
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Learning from Logical Constraints with Lower- and Upper-Bound Arithmetic
Circuits

Lucile Dierckx 1,2 , Alexandre Dubray1 , Siegfried Nijssen1,2,3

1 ICTEAM, UCLouvain, Belgium
2 TRAIL Institute, Belgium

3 DTAI, KU Leuven, Leuven, Belgium
{lucile.dierckx, alexandre.dubray, siegfried.nijssen}@uclouvain.be

Abstract
An important class of neuro-symbolic (NeSy)
methods relies on knowledge compilation (KC)
techniques to transform logical constraints into a
differentiable exact arithmetic circuit (AC) that rep-
resents all models of a logical formula. However,
given the complexity of KC, compiling such exact
circuits can be infeasible. Previous works in such
cases proposed to compile a circuit for a subset of
models. In this work, we will show that gradients
calculated on a subset of models can be very far
from true gradients. We propose a new framework
that calculates gradients based on compiling logical
constraints partially in not only a lower-bound cir-
cuit but also an upper-bound circuit. We prove that
from this pair of ACs, gradients that are within a
bounded distance from true gradients can be calcu-
lated. Our experiments show that adding the upper-
bound AC also helps the learning process in prac-
tice, allowing for similar or better generalisation
than working solely with fully compiled ACs, even
with less than 150 seconds of partial compilation.

1 Introduction
Neuro-symbolic AI (NeSy) integrates symbolic with sub-
symbolic artificial intelligence [Garcez and Lamb, 2023;
Hitzler and Sarker, 2022]. An important subclass of NeSy
approaches combines neural networks with some form of
logic [Giunchiglia et al., 2022]. These approaches typically
combine these ideas: (I) A neural network is used to calcu-
late the parameters of a probabilistic model; (II) An inference
task is defined on this probabilistic model; (III) This infer-
ence task is reduced to an inference task on a weighted log-
ical formula in Conjunctive Normal Form (CNF), where we
refer to this formula as a query; (IV) The actual outcome of
this inference task on the weighted CNF is calculated for the
current parameters; (V) A gradient-descent step is executed
to learn values of the probabilistic parameters that bring the
actual outcome closer to a desired outcome. Well-known ex-
amples of such approaches are DeepProbLog and semantic
loss [Manhaeve et al., 2018; Xu et al., 2018].

For many inference tasks on probabilistic models, it
has been found that step (III) requires a reduction to

Weighted Model Counting (WMC) on logical formulas in
CNF [Chavira and Darwiche, 2008; Fierens et al., 2012;
Fierens et al., 2015]. In WMC, we calculate a weighted
sum over all satisfying assignments of the logical formula
(referred to as models of the formula). To execute step (V),
the most common approaches are based on Knowledge Com-
pilation (KC): a knowledge compiler is used to compile the
CNF formula into an Arithmetic Circuit (AC) that represents
the WMC calculation. Subsequently, standard differentia-
tion techniques are used to calculate a derivative over this
circuit and through the neural network. However, compil-
ing a CNF formula into an AC, allowing an exact WMC,
is a #P-hard task [Valiant, 1979], making it infeasible for
some formulas to be compiled exactly, or resulting in very
large ACs. To address this, many existing learning meth-
ods rely on approximations of WMC instead, that are based
on subsets of satisfying assignments [Maene et al., 2024;
Manhaeve et al., 2021]. For instance, the k most probable
models are calculated and compiled into an AC.

The contributions of this paper focus on the gradient com-
putation through ACs that can not be fully compiled, and are
as follows. First, we show that using subsets of models can
lead to gradients that are not a good approximation of exactly
calculated gradients. Subsequently, we propose the Lower-
and Upper-Bound ACs (LUBAC) framework1 for calculating
approximate gradients that address this weakness. The core
novelty in this framework is that we propose to compile two
ACs per query: not only a lower-bound circuit representing
a subset of models of a formula, but also an upper-bound
AC representing a subset of non-satisfying assignments. We
show that the overhead of calculating both ACs in a modi-
fied WMC solver is negligible in theory and practice, while
together, these two ACs contain significantly more informa-
tion than one AC represents. Among others, we will show
that, using both ACs, we can not only calculate a new form
of approximate gradient, but we can also calculate an opti-
mality gap between true and approximated gradients; we can
show that this optimality gap is small in theory and practice;
and we can obtain ACs that are smaller by carefully selecting
which lower-bound and upper-bound ACs we use. Moreover,
we show that the resulting ACs can easily be used in existing
NeSy pipelines.

1https://github.com/aia-uclouvain/schlandals

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/aia-uclouvain/schlandals

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2 Problem Setting & Related Work
We work in a machine learning setting with labelled exam-
ples. Our data consists of queries (i.e., logical formulas)
associated with a desired probability Q = {(F1, y1), . . . ,
(Fm, ym)}. Given a set of parameters W of a model, the
learning task is to find values for W minimising the differ-
ence between yq and PW [Fq], the probability that each query
Fq is satisfied according to this model.

Queries. A query is a propositional logical formula F , in
CNF, defined over a set X = {x1, . . . , xn} of boolean vari-
ables. Such queries can be obtained by grounding probabilis-
tic logic queries, from Bayesian Networks, and more; their
origin is not this work’s focus. A literal over a variable x ∈ X
is the variable x or its negation ¬x. We study the probabilis-
tic setting in which F is weighted on its literals: a weight wl

is defined for each literal l of the formula, wx ∈ [0, 1] and
w¬x = 1 − wx. For simplicity, we define the parameters to
learn asW = {wx | x ∈ X}. We use w ∈ W to indicate a
parameter that must be learned as well as the current weight
of that parameter (i.e., a numerical value).

Model Counting. An interpretation I = {l1, . . . , ln} is a
truth assignment to each variable (i.e., a choice of one literal
per variable). We denote by F [I] the evaluation of F under I ,
using the standard way of interpreting logical formulas. Let
IF be the set of all interpretations of F , then the weighted
model counting (WMC) problem is to compute the weighted
sum of F ’s models, defined as follows.

WMCW(F) =
∑

I∈IF |F [I]=⊤

∏
l∈I

wl

Given parameter setW , we define P ∗
W [F] = WMCW(F).

P ∗
W [F] represents the exact probability that formula F is true,

assuming we make choices for each variable x ∈ X .

Example 1. Let F be a formula, with three binary variables
X = {x1, x2, x3}, defined as follows.

F = (¬x1 ∨ x3) ∧ (x2 ∨ x3)

Let the weights be wx1 = 0.99, wx2 = 0.5, wx3 = 0.65. The
interpretation {x1,¬x2, x3}, weighted 0.32175, is a model of
F and WMCW(F) = 0.65175.

Related Work. A lot of languages have been proposed
as targets for knowledge compilation algorithms [Darwiche,
2011; Kisa et al., 2014; Darwiche and Marquis, 2002; Lai et
al., 2021]. Most compilers produce a complete representation
of the input formula [Oztok and Darwiche, 2015; Lagniez
and Marquis, 2017; Lai et al., 2021; Muise et al., 2010].
On the other hand, some methods exist that perform any-
time (approximate) knowledge compilation. PartialKC,
a CCDD compiler, iteratively produces partial CCDDs until
timeout [Lai et al., 2023]. Sampling-based methods can also
extract a subset of the models [Gomes et al., 2007]. How-
ever, these only provide statistical guarantees on the approx-
imation quality and consider the unweighted model count-
ing problem. Our approach is related to the approach taken
in the Schlandals weighted model counter [Dubray et

al., 2023]. Schlandals is, to the best of our knowl-
edge, the only weighted model counter providing determinis-
tic lower- and upper-bound on the true WMC [Dubray et al.,
2024]. ProbLog provides an anytime inference algorithm
with lower- and upper-bound by interleaving compilation and
reasoning [De Raedt et al., 2007; Vlasselaer et al., 2015].

Previous works have considered learning in a setting where
logical formulas are too complex to be completely compiled
into an AC. DeepProbLog allows approximate learning by
only considering a subset of the ProbLog proofs. Another
framework, A-NeSI, proposed to approximate the WMC
problem by a neural network [van Krieken et al., 2023]. Dier-
ckx et al. experimented with learning with partial circuits for
a subset of the parameters [Dierckx et al., 2024].

3 Compiling Partial Circuits
This section describes how to compile upper- and lower-
bound circuits. We first describe how classical compilers
work, and then explain our approach for calculating two ACs.

3.1 From Exhaustive Search to Arithmetic Circuit
It is known that the traces of exhaustive DPLL search,
with decomposition, correspond to a subset of d-DNNF lan-
guage [Darwiche, 2001; Huang and Darwiche, 2007] and
can be converted to ACs. This has been used in popu-
lar compilers such as dsharp or d4 [Muise et al., 2010;
Lagniez and Marquis, 2017]. Those adapt the behaviour of
classical DPLL model counters to provide a d-DNNF diagram
instead of the WMC.

Classical DPLL-style model counters calculate WMC(F)
by selecting a variable x ∈ X , exploring both truth values,
propagating the assignments using Boolean Unit Propagation
(BUP), and recursively exploring the residual formulas.
Example 2. Figure 1 shows, on the left, a search tree for the
formula of Example 1 and, in the centre, an arithmetic circuit
computing WMC(F) as derived by a traditional compiler.

At the root, forcing x1 = ⊤ (left branch) reduces the first
clause to x3, forcing x3 = ⊤. This latter assignment satis-
fies the second clause and reduces F to ⊤. The two models
considered in that branch are {x1, x2, x3} and {x1,¬x2, x3}
and their weighted count is wx1

wx2
wx3

+ wx1
w¬x2

wx3
=

wx1
wx3

, which corresponds to the AC’s left-most part.
To be efficient, such counters integrate a caching system:

when the count of a sub-formula F ′ is computed, it is stored
that C[F ′] 7→ WMC(F ′). Briefly, classical search-based
compilers such as dSharp or d4 build a d-DNNF diagram
by replacing the sum with disjunction and the product with
conjunction nodes. Accordingly, the cache does not store the
solved sub-formula’s WMC but the root of their d-DNNF.

A key observation for our work is that such algorithms can
easily be modified to halt during their execution, for instance,
when a timeout is reached. In such a case, we can still com-
pile a partial d-DNNF representing models encountered until
that moment, providing a circuit from which a lower-bound
on the true WMC can be calculated. This is illustrated in Fig-
ure 1: if we interrupt the search after considering x2 = ⊤, we
have considered the blue part of the search tree, from which
we can still compile the blue part of the middle AC. However,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

x1

✓ x2

✓ ✓

⊤ ⊥

⊤ ⊤

⋆

+

x

wx1
wx3

x

1− wx1
+

wx2 x

1− wx2
wx3

-

1 +

x

wx1
1− wx3

x

1− wx1
+

x

1− wx2
1− wx3

Figure 1: Left: A search tree for F = (¬x1 ∨ x3) ∧ (x2 ∨ x3). Leaves corresponding to a model are marked with ✓. Center: An AC
computing WMC(F), corresponding to the polynomial wx1wx3+(1−ωx1)(wx2+(1−wx2)wx3) = 0.65175. Right: An AC computing the
complement of the nonsatisfying assignments’ WMC, corresponding to the polynomial 1−(wx1(1−wx3)+(1−wx1)(1−wx2)(1−wx3)).
In Blue: Matching parts between the ACs and the search tree.

existing compilers are not designed to also produce an upper-
bound AC. Next, we discuss a new caching system that allows
compiling both lower- and upper-bound (partial) circuits.

3.2 Compilation as a Post-Processing Step
Instead of modifying the search algorithms to produce an AC,
we propose storing additional information in the cache and
constructing two ACs as a post-processing. Intuitively, the
cache contains information about the satisfying and nonsat-
isfying assignments explored with the search. More formally,
let F be a boolean formula, x a variable of F , and F [x] and
F [¬x] the two sub-formulas obtained by branching on x. We
denote prop⊤x (resp. prop⊤

¬x) the set of variables (except x)
set to ⊤ when applying BUP with x = ⊤ (resp. x = ⊥). Our
modified cache entry has the following structure:

C[F] 7→
(
x, (F [x], prop⊤x), (F [¬x], prop⊤¬x)

)
(1)

Intuitively, the prop⊤ sets record the interpretations built
alongside a branch. The sub-formulas F [x] and F [¬x] are
not stored as-is as values in the cache; they are stored using a
hashable representation. For example, the cache entry for the
root node of the search tree in Figure 1 would be as follows:

(x1, (⊤, [x3]), (x2 ∨ x3, []))

If the search is partial (i.e., an assignment is not explored),
the special marker † replaces the formula in the cache. Hence,
if only the left branch of the root is explored, its entry is
(x1, (⊤, [x3]), (†, [])). Algorithm 1 shows how the cache can
be parsed to produce an AC from the models seen during the
search. When computing the (sub-)circuit for a formula F ,
Algorithm 1 creates a sum node that link the two branches
(line 2). Then, it considers both branches of the search tree
(lines 4–11), producing a product node (line 6) with the vari-
ables propagated to ⊤ during the search (line 8) and the sub-
circuit computing the WMC of the residual formula (line 9).
For simplicity, we omit static decomposition in Equation (1)
and Algorithm 1. However, the structure defined by Equa-
tion (1) is easily adaptable for such cases by storing a list of

Algorithm 1 Compilation algorithm from a search trace

Require: Cache C with entries as defined by Equation (1)
Ensure: An AC computing WMC(F)

1: procedure COMPILE(F,C)
2: N+← new sum node
3: (x, (F [x], prop⊤x), (F [¬x], prop⊤¬x))← C[F]
4: for l ∈ {x,¬x} do
5: if F [l] = † then skip l
6: N× ← new product node
7: add wl as child of N×

8: ∀x′ ∈ prop⊤l add wx′ as child of N×

9: add Compile(F [l], C) as child of N×

10: add N× as child of N+

11: end for
12: return N+

13: end procedure

sub-formulas (i.e., F 1[x], F 2[x], . . .) instead of a single resid-
ual formula. This caching system is as costly as constructing
a d-DNNF during the search. Indeed, the sets prop⊤ corre-
spond to pointers to leaves in a d-DNNF; hence, compilers
constructing the diagram directly must store as many edges
as there are elements in the prop⊤ sets.

To calculate a (partial) circuit representing the nonsatisfy-
ing assignments, Algorithm 1 can easily be modified. The
main difference is in lines 6–8 of Algorithm 1, for which
the lower-bound calculation creates an AC representation of
wl ×

∏
x′∈prop⊤l

wx′ . For the upper-bound AC, if prop⊤l ̸= ∅
we add an AC representation of wl × (1 −

∏
x′∈prop⊤l

wx′)

to the parent summation node; and no node if prop⊤l = ∅.
The intuition behind this formula is the following. Since∏

x′∈prop⊤l
wx′ represent the weights of the literal forced to

be true by propagation, it means that they cannot all be part
of a nonsatisfying assignment. The weighted sum of the non-
satisfying interpretations resulting from propagation is given
by 1−

∏
x′∈prop⊤l

wx′ .
In Figure 1, the AC resulting from this compilation on a

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

fully traversed search space is illustrated at the right; in blue
is shown the part that is compiled when the search is inter-
rupted before traversing the assignment x2 = ⊥. Note that
instead of wx3

in the lower-bound circuit, we have 1−wx3
in

the upper-bound circuit. When the formula is fully compiled,
both ACs calculate exactly the same model count. However,
importantly, when the search is interrupted, both circuits rep-
resent different model counts, where one corresponds to a
lower-bound and the other to an upper-bound. Having both
circuits can be valuable: by calculating a probability using
both, we can calculate an optimality gap that provides infor-
mation with respect to how good the approximation is.

For the approximation quality, it can be crucial in which or-
der we traverse the search space. In our experiments, we will
build on the Schlandals WMC solver, which proposed a
specific strategy for this.

4 Combining Lower- and Upper-Bound
Arithmetic Circuits for Learning

This section motivates using both lower- and upper-bound
ACs for gradient approximation and derives its error bound.
Then it discusses their integration into a learning setting.

4.1 Analysis of Gradients
Let us show that there are scenarios where the addition of
the upper-bound circuit corrects the gradient obtained solely
from the lower-bound circuit.

Example 3. Let us consider the two partial circuits, denoted
P lb
W [F] and Pub

W [F], highlighted in blue in Figure 1 and
the complete circuit in the centre, denoted P ∗

W [F]. These
circuits can be written as polynomials in the following way.

P lb
W [F] = wx1wx3 + (1− wx1)wx2

Pub
W [F] = 1− wx1

(1− wx3
)

P ∗
W [F] = wx1wx3 + (1− wx1)(wx2 + (1− wx2)wx3)

Note that, as P ∗
W [F] is obtained from the exact AC, it is

the most accurate form for the WMC, but cannot always be
derived within a reasonable time for complex queries.

The gradients w.r.t. parameter wx1
for each circuits are:

∂P lb
W [F]/∂wx1

= wx3
− wx2

= 0.15

∂Pub
W [F]/∂wx1 = −1 + wx3 = −0.35

∂P ∗
W [F]/∂wx1

= wx3
− wx2

− (1− wx2
)wx3

= −0.175
This example highlights that even when the absolute differ-

ence between the lower bound (0.6485) and the true WMC
(0.65175) is small, differentiating only through one partial
AC might be insufficient for learning. Specifically, in this
case, learning from the lower bound would push the param-
eter in the opposite direction of the true gradient. This issue
also applies to using the upper bound alone. On the other
hand, combining the gradients of both bounds through their
mean results in a value closer to the true gradient behaviour.

Although the true gradient towards a parameter cannot be
computed without a complete AC, the gradients derived from
the two partial ACs give an interval in which it lies. Theo-
rem 1 states that the weighted sum of the partial ACs’ gradi-

ents bound the true gradient and that the size of the interval
depends on the bounds’ gap.
Theorem 1. Let F be a boolean formula in CNF over a set
of variables weighted by parametersW . Let P ∗

W [F], P lb
W [F],

and Pub
W [F] respectively be the exact, lower-, and upper-

bound WMC for formula F . The following inequalities hold
for every parameter w ∈ W:

(1− w)
∂P lb

W [F]

∂w
+ w

∂Pub
W [F]

∂w
−

(
Pub
W [F]− P lb

W [F]
)

≤ ∂P ∗
W [F]

∂w
≤

w
∂P lb

W [F]

∂w
+ (1− w)

∂Pub
W [F]

∂w
+

(
Pub
W [F]− P lb

W [F]
)

(2)

(Proof in Appendix A available here).

Example 4. Let us continue with our small example, whose
bounds are P lb

W [F] = 0.6485 and Pub
W [F] = 0.6535. Hence,

we have that Pub
W [F] − P lb

W [F] = 0.005. The true gradient
w.r.t. parameter wx1

= 0.99 is bounded as follows. The
lower bound is given by

0.01× 0.15 + 0.99×−0.35− 0.005 = −0.35

The upper bound is given by

0.99× 0.15 + 0.01×−0.35 + 0.005 = 0.15

The true gradient, −0.175, is within the bounds.

An interesting property derived from Theorem 1 is that it is
possible to bound the distance between the exact gradient and
the mean of the lower- and upper-bound gradients. Corollary
1 demonstrates that this bound mainly depends on the two fol-
lowing elements: the bounds’ gap and the difference between
the partial gradients.
Corollary 1. The distance between the true gradient,
∂P ∗

W [F]/∂w, and the mean of the bounds’ gradients is
bounded as follows:∣∣∣∣∂P ∗

W [F]

∂w
− 1

2

(
∂P lb

W [F]

∂w
+

∂Pub
W [F]

∂w

)∣∣∣∣ ≤∣∣∣∣(12 − w)

(
∂Pub

W [F]

∂w
− ∂P lb

W [F]

∂w

)
+ (Pub

W [F]− P lb
W [F])

∣∣∣∣
(Proof in Appendix B available here).

This corollary suggests that, if the gap between the bounds
and/or the partial gradients is small, the mean of the partial
gradients is a good approximation of the true gradient. We
can exploit this in a learning algorithm, as discussed next.
Note that in our running example, the approximate gradient
would be (−0.35 + 0.15)/2 = −0.1, which is closer to the
true gradient than either the upper- or lower-bound gradient.

4.2 Learning from Lower- and Upper-Bound ACs
Most gradient descent-based algorithms for learning neural
networks are based on iteratively updating parameters in the
direction that reduces loss. Let us first assume that we can de-
termine an exact circuit for calculating a model count. Then

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://hdl.handle.net/2078.1/301427
http://hdl.handle.net/2078.1/301427

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the loss for a specific instance is written as L(y, P ∗
W [F]),

where y is the desired probability, P ∗
W [F] is the predicted

probability based on the exact model count, and L(y, ŷ) is a
loss function, for instance, L(y, ŷ) = (y − ŷ)2. To update
parameters, we need to calculate for every training instance a
parameter update step with respect to the loss function:

∂L(y, P ∗
W [F])

∂w
=

∂L
∂ŷ

(y, P ∗
W [F])

∂P ∗
W [F]

∂w
. (3)

Let us now assume we do not have an exact circuit for P ∗
W [F],

then Corollary 1 suggests we can approximate ∂P∗
W [F]
∂w :

1

2

∂L
∂ŷ

(y, P ∗
W [F])

∂P lb
W [F]

∂w
+

1

2

∂L
∂ŷ

(y, P ∗
W [F])

∂Pub
W [F]

∂w
.

(4)
The challenge is that we do not know P ∗

W [F]; hence we also
need to approximate it. One approach to deal with this is
as follows. Assuming that both circuits calculate probabili-
ties that are close, then we could assume that both P ∗

W [F] ≈
Pub
W [F] and P ∗

W [F] ≈ P lb
W [F]; our expression becomes

1

2

∂L
∂ŷ

(y, P lb
W [F])

∂P lb
W [F]

∂w
+

1

2

∂L
∂ŷ

(y, Pub
W [F])

∂Pub
W [F]

∂w
,

(5)
which corresponds to

1

2

∂L(y, P lb
W [F])

∂w
+

1

2

∂L(y, Pub
W [F])

∂w
. (6)

This points to a straightforward solution in which we exe-
cute the following steps: (I) Initialise the weights of the ma-
chine learning model; (II) Compile every query, either with
a timeout, or with a constraint on the quality of the result-
ing circuits, providing lower-bound and upper-bound circuits;
(III) Treat every lower-bound and upper-bound circuit as a
separate training instance during gradient descent.

The advantage of this approach is that any existing NeSy
implementation calculating gradients from a given AC can be
reused once for every lower-bound and once for every upper-
bound AC. Other more complex approaches are also made
possible by our framework, which is discussed in Section 6.

5 Experiments
This section describes the solver and datasets used in our ex-
periments. Then, we answer the questions: (I) How well does
LUBAC learning generalise? (II) How are the initial gradi-
ents impacted by which AC is used? (III) What is the time
overhead to compile both lower- and upper-bound ACs?

5.1 Solver Used
We implemented the caching system and compilation algo-
rithm from Section 3 into the Schlandals solver [Dubray
et al., 2023]. The latter has two advantages compared to
other solvers. First, it natively supports the computation
of bounds on the true WMC [Dubray et al., 2024], mak-
ing the implementation of the caching system relatively easy.
Schlandals works directly with the distributions (i.e.,
non-binary variables); hence, we extended the caching sys-
tem and compilation algorithm to work with such variables.

Then, it provides two search-based WMC algorithms: a
classical exhaustive DPLL-style search and an incremental
one. The latter is based on Limited Discrepancy Search
(LDS), an iterative approach exploring progressively larger
parts of the search space [Harvey and Ginsberg, 1995]. LDS’s
advantage over other anytime methods is that it is designed
to make the bounds converge quickly toward the true WMC.
Hence, partial ACs computed using LDS are expected to pro-
vide better bounds for a given timeout, leading to better gra-
dient estimates from the partial ACs.

Both searches can generate complete or partial ACs from
their cache. The classical DPLL search can be run until com-
pletion or stopped at a timeout. The LDS-based search, by
nature, provides a way to compute partial ACs, as each itera-
tion corresponds to a portion of the search space.

In our experiments, both search strategies will be used. The
traditional search is referred to as a DFS search. By default,
LDS is used. Additionally, when the DFS is used to produce
exact ACs, only the queries that can be fully compiled within
10 minutes are used, excluding the others of the training set.
This mimics the usage of a classical compiler in the literature
that does not provide approximations or partial compilation.

As indicated, our contribution compared to the literature is
the use of two bounding circuits in the training process. To
evaluate the potential of using two circuits, we compare with
approaches that only compile one circuit, while keeping all
other parameters, such as BN encodings and heuristics used,
constant. For this reason, we exclude methods working with
approximation and learning algorithms such as [Manhaeve et
al., 2021; Maene et al., 2024] that rely on other constraint
encodings or heuristics.

5.2 Datasets
The probabilistic queries in our experiments originate from
Bayesian Networks for which we wish to learn parameters
that lead to desired marginal probabilities. This is a well-
known problem, and we use networks from the bnlearn R
package [Scutari, 2009]. For each network, one dataset of
queries is created as follows. For each value v of each net-
work variable N , we create a query P [N = v] (without
evidence). These queries sets, with their expected marginal
probabilities, form each a dataset for parameter learning. This
inference task is challenging, providing queries of various
difficulties. Hence, it is possible to evaluate the LUBAC
framework as some queries cannot be compiled exactly. Our
results are presented on munin [Andreassen et al., 1987], pigs
and water [Jensen et al., 1989] datasets except for the experi-
ments in Section 6, covering learning improvements, in which
case only the munin dataset is used.

5.3 Results
Below, we present our experimental results.

I) How well does LUBAC learning generalise? We first
evaluate the generalisation of LUBAC learning and compare
it to classical learning with exact ACs and learning with only
one of the partial ACs (either lower- or upper-bound). Ap-
pendix C (available here) provides the full list of training pa-
rameters and train-test split.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://hdl.handle.net/2078.1/301427

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Munin (1384) Pigs (282) Water (21)

Time-
out
(s)

AC
type

Final
test
MAE

Learn
t (s)

Final
test
MAE

Learn
t (s)

Final
test
MAE

Learn
t (s)

Initial test MAE 0.127 0.093 0.111

5
LB 0.125 152 0.054 1061 0.0009 51
UB 0.112 987 0.083 2004 0.0179 50
LUBAC 0.127 3614 0.017 2688 0.0007 208

50
LB 0.036 1331 0.020 1563 0.0110 118
UB 0.070 3604 0.024 3601 0.0176 196
LUBAC 0.066 3609 0.003 3604 0.0074 247

150
LB 0.025 2771 0.009 1998 0.0083 161
UB 0.078 3608 0.012 3603 0.0049 530
LUBAC 0.072 3624 0.003 3603 0.0047 798

Exact (600) DFS 0.096 3600 0.044 1896 0.0473 1

Table 1: Learning generalisation on a test set, with different datasets,
compilation timeouts, and AC types. For each combination, the test
set MAE at the end of the training and the time taken by the learning
loop are given. The first line, represents the test set MAE before
training. The best final MAE for each timeout and dataset is in bold.
The number of training instances is given next to the dataset name.

Table 1 shows the Mean Absolute Error (MAE) for the con-
sidered settings. It shows that exact ACs generalise poorly
compared to partial methods, underperforming compared to
50-second partial compilations while requiring more compi-
lation time. This is especially evident for the water dataset,
where few queries are usable in the exact setting.

Interestingly, using both ACs does not always improve
generalisation; however, it cannot be said beforehand that ei-
ther an LB or UB circuit always performs better. While the
LUBAC framework bounds the approximate gradient’s error,
the true gradient may align more closely with either bound.
Our method’s strength is ensuring the learning gradients do
not significantly deviate from the true ones, reducing the risk
of being misled by gradients derived from one bound only.

Additionally, increasing compilation time does not always
improve generalisation. For instance, on the water dataset,
LUBAC learning performs better with 5 seconds of compi-
lation, and the learning time is reduced, as calculating the
gradient through smaller circuits is much faster.

II) How are the initial gradients impacted by which AC
is used? Corollary 1 states that our approximate gradient’s
error is bounded. If we use both ACs during training, as the
learning progresses, the probabilities calculated by both par-
tial ACs align with the true label values, reducing the ACs’
bounds gap and the approximate gradient’s error bound. The
question remains how our approximate gradient compares to
exactly calculated gradients early in the search, when the di-
rection of the gradient descent is determined. Figure 2 shows
how the approximate gradient compares to the true gradient
for parameters in the munin and pigs datasets. Each data point
corresponds to a parameter. If the data point is in the lower
left or upper right quarter of the graph, then the approximate
gradient is in the same direction as the true one. The approx-
imate gradient is positively correlated with the true gradient,
meaning that, for most parameters, they are in the same di-
rection. The correlation coefficient supports the finding in the
previous experiment; for the pigs dataset, the combination of

Figure 2: Exact and partial ACs parameter gradients for the first
training epoch. The x-axis represents the exact gradient value, while
the y-axis shows gradients computed from both (left), lower-bound
(centre), or upper-bound (right) AC(s). Points correspond to a pa-
rameter gradient from the two datasets’ queries. Points near the main
diagonal are cases where the partial ACs gradients closely approx-
imate the true gradients. The Pearson correlation coefficient of the
datasets is indicated in the upper left of each subfigure.

Figure 3: Search vs compilation time. Points are the processing time
for the three datasets’ queries. The x-axis presents the time needed
for the classical search only while the y-axis is the time taken to
perform both the search with the new caching system and the ACs
compilation. The diagonals are guidelines ranging from y = 1x to
y = 1.5x by steps of 0.1. Points on the main diagonal mean that
both the search and compilation take the same time, points above it
mean the compilation takes longer.

ACs works significantly better than using either bound alone,
while for munin the lower-bound works generally better than
the other configurations.

III) What is the time overhead to compile both lower- and
upper-bound ACs? We evaluate the runtime overhead of
transforming Schlandals’ search algorithm into a compiler
using the cache system and algorithm in Section 3. Queries
solvable within 20 minutes via DFS were timed for two ap-
proaches: initial Schlandals search and the proposed compi-
lation. Figure 3 shows that adding compilation has minimal
runtime impact for most queries, with only a few requiring up
to 40% more time. It can be seen that sometimes the compi-
lation takes less time than the search. This variance is due to
variances in hardware utilisation (e.g., L3 cache access) be-
tween the benchmark sets, which we ran in parallel. In any
case, the overhead of the compilation is negligible.

6 Improvements of the Learning Algorithm
The LUBAC framework allows many different forms of learn-
ing algorithms in addition to the one discussed in Section 4.
Below, we propose several different strategies for learning, as
well as some early experimental results.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 4: Number of times the gap between a lower- and upper-
bound ACs pair increased instead of decreased during the training.

10 6 10 4 10 2 100

UB - LB

104

106

Ci
rc

ui
t s

iz
e

Instance 1

10 3 10 1

UB - LB

104

106
Instance 2

0

250

500

0

500

Ti
m

e
(s

)

Figure 5: Trade-off between circuits size and bounds’ gap. Points
are pairs of possible discrepancies for lower- and upper-bound par-
tial ACs, with an LDS timeout of 10 minutes. The y-axis represents
the sum of the two circuits’ sizes. The x-axis is the difference be-
tween the upper- and lower-bound. The colour indicates the time
needed to obtain the two ACs.

Loss Computation. In our baseline framework, we made
a specific choice for approximating the exact model count
P ∗
W [F] in Equation 4. While this choice leads to a prac-

tical learning algorithm, other choices may be more well-
founded from a theoretical perspective. For instance, in
[Dubray et al., 2024], it was argued that a better approxi-
mation of P ∗

W [F] is obtained by calculating the geometric

mean
√

P lb
W [F] ∗ Pub

W [F]. Our experiments with this alter-
native showed that its results were not significantly different
from the more practical approach introduced earlier. Hence,
we skip further results on this alternative.

Recompilation of Lower- and Upper-Bound AC Pairs.
The first step of the LUBAC framework is to compile partially
two ACs. In our experiments, we used Schlandals with
LDS, which prioritises high-weight interpretations accord-
ing to the initial choice of weights, enabling faster conver-
gence of upper- and lower-bounds on the probability. How-
ever, since parameters change during learning, previously ac-
curate ACs may no longer effectively approximate the true
probability. This possible behaviour has also been consid-
ered in DeepProbLog and solved by considering alternative
approximate compilation techniques [Manhaeve et al., 2018;
Manhaeve et al., 2021]. Within LUBAC, maintaining both LB
and UB ACs allows tracking the optimality gap by simply
updating parameters in both circuits. If the bounds diverge
significantly, recompilation might be necessary.

Figure 4 shows, for all pairs of corresponding LB and UB
ACs, the number of times their bound difference increases
by a non-negligible factor (10−4 in our experiment) during
training for 10 consecutive epochs. The results indicate that
recompilation is not necessary for most queries throughout
training. The small number of queries that would benefit from
it, decreases as the compilation timeout increases.

Trade-Off Between Time, Space, and Bounds Gap. In
our baseline approach, we use the ACs produced at the end
of the partial compilation algorithm under a per-query time-
out. However, these ACs can already be very large, signifi-
cantly slowing gradient calculations and the learning process,
in particular for higher timeouts.

In practice, longer compilation times will not always sub-
stantially change the probabilities calculated for the lower- or
upper-bound and do not always produce significantly better
generalisation. Hence, there are strong advantages to using
smaller circuits.

An important observation is that we can modify the
caching algorithm relatively easily to roll back towards a
partial circuit earlier in the search if that AC has a bet-
ter precision-size trade-off. By adding timestamps to cache
nodes, representing when they were added, we can limit
compilation to nodes discovered before a certain point. In
an LDS-style search, this timestamp can be the iteration in
which the node was added. This can be done independently
for the lower and upper bounds, choosing moments when
the bounds are close enough and the ACs are small enough.
This is a multi-objective optimisation problem; the goal is to
find within reasonable time a pair of partial circuits whose
bounds’ gap and size are small enough.

Figure 5 shows this trade-off for two representative hard
instances. Each point is a possible combination of lower-
bound and upper-bound pair of partial ACs obtained using
Schlandals’ LDS search, where also pairs of circuits are
considered found at different moments in time. The small-
est bound gap (i.e., the leftmost point) is always achieved at
the end of the search, requiring the most time (darkest point)
and space (highest point). It can be seen that solutions on
the Pareto front are not necessarily the ones with the highest
compilation time. We leave it as future work on how to best
solve this multi-objective optimisation problem; however, our
result already demonstrates the potential of performing such
an optimisation.

7 Conclusions
This work introduced the Lower- and Upper-Bound ACs
(LUBAC) framework for learning from CNF formulas that
cannot be compiled into a complete AC. We introduced a new
algorithm for compiling two circuits by post-processing the
cache of weighted model counters. Our experiment showed
that the overhead of such compilation is negligible. We also
proved that combining lower- and upper-bound partial ACs
allows deriving an optimality gap between true and approxi-
mated gradients. We showed that it is straightforward to ap-
ply the LUBAC framework to a learning pipeline. Our ex-
periments showed that the LUBAC framework can help the
learning to generalise better than with only one partial AC.

The LUBAC framework makes many different learning al-
gorithms possible, as introduced in Section 6. Future work
can study these in depth; this includes testing various com-
pilation methods, loss functions, and strategies for selecting
only small ACs. Moreover, the LUBAC framework can be
evaluated on other benchmarks of learning tasks and can be
implemented in different NeSy systems.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by Service Public de Wallonie
Recherche under grant n°2010235 – ARIAC by DIGITAL-
WALLONIA4.AI.

References
[Andreassen et al., 1987] Steen Andreassen, Marianne

Woldbye, Bjørn Falck, and Stig K Andersen. Munin:
A causal probabilistic network for interpretation of
electromyographic findings. In Proceedings of the 10th
international joint conference on Artificial intelligence-
Volume 1, pages 366–372, 1987.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7), 2008.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal of Arti-
ficial Intelligence Research, 17:229–264, 2002.

[Darwiche, 2001] Adnan Darwiche. On the tractable count-
ing of theory models and its application to truth main-
tenance and belief revision. Journal of Applied Non-
Classical Logics, 11(1-2):11–34, 2001.

[Darwiche, 2011] Adnan Darwiche. SDD: A new canoni-
cal representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artifi-
cial Intelligence, 2011.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig,
and Hannu Toivonen. ProbLog: A Probabilistic Prolog
and Its Application in Link Discovery. In IJCAI, volume 7.
Hyderabad, 2007.

[Dierckx et al., 2024] Lucile Dierckx, Alexandre Dubray,
and Siegfried Nijssen. Parameter learning using approx-
imate model counting. In International Conference on
Neural-Symbolic Learning and Reasoning, pages 80–88.
Springer, 2024.

[Dubray et al., 2023] Alexandre Dubray, Pierre Schaus, and
Siegfried Nijssen. Probabilistic Inference by Projected
Weighted Model Counting on Horn Clauses. In 29th In-
ternational Conference on Principles and Practice of Con-
straint Programming (CP 2023), 2023.

[Dubray et al., 2024] Alexandre Dubray, Pierre Schaus, and
Siegfried Nijssen. Anytime Weighted Model Counting
with Approximation Guarantees for Probabilistic Infer-
ence. In 30th International Conference on Principles and
Practice of Constraint Programming (CP 2024), 2024.

[Fierens et al., 2012] Daan Fierens, Guy Van den Broeck,
Ingo Thon, Bernd Gutmann, and Luc De Raedt. Infer-
ence in probabilistic logic programs using weighted cnf’s.
arXiv preprint arXiv:1202.3719, 2012.

[Fierens et al., 2015] Daan Fierens, Guy Van den Broeck,
Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and
learning in probabilistic logic programs using weighted
Boolean formulas. Theory and Practice of Logic Program-
ming, 15(3), 2015.

[Garcez and Lamb, 2023] Artur d’Avila Garcez and Luis C
Lamb. Neurosymbolic ai: The 3 rd wave. Artificial Intel-
ligence Review, 56(11):12387–12406, 2023.

[Giunchiglia et al., 2022] Eleonora Giunchiglia, Mi-
haela Catalina Stoian, and Thomas Lukasiewicz. Deep
learning with logical constraints. arXiv preprint
arXiv:2205.00523, 2022.

[Gomes et al., 2007] Carla P. Gomes, Jörg Hoffmann,
Ashish Sabharwal, and Bart Selman. From Sampling to
Model Counting. In IJCAI, volume 2007, 2007.

[Harvey and Ginsberg, 1995] William D Harvey and
Matthew L Ginsberg. Limited discrepancy search. In
IJCAI (1), pages 607–615, 1995.

[Hitzler and Sarker, 2022] Pascal Hitzler and Md Kamruzza-
man Sarker. Neuro-symbolic artificial intelligence: The
state of the art. 2022.

[Huang and Darwiche, 2007] Jinbo Huang and Adnan Dar-
wiche. The language of search. Journal of Artificial Intel-
ligence Research, 29:191–219, 2007.

[Jensen et al., 1989] FV Jensen, U Kjærulff, KG Olesen, and
J Pedersen. An expert system for control of waste water
treatment—a pilot project. Technical report, Technical re-
port, Judex Datasystemer A/S, Aalborg, 1989. In Danish,
1989.

[Kisa et al., 2014] Doga Kisa, Guy Van den Broeck, Arthur
Choi, and Adnan Darwiche. Probabilistic sentential deci-
sion diagrams. In Fourteenth International Conference on
the Principles of Knowledge Representation and Reason-
ing, 2014.

[Lagniez and Marquis, 2017] Jean-Marie Lagniez and Pierre
Marquis. An Improved Decision-DNNF Compiler. In IJ-
CAI, volume 17, 2017.

[Lai et al., 2021] Yong Lai, Kuldeep S Meel, and Roland HC
Yap. The power of literal equivalence in model counting.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pages 3851–3859, 2021.

[Lai et al., 2023] Yong Lai, Kuldeep S Meel, and Roland HC
Yap. Fast converging anytime model counting. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 4025–4034, 2023.

[Maene et al., 2024] Jaron Maene, Vincent Derkinderen, and
Luc De Raedt. On the hardness of probabilistic neurosym-
bolic learning. arXiv preprint arXiv:2406.04472, 2024.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic pro-
gramming. advances in neural information processing sys-
tems, 31, 2018.

[Manhaeve et al., 2021] Robin Manhaeve, Giuseppe Marra,
and Luc De Raedt. Approximate inference for neural prob-
abilistic logic programming. In Proceedings of the 18th In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 475–486. IJCAI Orga-
nization, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Muise et al., 2010] Christian Muise, Sheila McIlraith,
J Christopher Beck, and Eric Hsu. Fast d-dnnf compi-
lation with sharpsat. In Workshops at the twenty-fourth
AAAI conference on artificial intelligence, 2010.

[Oztok and Darwiche, 2015] Umut Oztok and Adnan Dar-
wiche. A top-down compiler for sentential decision dia-
grams. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015.

[Scutari, 2009] Marco Scutari. Learning bayesian net-
works with the bnlearn r package. arXiv preprint
arXiv:0908.3817, 2009.

[Valiant, 1979] Leslie G Valiant. The complexity of com-
puting the permanent. Theoretical computer science,
8(2):189–201, 1979.

[van Krieken et al., 2023] Emile van Krieken, Thiviyan
Thanapalasingam, Jakub Tomczak, Frank Van Harme-
len, and Annette Ten Teije. A-nesi: A scalable ap-
proximate method for probabilistic neurosymbolic infer-
ence. Advances in Neural Information Processing Sys-
tems, 36:24586–24609, 2023.

[Vlasselaer et al., 2015] Jonas Vlasselaer, Guy Van den
Broeck, Angelika Kimmig, Wannes Meert, and Luc
De Raedt. Anytime inference in probabilistic logic pro-
grams with tp-compilation. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, 2015.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao
Liang, and Guy Broeck. A semantic loss function for deep
learning with symbolic knowledge. In International con-
ference on machine learning, pages 5502–5511. PMLR,
2018.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

