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Abstract

Next Point-of-Interest (POI) recommendation pre-
dicts a user’s next move and facilitates location-
based services such as navigation and travel plan-
ning. SOTA methods fuse each POI and its
contexts (e.g., time, category, and region) into
a single representation to model sequential user
movement. This hinders the effective utilization
of context information, and diverse user prefer-
ences are also neglected. To tackle these limita-
tions, we propose Disentangled and Personalized
Representation Learning (DPRL) as a novel method
for next POI recommendation. DPRL decou-
ples POIs and contexts during representation learn-
ing, capturing their sequential regularities inde-
pendently using separate recurrent neural networks
(RNNs). To model the preference of each user,
DPRL adopts an aggregation mechanism that in-
tegrates dynamic user preferences and spatial-
temporal factors into the learned representations.
We compare DPRL with 16 state-of-the-art base-
lines. The results show that DPRL outperforms
all baselines and achieves an average accuracy im-
provement of 10.53% over the strongest baseline.

1 Introduction

With the popularization of location-based social media (e.g.,
Snapchat and Foursquare), many users share their life up-
dates along with the associated locations, such as theaters,
restaurants, and bars [Zhuang et al., 2024; Liu et al., 2016;
Sun et al., 2020]. Leveraging these geographical records,
next Point-of-Interest (POI) recommendation predicts each
user’s next likely movement based on his/her historical tra-
jectories [Yang et al., 2020; Feng et al., 2015; Xu et al., 2023;
Rao et al., 2025b; Rao et al., 2025a; Zhang et al., 2023]. Next
POI recommendation facilitates many location-based appli-
cations such as navigation system [Qin et al., 2023; He e al.,
20201, travel planning [Yang er al., 2019; Luo er al., 2021;
Li et al., 2021], and personalized destination suggestions
[Feng er al., 2018; Yang et al., 2022; Wang ef al., 2023b].
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(b) User preferences for POIs and regions

Figure 1: The transition patterns and user preferences for POIs and
regions on Gowalla dataset, where regions are generated by running
a clustering algorithm on the POI’s geographical coordinates. The
region transitions are more predictable than POI transitions, and dif-
ferent users have different preferences for the POIs and regions.

A plethora of methods have been proposed for next POI
recommendation, and they can be classified into three cate-
gories, i.e., sequence-based, graph-based, and query-based.
Sequence-based methods focus on the movement of individ-
ual users, capturing only the transition patterns between POIs
within each user trajectory [Wu et al., 2022; Duan er al.,
2023; Ye et al., 2024]. Graph-based methods first utilize all
user trajectories to construct some POI transition graphs and
then run Graph Neural Networks (GNNs) [He er al., 2020] on
these graphs to learn POI representations [Yan et al., 2023;
Zhou et al., 2024; Lai er al., 2024]. Query-based meth-
ods treat the timestamp of the next visit as a query and use
a decoder to predict the visit location [Deng er al., 2024;
Feng er al., 2024; Luo e al., 2023; Rao et al., 2024]. We
discuss these methods with more details in Section 2.

We observe that existing next POI recommendation meth-
ods suffer from two limitations that hinder their accuracy:
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o Tangled representations. Existing methods first merge
the POI and context information (e.g., time, category, re-
gion) via addition or concatenation, and then use sequence
models (e.g., RNN and Transformer) to capture the tran-
sition patterns of user trajectories. However, as shown in
Figure 1(a), POIs and regions have distinct transition pat-
terns. In particular, POI transitions are more dispersed,
reflecting users’ diverse movements across the locations,
while region transitions are concentrated along the diago-
nal, suggesting that users tend to stay within adjacent re-
gions. As existing methods entangle POI and region in a
single model, they cannot model their distinct transition
patterns, leading to suboptimal trajectory representations.

o Limited user preference modeling. Existing methods fo-
cus on modeling user preferences for POIs, either implic-
itly learning user preference representations [Yang ef al.,
2020; Rao er al., 2022] or explicitly training POI pref-
erence embeddings [Sun er al., 2024; Feng et al., 2024].
However, user preferences are also related to the contexts
of the POIs, such as regions and categories. As shown in
Figure 1(b), users exhibit distinct preferences for POIs and
regions, and a user usually favors a small number of re-
gions than POIs. Moreover, the POI and region prefer-
ences are also distinct for different users. Existing methods
largely overlook user preferences for contexts and fail to
model diverse user preferences, which hinders them from
accurately capturing user behaviors.

In this paper, we propose DPRL, a disentangled and per-
sonalized representation learning method, to address the
aforementioned limitations and produce accurate next POI
recommendations. In particular, to avoid tangled trajectory
representations, we analyze the transition patterns of various
contexts and identify region as the primary context. Sub-
sequently, we decouple POI and region representations and
model their sequential regularities independently with sepa-
rate spatial-temporal RNNs. Additionally, a focal loss func-
tion is employed to learn region transition patterns, and a
straightforward fusion mechanism is introduced to enhance
trajectory representations for POI prediction. To model di-
verse user preferences, we explicitly incorporate POI prefer-
ence embeddings and region preference embeddings in ad-
dition to the common user identity embedding. A spatial-
temporal aggregation mechanism is also designed to capture
user preferences for POIs and regions explicitly. This mech-
anism includes two key components: integrating user pref-
erences into disentangled sequential modeling to learn high-
quality trajectory representations, and combining spatial-
temporal factors with user preferences to pinpoint past move-
ments that benefit the current prediction.

We conduct extensive experiments to evaluate DPRL and
compare it with 16 state-of-the-art baselines. The results
show that DPRL consistently outperforms all baselines in
accuracy, and compared with the best-performing baseline,
DPRL achieves an improvement of 24.34% in the best case,
10.53% on average, and 2.71% in the worst case. Moreover,
we perform an ablation study to validate our model designs,
analyze the effect of DPRL’s model parameters, and measure
DPRL’s running time. These results suggest that our designs

are effective, and that DPRL runs efficiently.
To summarize, we make the following contributions:

e We observe that existing methods entangle POIs with con-
texts and conduct limited user preference modeling, result-
ing in suboptimal next POI prediction accuracy.

e We design DPRL as a disentangled and personalized repre-
sentation learning framework to capture diverse sequential
patterns and learn high-quality representations.

e We propose a novel spatial-temporal aggregation mecha-
nism to capture user preferences for POIs and contexts for
improved prediction accuracy.

e We conduct extensive experiments on two real-world
datasets to test the performance of DPRL. The results show
that DPRL significantly outperforms existing methods.

2 Related Work

Existing methods for next POI recommendation can be clas-
sified into three main categories, i.e., sequence-based, graph-
based, and query-based.

Sequence-based methods. These methods focus on indi-
vidual user trajectories and thus only capture the transition
patterns between POIs within each user trajectory [Duan et
al., 2023; Wang et al., 2023a]. For example, STRNN [Liu
et al., 2016] extends Recurrent Neural Networks (RNNs) by
incorporating spatial-temporal matrices that are derived from
the intervals between consecutive user check-ins. DeepMove
[Feng er al., 2018] integrates Transformer with gated recur-
rent units (GRU) to capture both long-term and short-term
sequential patterns. GeoSAN [Lian ef al., 2020] employs a
gridding method to discretize the geographic space and lever-
ages a self-attention module to capture correlations between
POIs. STAN [Luo et al., 2021] utilizes two attention layers to
explicitly capture the spatial-temporal correlations between
POIs. MCLP [Sun et al., 2024] adopts Latent Dirichlet Allo-
cation (LDA) to model user preferences and Transformer to
capture transition patterns, and the time of the next visit is
used as a guiding condition to enhance prediction accuracy.

Graph-based methods. These methods learn POI represen-
tations using all user trajectories, and the POI representa-
tions are then used to derive trajectory representations. As
such, they can model the transition patterns from a global
perspective. For instance, GETNEXT [Yang et al., 2022]
runs Graph Neural Networks (GNNs) on a POI frequency
transition graph to learn POI representations, which are sub-
sequently fed into a Transformer to model sequential reg-
ularities. Graph-Flashback [Rao et al., 2022] constructs
a POI transition graph using a spatial-temporal knowledge
graph and employs an RNN to capture the transition patterns.
AGRAN [Wang et al., 2023b] learns an adaptive POI graph,
which is trained jointly with a Transformer to learn trajec-
tory representations. SNPM [Yin et al., 2023] constructs a
dynamic neighbor graph to identify POI dependencies across
different timestamps. LoTNext [Xu ef al., 2024] designs a
graph adjustment method to denoise the POI transition graphs
and introduces a tailored loss function to address the long-tail



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

POI problem, where many POIs are visited only a few times.

Query-based methods. These methods treat the timestamp
of the next user movement as a query and use a decoder to
predict the next location. For instance, TPG [Luo et al., 2023]
employs a geography-aware module to encode spatial infor-
mation and a Transformer to model transition patterns. RE-
PLAY [Deng et al., 2024] introduces a smooth time embed-
ding module and utilizes an RNN to capture transition pat-
terns. Both methods concatenate the query with the learned
patterns and feed them to a decoder. AGCL [Rao et al., 2024]
constructs multiple adaptive graphs to refine POI represen-
tations and directly adds the query to the Transformer’s out-
put to model user preferences. ROTAN [Feng et al., 2024]
uses a rotation technique to incorporate time information into
both user and POI embeddings, and use two Transformers to
model transition patterns.

Nevertheless, all existing methods suffer from tangled tra-
jectory representations and insufficient user preference mod-
eling. In contrast, our DPRL decouples POI and context rep-
resentations by modeling their sequential regularities sepa-
rately and captures diverse user preferences for both POIs and
contexts to produce personalized POI recommendations.

3 Problem Definition

We have U = {uj,us,...up} as the set of users, P =
{p1,p2,...,pn} asthe set of POIs, and R = {r1,72,...7r}
as the set of regions, which are generated by running a cluster-
ing algorithm on the POIs. As such, each POI p; is associated
with a region and two geographical coordinates (r, lat,Ing).
Note that we use normal text (e.g., u) to denote variables and
boldface (e.g., E and W) for embedding or weight matrices.
Definition 1: (Check-in) A check-in ¢ = (u, p, r, t) indicates
that user w visited POI p in region r at time ¢. O
Definition 2: (User Trajectory) A user trajectory is a tem-
porally ordered sequence of check-ins from a specific user ,
which is expressed as T, = {c1,¢a,...,¢y}. O
Definition 3: (Next POI Recommendation) Given a user
u’s trajectory 7, next POI recommendation aims to identify
the top-k POIs that u is most likely to visit next. U
Next POI recommendation uses accuracy as the main perfor-
mance metric, which is usually measured by Hit Ratio (HR)
and Mean Reciprocal Rank (MRR) [Rao er al., 2022]. These
metrics evaluate how well the predicted POIs align with the
POIs actually visited by the users, and higher values suggest
better performance.

4 DPRL

Figure 2 provides an overview of our DPRL method. In par-
ticular, DPRL comprises four main components: i) Context
Embedding, which converts the discrete spatial-temporal in-
formation from a user trajectory into continuous represen-
tations; ii) Disentangled Spatial-Temporal Encoder to learn
disentangled spatial-temporal representations from user tra-
jectories. We design a dual-branch model structure that de-
couples POI and region representations and models their
sequential regularities separately; iii) Comprehensive User
Preference Modeling, which integrates user preferences for
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Figure 2: An overview of DPRL, where the numbers indicate steps.

both POIs and regions via a spatial-temporal aggregation
mechanism that considers both user preferences and spatial-
temporal factors; iv) Query Enhanced Prediction, which pre-
dicts each user’s next movement by leveraging the learned
representations and treating the timestamp of the next move-
ment as a query to guide predictions for enhanced accuracy.

4.1 Context Embedding

Trajectory encoding. This component encodes discrete user
and POI IDs into latent representations. Specifically, we uti-
lize two randomly initialized embedding dictionaries: user
embeddings E* € RM*? and POI embeddings EP <
RN*d where d represents the embedding dimension. The
embeddings for each user and POI are denoted as e* and eP.

Attribute encoding. This component first transforms spa-
tial (i.e., geographical coordinates) and temporal information
(i.e., timestamps) into discrete IDs, which are then encoded
into latent representations. Specifically, the geographical co-
ordinates of POlIs are clustered into regions using the k-means
method [MacQueen and others, 1967]. We denote R as the
number of regions. Each region is assigned a unique ID,
creating a randomly initialized region embedding dictionary
E™ c REX4, For temporal information, a day is divided into
24 time slots by the hour to capture the daily periodicity of
user behavior on weekdays. To distinguish between week-
days and weekends, 24 additional time slots are introduced
for weekends. As such, a randomly initialized time embed-
ding dictionary E? ¢ RS5%4/2 ig created, where S = 48, to
represent the temporal attributes of POIs. The embeddings
for each region and time slot are denoted as e” and e?.

4.2 Disentangled Spatial-Temporal Encoder

Context analysis. To avoid tangled trajectory representa-
tions, we aim to decouple POI and its contexts, and model
their sequential regularities using separate models. As de-
tailed in Section 4.1, the contexts of a POI mainly refer to
its region and occurrence time. A naive idea is to model
the sequential regularities of both region and time indepen-
dently. Our exploratory experiments show that modeling re-
gion transitions significantly improves recommendation ac-
curacy, which can be attributed to the fact that regions are
predictable, i.e., users typically stay within or near the same
region, as shown in Figure 1(b). This predictability allows
the model to accurately capture region transition patterns and
provide valuable auxiliary information for POI prediction.
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However, modeling time transitions does not yield similar im-
provements; instead, it degrades recommendation accuracy.
This is because time is a dynamic attribute of POIs with a one-
to-many relationship because a POI can be visited at various
time slots. This complexity, coupled with potential data spar-
sity, hinders the model from effectively capturing the time
transition patterns. However, time still plays an important
role in shaping the daily activity patterns and location pref-
erences for users, such as having breakfast in the morning or
dinner at night. As such, we treat the region as a POI’s pri-
mary context for individual modeling and consider the visit
time as an auxiliary context, which is used as a feature for
POI prediction.

Disentangled sequential modeling. We utilize two spatial-
temporal-aware recurrent neural networks (RNNs) to inde-
pendently capture the sequential patterns of POIs and re-
gions, respectively. Formally, given the POI representation
sequence S, = {ef,eb, .-, eP} and the region represen-
tation sequence S, = {ef],e5, - el }, we derive the cor-
responding POI hidden states H,, = {h¥ A% --- AP} and
region hidden states H,, = {h} h%, --- A%} as follows:

H,, = Enc(S,,,w),

H, = Enc(S,,w),

where Enc(+) represents the spatial-temporal-aware RNN and
w(+) denotes a correlation function that incorporates spatial-
temporal factors. This disentangled modeling preserves the
semantic integrity of POIs and regions, ensuring accurate rep-
resentation of each information, reducing information inter-
ference, and enhancing the clarity of the representations.

Next, we detail the designs of Enc(-) and w(+). To illustrate
the modeling of spatial-temporal dependencies, we take POI
sequential modeling as an example. Formally, given a POI
representation sequence S, = {e},eh,--- , e}, we first use
a basic RNN to compute all hidden states:

h; = 0(Weel + Wrh;_1 + b), 2

where o is the tanh activation function, ef represents the POI
embedding at time step ¢, h;_; denotes the hidden state from
the previous time step, and W, , € R?4 and b € R? are
learnable parameters. To explicitly account for the temporal
periodicity and spatial proximity of user behaviors, we com-
pute the correlation between a historical visit 7 and current
visit ¢ based on spatial-temporal factor as follows:

(ATZ j)ADz ]) = hVC(Q?'('AT‘Z ]) aAT;, 76_BAD7 ; (3)

where hvc(z) = 1“% reflects temporal periodicity, AD; ;
and AT; ; represent the Lo spatial distance and temporal in-
tervals between two POIs p; and p;, and o and 3 are the
temporal and spatial decay weights, respectively. Then we
leverage the correlations to identify past hidden states that
contribute to the current prediction:

i i

o= 20t o)

> j=0 Wj
where w’ = w(AT;;, AD; ;) denotes the correlation be-
tween two POIs p; and p;. Here, we utilize Enc(-) to en-
capsulate the processes defined in the Eq.(2,3,4).

ey

Note that we also experimented with using a Transformer
[Vaswani et al., 2017] as the backbone model but found that
it performed worse than RNNs. This is likely because most
users have short check-in trajectories, which RNNs are better
suited to model. Moreover, we also experimented with con-
structing POI and region graphs and applying GNNs to learn
refined POI and region representations [Yang er al., 2022;
Rao et al., 2022; Wang et al., 2023b]. However, this approach
performed worse, likely because the disentangled sequential
modeling already captures fine-grained dynamic patterns for
POIs and regions, and the graph’s reinforcement of represen-
tations overlaps or conflicts with this modeling, suppressing
the ability to capture dynamic information.

4.3 Comprehensive User Preference Modeling

User preference encoding. Although the transition pat-
terns captured by Eq.( 2) and the correlation function w(-)
in Eq.( 3) effectively focus on the POI-specific or region-
specific information, they overlook the broader user prefer-
ences associated with them. To capture comprehensive user
preferences, we encode different user preferences for POI and
region into latent representations. Specifically, we utilize two
randomly initialized embedding dictionaries: POI preference
embedding E% € RM*? and region preference embedding

EY ¢ RM*d The preference embeddings for each POI and
region are denoted as e, and e;!, respectively.

Personalized trajectory representation. We propose a
spatial-temporal aggregation mechanism to explicitly capture
user preferences for both POIs and regions. Human behaviors
are often influenced by periodic patterns and intentions, such
as having breakfast in the morning or dinner at night [Zhang
and Chow, 2016]. Therefore, we model dynamic user prefer-
ences by employing the Time2Rotation (T2R) technique [Sun
et al., 2019; Feng er al., 20241, which effectiely integrates
temporal information into user preference modeling:

= T2R(e,,Tt) = €, o Ty, where |rg| =1, (5)
where 7, represents the rotation associated with time embed-
ding e?, and o denotes the Hadamard (element-wise) product.
Unlike traditional strategies such as concatenation or addi-
tion, T2R preserves the original space of the POI preference
embedding ej;. Similarly, the region preference embedding
€ can be derived using the same T2R technique. Afterwards,
we incorporate the user preferences for POIs and regions into
sequential modeling by modifying Eq.(2):

hf:U(Wp[e ep]Jerht 1+b)
hi =o(W,[e};e"] + Wihe_1 + by),

where [; ] denotes the concatenation operation. Moreover, to
further enhance user preference modeling, we integrate user
preferences into the correlation function w(-):

(6)

W, (AT; j, AD; j) = w(AT; j, AD; j)e 18 =< ll2, -
Wi (AT, 5, AD; ;) = w(AT; j, AD; ;e l1er =<illz)
where || - || represents the Lo distance. This formulatlon re-

sults in a new correlation function w(-), which accounts for
both user preference factors and spatial-temporal factors. Fi-
nally, we use w(-) to compute all POI hidden states H,
Enc(Sp, W) and region hidden states H, = Enc(S,, W).
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4.4 Query Enhanced Prediction

Region prediction. The region branch of the disentangled
spatial-temporal encoder produces an output ﬁ{ at each time
step ¢, which is concatenated with the dynamic region prefer-
ence embedding é€j; , and the user embedding e* into a new
vector. This vector is then passed through a fully connected
layer to generate the final region prediction:

Ury = Wylhi: €5 e, ®)
where W € R is the learnable weight matrix. Re-
gion prediction can offer additional supervision signals and
enhance the effectiveness of model training.

POI prediction. Similarly, we use a fully connected layer
to generate the final POI prediction. Following [Luo er al.,
2023; Feng et al., 2024], the ground truth next time is used as
a query to guide the POI prediction:

Upe = WiIhY et e, ©)
where hY = hY + A% and €% = &Y + é¥ represent the
fused trajectory representation and user preference, as region
information aids POI prediction. Note that we avoid using
the query to predict regions in Eq.(8), as they are less sensi-
tive to specific time slots. Additionally, the predicted region
is excluded from guiding next POI prediction due to its inac-
curacy, which degrades performance in our experiments.

4.5 Model Training

When considering the next movements, users often move
within a small spatial range close to their current location.
As a result, in a region sequence, consecutive positions often
share the same region ID, such as multiple repeated occur-
rences of the same region in adjacent positions. In this case,
a standard cross-entropy loss struggles to capture rare but im-
portant region transition patterns. To mitigate this, we adopt
focal loss [Lin et al., 2017], which handles class imbalance
by down-weighting well-classified samples and focusing on
hard-to-classify ones, emphasizing rare and critical patterns
more effectively. Forrnally, the focal loss function is defined:

Z Z (1—ye) log(yp)),  (10)

u=1 =1

where n denotes the length of the user trajectory, n = 0.25
balances class importance, v = 2 emphasizes hard-to-classify
samples, and y;* € g, represents the predicted probability
of the region label for user u. Since POI sequences rarely ex-
hibit the repetitive patterns described above, we use the stan-
dard cross-entropy function as the POI loss function:

M n ‘L‘
=3 > ogo(yp)+ Y log(l—o(g)), (11)
u=1i=1 j=1,j#k

where yi; € g, ; and §3* € g, ; represent the predicted prob-
abilities of POI label and other POIs for user u, respectively.
Combined with the region loss and POI loss, our multi-task
learning objective is defined as follows:

L="Ly+Mr+ 1]|0]]2, (12)

Dataset Gowalla Foursquare
Period 02/2009-10/2010  04/2012-01/2014
# Users 7,768 45,343
# POIs 106,994 68,879
# Check-ins 1,823,598 9,361,228

# Trajectories 84,357 429,071
# Sparsity 0.9978 0.9969
# Avg. 234.76 206.45

Table 1: Statistics of the experiment datasets.

where ||©||2 represents the Lo regularization term, and the
parameters A and p control the magnitude of the region loss
and regularization loss, respectively. © is optimized by mini-
mizing £ via gradient descent.

5 Experimental Evaluation

In this section, we conduct extensive experiments to evaluate
the effectiveness of our DPRL. We aim to answer the follow-
ing research questions:

e RQI: How does the recommendation accuracy of DPRL
compare with state-of-the-art algorithms?

e RQ2: How do DPRL’s designs contribute to accuracy?
e RQ3: How do DPRL’s parameters affect accuracy?
e RQ4: How efficient is DPRL for training and inference?

5.1 Experiment Settings

Datasets. We evaluate DPRL on two widely used real-
world datasets: Gowalla' and Foursquare’. Gowalla con-
tains check-ins from February 2009 to October 2010, while
Foursquare covers the period from April 2012 to January
2014. Each check-in includes a user ID, POI ID, latitude, lon-
gitude, and timestamp. Following the preprocessing method
in [Yang er al., 2020; Yin et al., 2023], we filter out inac-
tive users with fewer than 100 check-ins and sort each user’s
check-ins by ascending timestamp. The first 80% of the
check-ins for each user are split into equal length sequences
(e.g., 20) to form the training set, while the remaining 20%
are used for testing. Table 1 summarizes the statistical char-
acteristics of the two datasets.

Baselines. We consider the following 16 representative
methods as the baselines, including the traditional meth-
ods (PRME [Feng et al., 2015] and LBSN2Vec [Yang et
al., 2019]), sequence-based methods (STRNN [Liu et al.,
2016], DeepMove [Feng et al., 2018], STGN [Zhao et al.,
2019], LSTPM [Sun et al., 2020], Flashback [Yang et al.,
2020], STAN [Luo et al., 20211, and MCLP [Sun et al.,
2024]), graph-based methods (GETNext [Yang et al., 2022],
Graph-Flashback [Rao er al., 2022], SNPM [Yin et al.,
2023], AGRAN [Wang et al., 2023b], LoTNext [Xu et al.,
2024]), and query-based methods (TPG [Luo et al., 2023],
and ROTAN [Feng e al., 2024]).

Evaluation protocol. We adopt two commonly used evalua-
tion metrics from prior research [Yang et al., 2020; Rao et al.,

"http://snap.stanford.edu/data/loc-gowalla.html
“https://sites.google.com/site/yangdingqi/home
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M Gowalla I Foursquare
ethods

HR@1 (1) HR@5 (1) HR@I0(}) MRR(])|HR@1 () HR@5(1) HR@IO0 () MRR (1)
PRME 0.0740 0.2146 0.2899 0.1503 0.0982 0.3167 0.4064 0.2040
LBSN2Vec 0.0864 0.1186 0.1390 0.1032 0.2190 0.3955 0.4621 0.2781
STRNN 0.0900 0.2120 0.2730 0.1508 0.2290 0.4310 0.5050 0.3248
DeepMove 0.0625 0.1304 0.1594 0.0982 0.2400 0.4319 0.4742 0.3270
STGN 0.0624 0.1586 0.2104 0.1125 0.2094 0.4734 0.5470 0.3283
LSTPM 0.0721 0.1843 0.2327 0.1306 0.2484 0.4489 0.5018 0.3365
Flashback 0.1158 0.2754 0.3479 0.1925 0.2496 0.5399 0.6236 0.3805
STAN 0.0891 0.2096 0.2763 0.1523 0.2265 0.4515 0.5310 0.3420
MCLP 0.1404 0.3139 0.3900 0.2232 0.2980 0.6027 0.6837 0.4353
GETNext 0.1419 0.3270 0.4081 0.2294 0.2646 0.5640 0.6431 0.3988
Graph-Flashback 0.1512 0.3425 0.4256 0.2422 0.2805 0.5757 0.6514 0.4136
SNPM 0.1593 0.3514 0.4346 0.2505 0.2899 0.5967 0.6763 0.4278
AGRAN 0.1005 0.2456 0.3154 0.1731 0.1575 0.3736 0.4676 0.2600
LoTNext 0.1668 0.3605 0.4429 0.2591 0.3155 0.6059 0.6812 0.4469
TPG 0.1400 0.3071 0.3611 0.1948 0.2321 0.4631 0.5493 0.3775
ROTAN 0.1416 0.2851 0.3502 0.2125 0.2691 0.5381 0.6203 0.3915
DPRL (Ours) 0.2074 0.3936 0.4761 0.2970 0.3622 0.6256 0.7022 0.4820
Improvement (%) | 24.34% 9.18% 7.50% 14.63% 14.80% 3.25% 2.71% 7.85%

Table 2: Next POI recommendation accuracy of our DPRL and the baselines. In each column, we use boldface and underline to indicate the
best and second-best methods, respectively. We also report the improvement of DPRL over the best-performing baseline.

2022]: Hit Ratio@K (HR@K) and Mean Reciprocal Rank
(MRR) to assess the performance of DPRL. HR@K repre-
sents the proportion of true positive samples among the pre-
dicted top-K samples. Unlike HR @K, which focuses on top-
K samples, MRR directly evaluates the overall recommenda-
tion performance. For both metrics, higher values indicate
better accuracy. In our experiments, we adopt the commonly
used K = {1,5,10}.

Implementation details. We use the Adam optimizer with
default betas, a learning rate of 0.01, a time slot number S
of 48, and an embedding dimension d of 30 for Gowalla and
20 for Foursquare. g is set to le~® for Gowalla and 1e=%
for Foursquare, while A is set to 0.5 for Gowalla and 0.1 for
Foursquare. The region size R is 4000 for Gowalla and 3000
for Foursquare. The spatial-temporal decay factors « and
follow the default settings in [Yang et al., 2020; Rao ef al.,
2022]. Our implementation is available on Pytorch?.

5.2 Main Results (RQ1)

Table 2 shows the results of the experiments on the Gowalla
and Foursquare datasets. Based on these results, we have the
following observations and corresponding analyses:

o The results of the Gowalla and Foursquare datasets demon-
strate that our proposed DPRL significantly outperforms all
other state-of-the-art baselines across all evaluation met-
rics. Specifically, on the Gowalla dataset, DPRL out-
performs the second-best method with improvements of
24.34%, 9.18%, 7.50%, and 14.63% on HR@1, HR@5,
HR@10, and MRR. Additionally, DPRL achieves aver-
age improvements of 7.15% compared to the second-best

3https://github.com/kevin-xuan/DPRL

method on the Foursquare datasets. In a nutshell, these
findings clearly show the superiority of our method DPRL.

e Compared to the best sequence-based method MCLP and
the query-based method ROTAN, our DPRL demonstrates
a significant overall improvement. This can be attributed to
several key factors: 1) By decoupling POI and region em-
beddings and individually modeling their sequential regu-
larities, DPRL preserves the semantic integrity of POIs and
regions, and ensures accurate representations of each type
of information. 2) Explicitly modeling diverse user prefer-
ences on POI and contexts effectively guides the sequential
model for personalized recommendations.

e Apart from AGRAN, most graph-based methods outper-
form sequence-based methods on the Gowalla dataset due
to their stronger POI representations. AGRAN’s poor per-
formance may result from the large number of POlIs, lim-
iting its ability to learn an effective adaptive graph. How-
ever, on the denser Foursquare dataset, the best sequence-
based method, MCLP, surpasses most graph-based meth-
ods, showing that with advanced model architecture and
sufficient data, sequence-based methods can bridge the
representation gap of GNNs. Our DPRL further validates
this on all datasets and demonstrates notable improvements
on the sparser Gowalla dataset, highlighting its strong abil-
ity to handle sparse data.

5.3 Micro Results and Design Analysis

Ablation study (RQ?2). To show the effects of DPRL’s com-

ponents, we conduct ablation experiments on all datasets and

form the different variants as follows:

e w Con and w Add combine POI, time, and region embed-
dings through concatenation or addition.
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Variants Gowalla Foursquare
HR@5 | HR@IO || HR@5 [ HR@10
DPRL | 0.3936 | 0.4761 || 0.6256 | 0.7022
wCon | 03530 | 0.4183 || 0.6134 | 0.6865
wAdd | 03544 | 0.4215 || 0.6120 | 0.6853
w/o UP | 0.3669 | 0.4355 0.6158 | 0.6898
w SP 0.3728 | 0.4488 || 0.6147 | 0.6904
w/o US | 03839 | 0.4596 || 0.6188 | 0.6978
w/o MTL | 0.3940 | 0.4741 0.6217 | 0.6997
w CE 0.3921 | 0.4720 || 0.6211 | 0.6981

Table 3: Ablation study for the designs of our DPRL.
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Figure 3: The effect of DPRL’s parameters on accuracy.

e w/o UP and w/o US remove the user preference embed-
dings and the user preference factors used in the correlation
function, respectively. w SP uses the same user preference
embeddings for both POI and region.

e w/o MTL removes the region loss, while w CE applies a
standard cross-entropy for the region loss.

As shown in Table 3, we have the following findings:

e We notice that both w Con and w Add perform worse than
DPRL, highlighting the effectiveness of disentangled rep-
resentation learning to capture sequential regularities.

e We observe that w/o UP, w SP, and w/o US show a notable
performance decline compared to DPRL, highlighting the
importance of comprehensive user preference modeling.

e We find that the region loss £, provides additional super-
vision signals, enhancing training effectiveness. Moreover,
focal loss better highlights rare and critical patterns com-
pared to cross-entropy loss.

Hyper-parameters (RQ3). We conduct experiments to ana-
lyze the impacts on HR@1 of four critical hyper-parameters
on the Gowalla dataset: region size R, region loss weight A,

Gowalla Foursquare

Methods Train | Test Train [q Test
Flashback 26 108 91 491
ROTAN 55 234 217 1164
Graph-Flashback 53 221 141 756
SNPM 174 639 1238 2408
LoTNext 122 448 858 1669
DPRL (Ours) 35 149 129 692

Table 4: The average training and test time (in seconds) per epoch.
All methods use the same batch size.

hidden dimension d, and number of time slot 7'. Figure 3(a)
shows that R = 4000 is the optimal number of regions. Too
few regions result in coarse divisions, while too many weaken
spatial correlation due to over-refinement. Figure 3(b) shows
that a region loss weight of A = 0.5 achieves the best per-
formance. The performance initially improves as the weight
increases, highlighting the impact of region loss. However,
further increases overemphasize region prediction, hindering
the capture of POI transition patterns. Figure 3(c) shows
that a hidden dimension of d = 30 yields the best perfor-
mance. Smaller dimensions fail to capture complex sequen-
tial patterns, while larger dimensions risk over-fitting due to
excessive parameters. As shown in Figure 3(d), recognizing
weekday-weekend differences and selecting an appropriate
time slot granularity (e.g., 1 hour) are crucial to capture user
behavior patterns and enhance accuracy.

Efficiency analysis (RQ4). Table 4 compares the aver-
age training and test time of DPRL with five representative
methods across all datasets, including Flashback (sequence-
based), ROTAN (query-based), and graph-based methods
(Graph-Flashback, SNPM, and LoTNext). All methods are
performed on the same NVIDIA A10 GPU with identical
batch size. Flashback’s simple RNN efficiently captures se-
quential regularities, while ROTAN’s multilayer Transform-
ers increase its runtime compared to DPRL. Among graph-
based methods, Graph-Flaskback incurs extra overhead due
to GNN, SNPM requires additional time to search similar
neighborhoods in the graph, and LoTNext is slower than
Graph-Flashback due to graph denoising and an auxiliary
temporal prediction task. In summary, DPRL achieves com-
petitive efficiency, ranking among the fastest baselines.

6 Conclusion

In this paper, we propose a disentangled and personalized
representation learning (DPRL) framework for the next POI
recommendation task. To learn high-quality trajectory repre-
sentations, we decouple POIs and contexts, and model their
sequential regularities separately. To model comprehensive
user preference, we propose a novel spatial-temporal aggre-
gation mechanism to capture user preferences for POIs and
contexts. Moreover, we also adopt a temporal query to guide
the predictions for enhanced accuracy. We conduct exten-
sive experiments and analyses on two real-world datasets,
which show that DPRL significantly outperforms state-of-
the-art baselines in recommendation accuracy.
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