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Abstract

Multi-label causal feature selection has garnered
considerable attention for its ability to identify
the most informative features while accounting for
the causal dependencies between labels and fea-
tures. However, previous work often overlooks the
unique contributions of labels to the target vari-
ables in multi-label settings, focusing instead on
prioritizing feature variables. Moreover, existing
methods typically rely on traditional Markov Blan-
ket (MB) discovery to construct an initial MB,
which often fails to explore the most valuable form
of spouse variables to feature selection in multi-
label scenarios, leading to significant computa-
tional overhead due to redundant Conditional In-
dependence (CI) s required for spouse search. To
address these challenges, we propose the Multi-
label Causal Feature Selection Method with Opti-
mal Spouses Discovery, MCF-Spouse, which lever-
ages mutual information to quantify the contribu-
tions of both labels and features, ensuring the re-
tention of the most informative variables in multi-
label settings. Moreover, we systematically ana-
lyzes all potential forms of spouse variables to iden-
tify the optimal spouse case, significantly reducing
the spouse search space and alleviating the time
overhead associated with CI s. Experiments con-
ducted on diverse real-world datasets demonstrate
that MCF-Spouse consistently outperforms state-
of-the-art methods across multiple metrics, offering
a scalable and interpretable solution for multi-label
causal feature selection. The code is available at
https://github.com/malinjlu/MCF-Spouse.

1 Introduction

Causal inference is crucial in machine learning, enhanc-
ing model efficiency, interpretability, and predictive accu-
racy in complex domains [Chu et al, 2023; Ma et al.,
2025]. One of the fundamental methods to causal infer-
ence involves Bayesian networks (BNs) [Ben-Gal, 2008;
Pearl, 2014], which utilize directed acyclic graphs (DAGs) to
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Figure 1: (a) Illustration of equivalent information in multi-label
scenario. In this case, {F1, F>} and {F3, F1} have the equivalent
information to L. (b) Strong label correlation can block the MB
path from feature to label. In this case, L1 prevents { Fi, F>} from
becoming the MB of La.

model dependencies among variables [Aliferis et al., 2010a;
Aliferis et al., 2010b]. Within a BN, the Markov blanket
(MB) [Tsamardinos et al., 2003b] of a target variable cap-
tures its essential local causal structure, comprising direct
causes (parents), direct effects (children), and other causes
of its children (spouses). Identifying MBs across multiple
variables imposes valuable constraints, effectively reducing
the search space and facilitating more scalable approaches
for inferring large-scale BNs [Tsamardinos et al., 2006;
Pellet and Elisseeff, 2008; Gao et al., 2017]. More impor-
tantly, prior studies have demonstrated that the MB represents
the optimal feature subset, as all other features become in-
dependent of the target when conditioned on its MB, which
underscores its significance in feature selection applications
[Masegosa and Moral, 2012; Statnikov ef al., 2013].
Single-label causal feature selection methods focus on
identifying relevant features for a single target variable [Ling
et al., 2022b; Guo et al., 2023; Ling et al., 2024al. These
methods fail to consider label dependencies, which are es-
sential in multi-label scenarios [Ling et al., 2024b; Guo et
al., 2024]. For example, when predicting diabetes and hyper-
tension, features such as BMI and cholesterol may influence
both conditions, highlighting the interdependencies between
labels. Multi-label causal feature selection addresses this
issue by simultaneously capturing feature-feature, feature-
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label, and label-label relationships [Wu et al., 2020; Yu et
al., 2021; Wu et al., 2022]. By considering causal relation-
ships across multiple labels, multi-label causal feature selec-
tion tries to capture the underlying structure among feature-
feature, feature-label and label-label simultaneously, enhanc-
ing model performance and interpretability in multi-label set-
tings [Yu et al., 2021].

However, due to the unique characteristics of multi-label
scenarios, several challenges arise in identifying the MB for
target labels. First, complex interdependencies often chal-
lenge the faithfulness assumption [Pearl, 2014], particularly
due to the presence of equivalent information [Wu et al.,
2022]. As illustrated in Fig. 1.(a), {F}, Fy} directly con-
vey information to L; through the paths F; — L; and
Fy — Ly. {F3, F,} have the paths to {Fy, Fo} as F5 — F
and Fy — F5. In this case, {F3, F4} provide equivalent in-
formation to Ly as {F}, F»}, raising the question of which
variables should be retained in L;’s MB. Furthermore, as
shown in Fig. 1.(b), the equivalent information provided by
L, and {Fy, F>} presents additional challenges in the pres-
ence of strong correlations between labels. Specifically, L,
which encapsulates the information from {F}, F5}, can act
as a blocker, obstructing the path from {Fy, F} to Lo ac-
cording to the definition of D-separation [Pearl, 2014]. This
complicates the identification of informative variables within
the MB, as it requires careful consideration of the inter-
play between features and labels to avoid redundancy or loss
of crucial information. Existing studies [Wu et al., 2020;
Yu et al., 2021; Wu et al., 2022] tend to retain as many
features as possible, prioritizing features over labels. These
methods frequently recover features blocked by strong la-
bel correlations through extensive Conditional Independence
(CD s. However, in multi-label contexts, the relationships be-
tween labels are equally critical. It is possible that labels,
as output variables, encapsulate more concentrated and pre-
dictive information than input features, which primarily rep-
resent attributes. It is essential to develop methods that not
only account for the equivalent information provided by fea-
tures and labels but also leverage the rich interdependencies
between labels to enhance the identification of the MB.

More importantly, in multi-label causal feature selection,
spouse sets are crucial for capturing the complete Markov
blanket of a target label by addressing indirect causal rela-
tionships [Ling ef al., 2022a]. Unlike parent and child vari-
ables, which represent direct causal influences, spouse vari-
ables affect the target variables through their impact on shared
children. This makes spouse variables essential for model-
ing the intricate interactions and dependencies among mul-
tiple labels. Ignoring spouse variables can lead to incom-
plete MBs, since indirect effects can be overlooked, poten-
tially resulting in biased outcomes. The inclusion of spouse
variables is particularly important in multi-label scenarios,
where labels often share common causes or are connected
through indirect pathways. However, researchers often over-
look the spouse variables, focusing instead on PC variables,
under the assumption that PC variables contain the most rel-
evant information for the target variables [Wu et al., 2020;
Yu er al., 2021]. Alternatively, some methods rely on ex-
isting MB construction such as HITON-MB [Aliferis et al.,

2003], MMMB [Tsamardinos et al., 2003al, and GetPC
[Pena et al., 2007] to establish the initial MB, followed by
further optimization [Wu er al., 2022; Wu et al., 2023a;
Wu et al., 2023b]. These methods may either risk compro-
mising the integrity of the MB or introduce significant CI s
due to the high dimensionality of features and labels in multi-
label datasets when searching for spouse.

In this article, we propose the Multi-label Causal Feature
Selection Method with Optimal Spouse Discovery (MCF-
Spouse), which addresses key challenges in multi-label
causal feature selection through several innovations. First, to
tackle the issues of equivalent information and the blockage
of paths from features to labels caused by strong label cor-
relations, we utilize mutual information (MI) [Zhang et al.,
2019b; Pereira et al., 2018] to quantify the contributions of
both labels and features to the target variable. This approach
ensures that only the most informative variables are retained,
prioritizing labels when they provide greater predictive value.
Second, to efficiently identify spouse variables without incur-
ring significant computational overhead from CI s, we sys-
tematically analyze all possible configurations of spouse vari-
ables in the multi-label domain. By leveraging target-specific
guidance, we pinpoint the optimal spouse variables to include
in the target’s Markov blanket. This targeted strategy signif-
icantly narrows the search space for spouse variables, reduc-
ing computational complexity and minimizing time overhead.
The main contributions of this paper are summarized as fol-
lows:

1. We discuss all the possible spouse relationships in the
context of multi-label causal feature selection, and an-
alyze the optimal spouse set through the guidance of
target-specific variables.

2. To solve the equivalent information and the blockage
of paths from features to labels caused by strong la-
bel correlations, we use mutual information to compare
the contribution of features and labels, and maintain the
most informative variables.

3. We conduct extensive experiments to validate our MCF-
Spouse method, comparing it with nine state-of-the-art
multi-label feature selection methods on four metrics
across eight real-world datasets. The results consis-
tently show that our MCF-Spouse method outperforms
the compared methods across all four metrics.

2 Related Work

Non-BN-based methods. These methods can be catego-
rized into three categories [Pereira et al., 2018]. Mutual
information-based methods, such as D2F [Lee and Kim,
2015], MCMFS [Zhang et al., 2020], ENM [Gonzalez-Lopez
et al., 2020], and FSSL [Liu et al., 2020], select features
by evaluating mutual information between features and la-
bels. Regularization-based methods, including SFUS [Ma
et al., 2012], MIFS [Jian et al., 2016], MLFS-GLOCAL
[Faraji et al., 2024], and ESRFS [Li et al., 2024], incorpo-
rate regularization terms to enhance feature selection. Mani-
fold learning-based methods, such as MCLS [Huang et al.,
2018], MSSL [Cai and Zhu, 2018], and MDFS [Zhang et
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al., 2019al, exploit geometric structures within data. While
these methods improve classification performance and miti-
gate the curse of dimensionality, they can not select the op-
timal number of features automatically and explicitly model
feature-feature and label-label dependencies.

BN-based methods. BN-based methods offer signifi-
cant advantages by simultaneously modeling feature-feature,
feature-label, and label-label relationships [Yu et al., 2021].
For instance, Wu et al. explore causal mechanisms in multi-
label feature selection by distinguishing common features and
label-specific features in MB-MCF [Wu et al., 2020]. They
further extend this work with CLFS [Wu et al., 2022], fo-
cusing on the interplay between common MB variables and
equivalent information. Similarly, Yu ef al. [Yu et al., 2021]
address the issue of false discoveries—where A appears in the
MB set of B, but B is absent from the MB set of A in M2LC.
This method reduces computational complexity by learning
local BN structures rather than entire BN structure.

However, existing BN-based methods often suffer from
high computational overhead due to redundant CI s during
spouse discovery. Furthermore, the complex dependencies in
multi-label feature selection often lead to equivalent informa-
tion, making it challenging to determine the most informative
MB variables. To address these issues, we propose an effi-
cient spouse discovery method and leverage mutual informa-
tion to accurately evaluate the contributions of both features
and labels, thereby reducing complexity and improving fea-
ture selection performance.

3 Preliminaries

In this section, we elaborate on the fundamental definitions
and theorems relevant to our discussion. Based on these, we
present the theorems and provide their proofs in this article.

Definition 1 (Faithfulness [Pearl, 2014]): a Directed
Acyclic Graph (DAG) G is considered faithful to the
probability distribution P(V') in the Bayesian Network <
V,G,P(V) > iff every conditional independence relation-
ship encoded in P is implied by G and satisfies the Markov
condition. Furthermore, P(V') is deemed faithful iff G accu-
rately represents P(V).

Definition 2 (Equivalent information [Statnikov et al.,
2013]): as illustrated in Fig. 1.(a), the features {F3, Fy}
provide the same information to the label L; as {Fy, F5}.
This equivalence implies that {F}, F5} can be replaced by
{F5, F4} without any loss of information. In this scenario,
{Fy, F>} and { F3, F, } are considered equivalent information
in their contribution to L.

The faithfulness condition in Definition 1 is always invalid
due to the presence of equivalent information in the context
of multi-label learning and raise the question of which should
be retained in the target’s Markov blanket. We introduce Def-
inition 3 and 4 and Theorem 1 to solve this problem.

Definition 3 (Common causal variable): as illustrated in
Fig. 2, C is identified as the common variable, since it is
present in the Markov blankets of both X and Y.

Definition 4 (Target-specific variable): as illustrated
in Fig. 2, A is the target-specific variable for X, and B
is the target-specific variable for Y, which means that A

Figure 2: Illustration of common and target-specific variables: C' is
identified as the common variable, since it is present in the Markov
blankets of both X and Y. A serves as the target-specific variable
for X, and B serves as the target-specific variable for Y.

uniquely captures the local dependencies relevant to X, and
B uniquely captures the local dependencies relevant to Y.
Target-specific MB variables capture the unique local rela-
tionships specific to individual targets, enabling more accu-
rate predictions or inferences tailored to each target. In con-
trast, common MB variables represent shared dependencies
across multiple targets, efficiently summarizing the informa-
tion relevant to all targets using a minimal set of variables.

Theorem 1. Equivalent information can be resolved by com-
paring the contributions of a feature F' and a label Lo to the
target label L.

Proof. Mutual information [Kraskov et al., 2004] is a widely
used metric for evaluating the contribution of variables. In
the context of feature F' and labels L; and Lo, we compare
the mutual information between feature F’ and target label L
(I(Lq; F')) with the mutual information between label Ly and
target label Ly (I(Ly; L2)).

If I(Ly; F) < I(Ly; La), this implies that feature F' pro-
vides information similar to that of label L, or is redundant.
In such cases, we choose not to retain F', thereby reduc-
ing redundancy from equivalent information. Conversely, if
I(Ly;F) > I(Ly; L), the feature F' offers additional in-
formation beyond what label L, provides, and we therefore
retain F. O

Definition 5 (V-structure [Pearl, 2014]): three variables
X,Y and T form a V-structure (i.e., X — T < Y), iff X and
Y have a directed edge pointing to T, regardless of whether
X and Y are directly connected.

The V-structure is a critical concept for identifying the
spouse set of a variable. For example, in a V-structure 7' —
X < Y, Y is aspouse of T, and X is a collider. However,
in the context of multi-label causal feature selection, directly
applying Definition 5 for spouse search can lead to several
issues: first, as the number of features and labels increases,
the time overhead grows exponentially due to the need of nu-
merous conditional independence s; second, in the multi-label
domain, the identification of spouses is more complex, as il-
lustrated in Fig. 3, which presents four cases of spouse rela-
tionships in a multi-label DAG. It is not clear which spouse
should be retained. To address these challenges, we introduce
Theorem 2 for efficient and precise spouse search.

In Fig. 3, we illustrate the four possible relationships be-
tween the target label and the spouse. Based on this figure, we
conclude that Fig. 3.(a) is the case we want to retain, as the
spouse of L1 is the feature F3. In the case of Fig. 3.(b), we do
not need to retain it since the spouse of L; here is label L.
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Figure 3: Illustration of four spouse relationships in multi-label
DAG. (a) L1 — F2 <— F3. (b) L1 — F2 <— LQ. (C) L1 —
Lo <+ Ls. (d) Ly — Ly + F5.

If we designate label L as the spouse of L1, we will conduct
feature selection using only the feature set from L;’s Markov
blanket, making it unnecessary to retain label L,. Similarly,
in Fig. 3.(c), we also do not need to retain it, since the spouse
of L in this case is label Ls. Finally, for Fig. 3.(d), we con-
clude that it should not be retained, as proven in Theorem 2.

Theorem 2. The label-specific variable is not contained in
other label’s MB.

Proof. According to Definition 4, in Fig. 3.(d), feature F5 is
the label-specific variable of label L. Therefore, the follow-
ing conditions hold:

o Fy )L Ly | {£\L2}, which indicates that F5 is depen-
dent on Ly conditioned on the rest of the label set £\ Ls.

e VL € L,L # Ly, F» L L | {£\L2}, meaning F;
is independent of any other label L (where L # Lo)
conditioned on £\ Ls.

Assume that F5 is part of the Markov blanket of label L.
This implies that there exists a path between F5 and L1, such
as L1 — Ly « Fs. According to this path, Fo U Lq |
{£\ L1}, indicating that F5 is dependent on L given the rest
of the labels. However, this contradicts the earlier condition
that F5 is independent of all other labels except Lo.

Thus, we reach a contradiction. Therefore, F5 cannot be
part of the Markov blanket of L, and more generally, a label-
specific variable cannot be contained in the Markov blanket
of any other label. O

Theorem 3. For three variables X, Y and T, given condition
set ZifT U X | ZTUY | Z,TULY | ZUX, thenT, X
and 'Y form a V-structure (T — X < Y ), variable Y is T"s
spouse [Spirtes et al., 2001; Pearl, 2014].

Theorem 4. Only children with multiple parents can make
target variable T and variables in non — PCr from indepen-
dence to dependence [Ling et al., 2022a].

According to Theorems 2, 3, and 4, the spouse search can
be conducted within a multi-label scenario. First, we identify
children with multiple parents, which can serve as colliders.

Then, we determine the optimal spouse set, which is illus-
trated in Fig. 3.(a), indicating that spouses can only take the
form of feature-feature pairs. Finally, using Theorem 3, we
can estimate the existence of a spouse variable based on the
identification of the V-structure.

4 MCF-Spouse Algorithm

In this section, we present the Multi-label Causal Feature Se-
lection with Optimal Spouse Discovery (MCF-Spouse, Al-
gorithm 1). MCF-Spouse consists of three phases: Phase 1
(lines 1-3) mines the PC sets using the HITON-PC method
[Aliferis et al., 2003], Phase 2 (lines 4-17) recovers features
ignored due to strong label correlation, and Phase 3 (lines 18-
28) conducts the spouse search.

4.1 Learning the Local Causal Structure of Each
Class Label

In phase 1, we employ the HITON-PC [Aliferis et al., 2003]
as our primary method for PC discovery. HITON-PC is
known for its efficiency in identifying relevant features by
minimizing false positives and false negatives, making it a ro-
bust choice for PC discovery in high-dimensional data. Phase
2 refers to the feature recovery. After the PC discovery in
Phase 1, some features are not selected due to strong correla-
tions between labels and the issue of equivalent information.
These ignored features may still hold significant value but are
overshadowed by the influence of other labels in the dataset.
To address this, we re-evaluate these features to determine
whether they should be included in the candidate PC set.

In lines 5-7, the feature F} is examined. This feature does
not belong to the current candidate PC set of label L;, but it
could have been blocked by strong correlations with other la-
bels, making it a candidate for recovery. Then, in lines 8-10,
if F} is dependent on Y;, F; will be included in Fe,.(Y;) in
descending order, and the top kq% features in Fe,.(Y;) are
considered as the most possible ignored features. Lines 11-14
address the key condition: when label Ly, is not in the condi-
tion set, feature I; remains dependent on label L;; once label
Ly, is included in the condition set, feature F; and label L; be-
come independent. We conclude that label Ly, blocks the path
from F} to L;, and this path-blocking mechanism shows how
labels can obscure feature relationships, potentially leading
to the omission of valuable features.

In lines 15-17, we compare the MI between feature F; and
the target label L; (I(L;; F;)) with that between label Lj, and
the target label L; (I(L;; Ly,)). This comparison allows us to
quantify the contribution of feature F}; relative to the label Ly,.
If the feature [; contributes more information to L; than label
Ly, we conclude that F; is more significant, and therefore, it
is included in the candidate PC set (CPC,,). Conversely,
if label Ly, provides more information than feature I, Ly, is
included in the candidate PC set instead.

4.2 Spouse Discovery

Phase 3 is spouse discovery. As discussed in Fig. 3, the
optimal spouse variables can only exist in the configuration
shown in Fig. 3.(a), which forms a collider structure: target
— feature < feature. In lines 19-21, we begin by traversing
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Algorithm 1 MCF-Spouse Algorithm

Require: feature set F={F,F,,...,F,}, label set
L={Ly, La,...,L;}, PC discovery algorithm A, V=F U
L

Ensure: M By,
: {Phase 1: PC discovery using .4}
fori=1,....,ldo
CPCYy, : discover the PC of L; from V\L;
{Phase 2: recover the ignored features caused by
strong label correlation}
fori=1,...,ldo
if 3k # i, Y, € CM By, then
for VF; € F\CM By, do
if F; L Y; then
Fe,.(Y;) = Fep(Y;) U{F;} in descending
order
10: Keep top k1% features in Fe,..(Y;)
11: fort=1,....1 do
12:  if 3k # 14, Ly, € CPCp, then

bl e

weRwm

13: for VF; € F\CPCy, do

14: if B, U L|{V\CPCL} and F; 1
L{{V\CPCy.} U{Ly} then

15: if[(Ll,Fj) > I(L“Lk) then

16: CPCLl :CPCLiU{Fj}

17: CPCL = OPOLZ\{Lk}

18: {Phase 3: spouse discovery }
19: for:=1,...,1 do

20 CSPp, =10

21:  for VF; € CPCp, do

22: forp=1,...,mdo

23: if Ip s.t. F; € CPC), then

24: for VF, € {F\CPCy,} do
26: CSPp, =CSPFy, U{Fk}

27:  MBy, = CPCy, UCSPy,
28: return M By,

each feature F; in the candidate PC set (CPCp,). In lines
22-23, we estimate whether F); belongs to the PC set of other
features, since only features with multiple parent variables
can serve as colliders. This step is crucial because identify-
ing colliders is essential for detecting indirect dependencies
between features and labels.

Then, in line 24, we define the candidate spouse set as the
set of features that are not already included in C PC'r,,. These
features have the potential to be spouses, as they are not di-
rectly connected to the target label L; but could form indi-
rect relationships via colliders. In line 25, we determine the
spouse relationship by examining the dependency between
feature Fj, and the target label L; when feature F} is con-
ditioned upon. Specifically, when F} is part of the condition
set, I}, and L; become dependent, indicating that Fy,, I, and
L; form a V-structure represented as L; — F}; <— Fj.. In this
V-structure, feature F; serves as the collider, while feature Iy,
serves as the spouse of label L;.

Theorem 5. In a multi-label causal feature selection algo-
rithm, employing a phased method—performing only PC set

Datasets Domains Instances Features Labels
Flags Image 194 19 7
VirusGO Biology 207 749 6
CHD_49 Medicine 555 49 6
PlantGO Biology 978 3091 12
Enron Text 1702 1001 53
Image Image 2000 294 5
Yeast Biology 2417 103 14
HumanGO | Biology 3106 9844 14

Table 1: Description of Datasets

discovery in the first phase and deferring spouse discovery to
the third phase, is more efficient and accurate than perform-
ing a complete MB search in the first phase.

Theorem 5 indicates that after feature recovery, spouse dis-
covery reduces computational complexity while improving
the accuracy of multi-label causal feature selection.

4.3 Complexity Analysis

The MCF-Spouse method consists of three main phases: (1)
PC discovery, (2) feature recovery, and (3) spouse discovery.

Phase 1: PC Discovery: in this phase, the algorithm identi-
fies the PC set for each label L; using a PC discovery method
(e.g., HITON-PC, MMPC). The time complexity of this step
is O(m?) for each label, where m is the number of features.
Therefore, the total time complexity for this phase is O(m?21),
where [ is the number of labels.

Phase 2: Feature Recovery: in this phase, the algorithm
recovers features ignored due to strong label correlation. For
each label L;, the algorithm compares the mutual informa-
tion of features outside the PC set with other labels. The time
complexity for this step is O(m?1), since the MI for each fea-
ture is computed with every label.

Phase 3: Spouse Discovery: the algorithm identifies
spouse features by examining V-structures in the PC set of
each label. The complexity of checking dependencies and
performing CI tests for each feature pair is O(m?) per label,
resulting in a total time complexity of O(m?]).

The overall time complexity of the MCF-Spouse algorithm
is dominated by the most computationally expensive phase,
which is consistent across all three phases. Consequently, the
total time complexity is O(m?1).

5 Experiment

In this experiment, we compare MCF-Spouse with nine meth-
ods, which are introduced in related work. Classification ac-
curacy is computed using the ML-kNN [Zhang and Zhou,
2007], with the number of nearest neighbors & fixed at 10.
Each experiment is repeated 10 times.

5.1 Experiment Settings

1) Datasets: we utilize eight real-world datasets sourced from
various application domains, including Flags [Gongalves et
al., 2013], VirusGO [Xu eft al., 2016], CHD_49 [Shao ef al.,
2013], PlantGO [Xu et al., 2016], Enron [Read et al., 2008],
Image [Zhang and Zhou, 20071, Yeast [Elisseeff and Weston,
2001], and HumanGO [Xu et al., 2016] detailed in Table 1.
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Figure 4: The Hamming Loss ({), Ranking Loss ({.), F-Micro (1), and F-Macro (1) of MCF-Spouse and nine state-of-the-art methods on the

HumanGO, Image, PlantGO, and VirusGO dataset.

These datasets are accessible for download from the Multi-
Label Classification Dataset Repository'.

2) Evaluation Metrics: to assess the performance of se-
lected feature subsets, we utilize the following four metrics in
multi-label feature selection: Hamming Loss, Ranking Loss,
F-micro and F-macro [Wu et al., 2020].

3) Parameter Settings: for comparing methods, their pa-
rameters are set according to the suggestions in the corre-
sponding literature. For D2F, MCMFS, ENM, and FSSL,
these mutual information-based methods can not determine
the optimal number of features. Therefore, we gradually in-
crease the percentage of selected features from 1% to 20%
with a step size of 1%. For SFUS, the value of o and 3
are searched within the range of {1072, 1072,..., 102, 10%}.

"http://www.uco.es/kdis/mllresources/#3sourcesDesc

Similarly, for MDFS, the values of «, /3, and  are searched
within the same range. In the case of ESRFS, the values of
a, B, 7, and A are also evaluated within {10’3, 1072,..., 102,
10%}. Since SFUS, MDFS and ESRFS are unable to deter-
mine the optimal number of features, we incrementally in-
crease the percentage of selected features in the same manner
as mutual information-based methods.

For MB-MCF, M2LC, and MCF-Spouse, these BN-based
methods do not require the number of selected features to be
predetermined. However, MB-MCF and M2LC have param-
eters: k1 which determines the number of ignored features to
be recovered, and ko, which selects the features that need to
undergo symmetry checks. We perform the grid search within
the range of [0.1, 1] to find the values of k; and &, that yield
the best results. For parameter k£, in MCF-Spouse, we also
perform the grid search within the range of [0.1, 1] to find the
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Datasets Time(s)
MCF-Spouse M2LC  MB-MCF D2F MCMEFS ENM FSSL SFUS MDFS  ESRFS
Flags 7.828 7.734 7.063 7.075 8.249 8.310 7.947 35.080 82.859 81.761
Image 137.016 278.250  345.828 782446 658217 651.289 649.886 656.092 680.634 595.777

Table 2: Run time of ten algorithms on Flags and Image datasets

MB-MCF
—¥— D2F

MCMFS FSSL MDFS
—— ENM SFUS —— ESRFS

—a— MCF-Spouse
—— M2LC

Figure 5: Spider web diagrams demonstrate the stability of the ten
methods across eight datasets with Hamming Loss and F-macro.

optimal performance.

5.2 Results of MCF-Spouse Comparing With Nine
Multi-Label Feature Selection Methods

As previously discussed, Non-BN-based methods cannot de-
termine the optimal number of features. Therefore, we in-
crementally increase the percentage of selected features from
1% to 20% in 1% steps to search for the optimal number.
In contrast, the BN-based methods discussed in this article
(MCF-Spouse, M2LC, and MB-MCF) are heuristic methods
that do not require matrix training and can automatically se-
lect the optimal number of features (size of MB). These char-
acteristics eliminate variance, further highlighting the supe-
riority of BN-based methods. We evaluate the performance
of MCF-Spouse and nine state-of-the-art methods on the Hu-
manGO, Image, PlantGO, and VirusGO datasets. The results
are shown in Fig. 4.

From Fig. 4, we observe that MCF-Spouse, which incor-
porates the search for spouse variables, selects more features
compared to MB-MCF and M2LC-two BN-based methods
that do not consider spouses. This results in significant per-
formance improvements across the four datasets in all met-
rics. These findings highlight the crucial role of spouse vari-
ables in enhancing predictive accuracy and overall model per-
formance. Compared to non-BN-based methods that deter-
mine the optimal number of features by exploring in 1%
increments, MCF-Spouse consistently delivers superior per-
formance across most datasets, with the exception of the F-
macro score on VirusGO. Non-BN-based methods often ex-
hibit instability and require a time-intensive stepwise search
to identify the optimal feature count. In contrast, MCF-
Spouse not only achieves more stable results but also effec-
tively selects a smaller subset of features with higher preci-

sion, leading to better overall performance.

To demonstrate the stability [Wu et al., 2022] of MCF-
Spouse across various metrics and datasets, we normalize the
results to the range [0, 0.5], assigning the best-performing
method a value of 0.5. For metric Hamming Loss, lower val-
ues indicate better performance, so the minimum is normal-
ized to 0.5. In contrast, for metric F-Macro, higher values are
preferable, and the maximum is set to 0.5. As illustrated in
Fig. 5, MCF-Spouse consistently demonstrates superior per-
formance, forming a regular octagon.

5.3 Run Time Analysis

In this section, we evaluate the runtime of ten methods on the
Flags and Image datasets. The timing starts at the beginning
of the method and ends after classification using ML-KNN.
For Non-BN-based methods, runtimes are averaged across
feature selections ranging from 1% to 20% of the total fea-
tures to ensure a fair comparison.

As summarized in Table 2, the proposed MCF-Spouse
method demonstrates competitive efficiency. On the Flags
dataset, its runtime is comparable to methods like MCMFS
and ENM. For the larger Image dataset, MCF-Spouse sig-
nificantly reduces runtime compared to MB-MCF, MCMFS,
and others. These results highlight MCF-Spouse’s ability
to maintain a favorable balance between computational ef-
ficiency and feature selection quality, making it highly appli-
cable for complex, high-dimensional datasets.

6 Conclusion

In this paper, we propose Multi-label Causal Feature Selec-
tion Method with Optimal Spouses Discovery (MCF-Spouse)
to address challenges in multi-label causal feature selection.
MCEF-Spouse utilizes MI to evaluate contributions of features
and labels and retain only the most informative variables,
resolving issues of equivalent information and strong label
correlations. Additionally, MCF-Spouse introduces a novel
spouse discovery mechanism, optimizing spouse discovery
through reducing search space and alleviating time overhead
associated with CI s. Our results highlight the importance of
distinguishing label-label interactions and label-feature con-
tributions in multi-label causal inference. Future work will
focus on addressing spurious variables in the MB, specifically
by exploring the use of “AND” and “OR” rules to refine MB
construction, further improving the accuracy and efficiency
of multi-label causal feature selection.
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