accuracy. Watermark success rate (WSR) is used to calculate
the probability that the trigger samples are correctly classified
into pre-defined label yt. Bit error rate (BER) evaluates qual-
ity of extracted signature. PSNR, SSIM, and SAM evaluate
visual quality as well as spectral distortion of trigger samples.

4.2 Results
Fidelity
Fidelity measures the impact of watermark embedding on the
performance of the original model. OA and KC of clean
model and watermarked model are compared on different
datasets to evaluate the performance degradation in Table 1.
The proposed method achievesan OA drop of less than 0.1%
on Salinas dataset and even improves the classification accu-
racy of MCNN on Indian Pines dataset. The results show that
the watermarked models achieve similar performance to clean
model, indicating the good fidelity of the proposed method.

Effectiveness
Effectiveness measures whether the ownership of model can
be verified successfully by the watermarking method. As
shown in Table 1, WSR of watermarked model are higher
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Rate
(%)

MCNN DBDA SSFTT
UHFB MEA Proposed UHFB MEA Proposed UHFB MEA Proposed

OA WSR OA WSR OA WSR OA WSR OA WSR OA WSR OA WSR OA WSR OA WSR
0 93.44% 100% 98.30% 100% 98.95% 100% 98.55% 100% 97.59% 100% 98.95% 100% 98.88% 100% 98.57% 100% 99.02% 100%
10 93.46% 100% 98.24% 100% 98.95% 100% 98.62% 100% 97.40% 100% 98.93% 100% 98.86% 100% 98.14% 100% 98.98% 95.0%
20 93.28% 100% 98.25% 100% 98.96% 100% 97.59% 99.0% 97.39% 100% 98.14% 95.0% 98.88% 100% 98.09% 100% 98.98% 95.0%
30 93.33% 100% 98.26% 100% 98.96% 100% 94.94% 100% 85.23% 100% 96.99% 68.0% 98.75% 100% 98.05% 100% 98.98% 95.0%
40 93.44% 100% 98.28% 100% 98.96% 100% 72.94% 98.0% 85.73% 100% 61.54% 20.0% 98.73% 100% 97.71% 100% 98.93% 95.0%
50 93.18% 100% 98.27% 100% 98.97% 100% 48.03% 89.0% 87.31% 100% 65.34% 9.0% 97.90% 100% 94.43% 100% 98.18% 98.0%
60 93.07% 100% 98.25% 100% 98.97% 100% 44.11% 62.0% 74.76% 99.0% 36.46% 10.0% 97.02% 81.0% 87.40% 97.0% 85.09% 78.0%
70 92.99% 100% 98.20% 100% 98.95% 100% 2.59% 29.0% 2.21% 0.0% 14.18% 10.0% 87.88% 30.0% 51.81% 61.0% 54.24% 27.0%
80 91.85% 100% 98.06% 100% 99.16% 100% 5.11% 10.0% 2.21% 0.0% 2.21% 19.0% 47.59% 10.0% 21.30% 4.0% 25.09% 2.0%
90 80.90% 100% 97.66% 100% 99.07% 100% 43.54% 10.0% 2.21% 0.0% 2.21% 19.0% 14.71% 10.0% 15.49% 0.0% 19.25% 2.0%

Table 2: The robustness of the different methods against model pruning attack.

Dataset Model

Before
Quantization

After
Quantization

OA KC WSR OA KC WSR

Pavia
University

MCNN 98.95% 98.84% 100% 98.96% 98.85% 100%
DBDA 98.95% 98.84% 100% 98.95% 98.84% 100%
SSFTT 99.02% 98.92% 100% 99.04% 98.93% 100%

Indian
Pines

MCNN 95.16% 94.86% 100% 95.16% 94.86% 100%
DBDA 97.10% 96.92% 100% 97.11% 96.93% 100%
SSFTT 97.90% 97.78% 100% 97.91% 97.78% 100%

Salinas
MCNN 99.91% 99.91% 100% 99.92% 99.91% 100%
DBDA 99.89% 99.88% 96.0% 99.89% 99.88% 96.0%
SSFTT 99.82% 99.81% 100% 99.82% 99.81% 100%

Table 3: The robustness of the proposed method against weight
quantization on three datasets.

Figure 6: The robustness of the proposed method against fine-tuning
attack.

than 95% on three datasets and three different models, while
the clean models without watermarking have WSR lower than
10% for trigger samples. The results can verify the ownership
without falsely claiming the ownership of clean models.

To verify the effectiveness for avoiding forgery attack, we
evaluate both visual results and objective metrics of extracted
owner signature (shown in Figure 5). The signature extracted
from trigger samples generated by the owner exhibits high
quality with low mean BER. The proposed method proves
the unique relationship between the trigger samples and the
owner, avoiding the confusion of model’s ownership.

Robustness
We evaluate the robustness of the propose method against
model fine-tuning, model pruning, and weight quantization.

Figure 7: Visualization of the trigger samples generated by different
methods.

Model Fine-Tuning: Model fine-tuning retrains the wa-
termarked model to remove watermark by modifying the
weights. We randomly select 1% samples in the test set to
fine-tune the watermarked model, and the numbers of epochs
are set from 10 to 50. As shown in Figure 6, WSR of fine-
tuned model is still 100% for all models, and OA and KC
of the watermarked model show minimal decline after fine-
tuning. Therefore, the proposed method is robust to model
fine-tuning attack.

Model Pruning: Model pruning removes redundant param-
eters of the model while maintaining the performance of pri-
mary task. We prune the watermarked model with prune rate
from 10% to 90% to evaluate the performance and robustness.
As can be observed in Table 2, until the pruning rate reaches a
threshold that significantly degrades the classification perfor-
mance, the proposed method can effectively extract the wa-
termark, showing robustness to model pruning attack.

Weight Quantization: Weight quantization compresses the
weights to lower bit representation to reduce the storage re-
quirements. Table 3 shows that the values of WSR are still
100%, and the accuracy of classification can be maintained
after quantization on all datasets, which shows that the pro-
posed method is resistant to weight quantization attack.

Stealthiness
To evaluate the stealthiness of the proposed method, we
compare the trigger samples generated by the proposed
method with four representative methods, i.e., Content,
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Method Pavia University Indian Pines Salinas
mSSIM mPSNR mSAM mSSIM mPSNR mSAM mSSIM mPSNR mSAM

Content 0.6611 25.8246 17.7778 0.6707 29.3622 17.7778 0.7118 32.1098 17.7778
Noise 0.2534 20.7870 26.4717 0.1823 21.2097 18.1754 0.1555 21.4089 26.3584

Patches 0.7013 25.7970 4.5160 0.6375 27.3806 4.6016 0.6809 29.3188 5.3699
Crop 0.6431 24.6746 8.8856 0.7882 33.0796 5.4622 0.8381 33.5038 9.5902

Proposed 0.8413 32.1444 6.1126 0.9411 42.8497 2.7704 0.9891 48.1443 1.8615

Table 4: Comparison of stealthiness of different watermarking methods on three datasets.

Dataset Method w/o watermark watermarked

OA KC WSR OA KC WSR

Pavia
University

UHFB 99.33% 99.26% 0.0% 98.88% 98.52% 100%
MEA - - 0.0% 98.54% 98.54% 98.5%
SSW - - 100% 98.22% 97.64% 100%

Proposed - - 0.0% 99.02% 98.92% 100%

Indian
Pines

UHFB 98.07% 97.95% 0.0% 95.25% 94.59% 100%
MEA - - 0.0% 93.16% 92.21% 100%
SSW - - 100% 95.47% 94.84% 100%

Proposed - - 0.0% 97.90% 97.78% 100%

Salinas

UHFB 99.90% 99.89% 10.0% 98.77% 98.63% 100%
MEA - - 0.0% 99.73% 99.70% 100%
SSW - - 100% 99.06% 98.95% 100%

Proposed - - 5.0% 99.82% 99.81% 100%

Table 5: Comparison of fidelity and effectiveness of different model
watermarking methods.

Noise, Patches [Wang et al., 2022], and Crop [Lv et al.,
2024]. As shown in Figure 7, the trigger patterns of Con-
tent and Crop is easily distinguished, which exposes the con-
struction way of trigger set. The noticeable artifacts can be
observed on trigger samples generated by Noise and Patches.
As shown in Table 4, the proposed method can minimize the
visual difference between clean samples and trigger samples,
and achieve the best results in terms of mean PSNR, SSIM,
and SAM, indicating good stealthiness.

4.3 Comparison to Other Methods
To verify the superiority of the proposed method, we conduct
the experiments to compare it to the state-of-the-art methods
[Hua et al., 2023b; Lv et al., 2024; Tan et al., 2023]. The
results of different methods on various datasets are shown
in Table 5. MEA yields a 4.91% accuracy loss in terms of
OA on India Pines dataset, while the dropout of OA and KC
of the proposed method are less than 0.34% on all datasets,
achieving better fidelity than UHFB, MEA, and SSW. This
is because the proposed method selects the seeds near deci-
sion boundaries and injects imperceptible information to the
seeds, ensuring small impact to the performance of the model.

As for the effectiveness, the WSR of all methods are larger
than 98%, and the proposed method achieves the highest
WSR. However, the main drawback of the competing meth-
ods is that they cannot resist forgery attack. The proposed
method enables the signature information extracted from the
trigger samples to claim the legality of the trigger set, improv-
ing the effectiveness for ownership verification.

Number w/o watermark watermarked

OA KC WSR OA KC WSR

50 99.90% 99.89% 8.0% 99.89% 99.89% 100%
100 - - 5.0% 99.82% 99.81% 100%
200 - - 5.0% 99.79% 99.78% 100%

Table 6: Results of the proposed method with different numbers of
trigger samples.

Time Step τ mSSIM mPSNR mSAM OA KC

200 0.9459 42.3547 2.4932 99.51% 99.45%
100 0.9620 44.0146 2.3578 99.71% 99.68%
20 0.9891 48.1443 1.8615 99.82% 99.81%

Table 7: Results of the proposed method with different time steps
that begins to inject the owner signature.

4.4 Ablation Study
To evaluate the impact of number of trigger samples, we con-
duct experiments on the proposed method with 50, 100, 200
trigger samples. As shown in Table 6, a larger trigger set
leads to a slight decline in OA and KC, indicating a reduction
in fidelity. Although WSR remains 100% for different num-
bers of trigger sets, smaller trigger sets lead to higher miss
detection rates. In this paper, 100 trigger samples are adopted
to balance fidelity and effectiveness.

We discuss the effect of time step that begins to inject the
owner signature (threshold τ ). The experiments on models
with τ=200, 100, and 20 demonstrate that injecting the sig-
nature only in the final steps (τ=20) of diffusion model can
minimize the visual influence of signature embedding to trig-
ger sample as well as the impact to classification accuracy.

5 Conclusion
In this paper, we propose a signature diffusion embedded
dual-verification watermarking to protect IP of HSI classifi-
cation models for the first time, which verifies the ownership
of model with imperceptible trigger set. The subpixel-space
owner signature diffusion incorporated imperceptible trigger
set generation method is designed to encode owner signature
to the seeds in subpixel space via diffusion model. To ensure
adversary cannot forge trigger samples to confuse ownership,
dual-stamp ownership verification strategy is proposed to ver-
ify both model ownership and legality of trigger set. Exper-
iments demonstrate the effectiveness of the proposed water-
marking method in IP protection of HSI classification model.
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