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Abstract
Generalization of synthesizer sound matching to
external instrument sounds is highly challenging
due to the non-differentiability of sound synthe-
sis process which prohibits the use of out-of-
domain sounds for training with synthesis param-
eter loss. We propose SynthRL, a novel rein-
forcement learning (RL)-based approach for cross-
domain synthesizer sound matching. By incorpo-
rating sound similarity into the reward function,
SynthRL effectively optimizes synthesis param-
eters without ground-truth labels, allowing fine-
tuning on out-of-domain sounds. Furthermore,
we introduce a transformer-based model architec-
ture and reward-based prioritized experience replay
to enhance RL training efficiency, considering the
unique characteristics of the task. Experimental re-
sults demonstrate that SynthRL outperforms state-
of-the-art methods on both in-domain and out-of-
domain tasks. Further experimental analysis vali-
dates the effectiveness of our reward design, show-
ing a strong correlation with human perception of
sound similarity.

1 Introduction
In modern music production, sound design plays a critical
role in shaping the auditory identity of a track, enabling pro-
ducers to express their creativity and evoke specific emo-
tions in listeners. A key tool in sound design is the synthe-
sizer, which allows producers to generate and manipulate a
vast variety of sounds by combining various waveforms, fil-
ters, and modulation techniques. However, crafting the de-
sired sound with a synthesizer is a complex process, requir-
ing significant study, effort, and time to master the manipula-
tion of its parameters. Furthermore, synthesizers differ in the
methods they use to produce sounds, such as additive, sub-
tractive, and frequency modulation (FM) synthesis, meaning
that even experienced users may find it challenging to use
different types of synthesizers proficiently [Powell, 1987].
Consequently, there has been growing research focused on
developing methods to automatically search for synthesizer
parameter settings that can replicate the timbre of sounds
from other songs or sound samples [Sebastian et al., 2009;

Roth and Yee-King, 2011; Tatar et al., 2016]. Using a model
that has learned this task called synthesizer sound matching,
even beginners can easily create the desired sound through a
synthesizer and further adjust parameters to refine the sounds.

With advancements in deep learning, recent studies have
proposed methods utilizing deep neural networks to esti-
mate synthesizer parameters for desired sound inputs [Yee-
King et al., 2018; Barkan et al., 2019; Vaillant et al., 2021;
Chen et al., 2022]. One of the primary challenges in these
studies is that the sound generation process in synthesizers
is non-differentiable. In other words, it is infeasible to in-
corporate the sound generated by the synthesizer based on
the estimated parameters into the differentiable loss function
for backpropagation, such as the spectrogram difference from
the ground truth sound. Therefore, previous studies have fo-
cused on training the model using only a parameter loss that
minimizes the error between the ground truth synthesis pa-
rameters and the estimated parameters. However, since the
goal is to generate a sound that closely resembles the input
sound, the inability to directly use the perceptual difference
between the ground truth sound and the generated sound in
the learning process represents a significant limitation. In ad-
dition, using only the parameter loss requires the availability
of ground truth parameters, meaning that only sounds gener-
ated from known synthesizer parameters (in-domain) can be
used as training data. For example, users often aim to repli-
cate sounds sourced from a different type of synthesizer or
instrument (out-of-domain) using their own or more familiar
synthesizer. However, since out-of-domain sounds cannot be
used to calculate parameter loss, models trained with only in-
domain sounds may perform poorly when encountering these
unfamiliar sounds.

A prominent line of research to address these limitations
involves the implementation of synthesizers using differen-
tiable digital signal processing (DDSP) modules [Masuda and
Saito, 2021; Caspe et al., 2022; Uzrad et al., 2024]. The
sound synthesis process of a DDSP synthesizer is fully differ-
entiable, allowing the generated sound to be used for training
through backpropagation. Nonetheless, this approach con-
fines the application of the sound matching model to specific
DDSP synthesizers, hindering users from applying the model
to their preferred synthesizers. Moreover, implementing a
wide variety of conventional synthesizers in a differentiable
manner requires considerable effort for each synthesizer, due
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to the distinct and complex sound synthesis techniques they
employ.

To address the aforementioned issues in synthesizer sound
matching, we propose a novel approach using reinforcement
learning (RL), named SynthRL. SynthRL employs the gener-
ated sound in the reward function of RL, enabling the model
to optimize for greater similarity to the ground truth sound.
Consequently, our approach facilitates the incorporation of
perceptual loss into the training of non-differentiable synthe-
sizer, as well as the use of out-of-domain sounds. We also
demonstrate that reward-based prioritized experience replay
(PER) [Schaul, 2015], tailored to the unique characteristics of
the synthesizer sound matching task, is crucial for the effec-
tive application of RL. Moreover, while our primary focus lies
in the application of RL, we also introduce an effective syn-
thesizer sound matching model architecture based on trans-
former encoder-decoder framework. Through extensive ex-
periments, we demonstrate that our method outperforms ex-
isting baselines on both in-domain and out-of-domain using a
widely used conventional synthesizer.

2 Related Works
2.1 Synthesizer Sound Matching
The complexity and difficulty of operating synthesizers have
motivated considerable efforts to automatically estimate the
parameter sets required to create desired sounds. Early
studies employed search-based optimization methods such
as genetic algorithms [Horner et al., 1993; Garcia, 2002;
Mitchell and Sullivan, 2005; Yee-King and Roth, 2008;
Tatar et al., 2016] or Particle Swarm Optimization [Sebastian
et al., 2009].

More recent advancements have leveraged neural net-
works, where models are trained to minimize the error be-
tween the ground truth parameters and the estimated param-
eters. For instance, FlowSynthesizer [Esling et al., 2019] in-
tegrates an autoencoder with normalizing flows, followed by
PresetGenVAE [Vaillant et al., 2021], which further advances
similar methods. Sound2Synth [Chen et al., 2022], a previ-
ous state-of-the-art (SOTA) method, extracts a diverse set of
acoustic features and integrates them as model inputs. These
approaches show promising results for in-domain sounds.

The non-differentiability of synthesizers has spurred ex-
tensive research into the development of differentiable neural
synthesizers [Engel et al., 2020; Shan et al., 2022; Renault et
al., 2022; Wiggins and Kim, 2023]. In line with these studies,
previous research addressing cross-domain synthesizer sound
matching has predominantly employed approaches that de-
velop differentiable synthesizers [Masuda and Saito, 2021;
Caspe et al., 2022; Uzrad et al., 2024]. Additionally, In-
verSynth II [Barkan et al., 2023] proposed a differentiable
proxy model of the synthesizer and a inference-time finetun-
ing strategy for improved in-domain sound matching.

To the best of our knowledge, there has been no research
focused on cross-domain sound matching for conventional
non-differentiable synthesizers so far. In this work, we in-
troduce RL to synthesizer sound matching for the first time,
providing a framework that facilitates performance improve-
ments across both in-domain and out-of-domain sounds.

In-domain

0

1

Stage 1 Stage 2 Stage 3

Parameter loss RL loss

R
at

io

Training steps

Out-of-domain

SynthesizerParameter Generated sound External sound

Figure 1: The training pipeline of SynthRL consists of three stages:
(1) in-domain training with only parameter loss, (2) gradual intro-
duction of RL loss while reducing parameter loss to zero, and (3)
fine-tuning on out-of-domain data using only RL loss.

2.2 Reinforcement Learning for Fine-tuning
Reinforcement learning (RL) has emerged as a powerful
paradigm for fine-tuning models, particularly in scenarios
where explicit gradients for feedback are unavailable. For
example, early applications included tasks such as machine
translation [Ranzato et al., 2016; Bahdanau et al., 2017]
and summarization [Wu and Hu, 2018; Gao et al., 2019],
where non-differentiable evaluation metrics were used as re-
wards to guide model optimization. In recent years, rein-
forcement learning from human feedback (RLHF) has gained
widespread adoption across diverse domains, including large
language models [Ziegler et al., 2019; Ouyang et al., 2022;
Bai et al., 2022], image generation [Lee et al., 2023; Fan et
al., 2023; Black et al., 2024], and music generation [Cideron
et al., 2024]. These studies have demonstrated that RLHF
successfully aligns model outputs with human preferences,
enhancing the relevance and quality of generated content.
Building upon insights from these prior studies, we adopt
RL to tackle the challenges posed by the non-differentiability
of synthesizers, aiming to optimize performance in cross-
domain sound matching.

3 Method
3.1 Overview
The problem of synthesizer sound matching can be framed
as predicting the optimal synthesis parameters x = {xi}ni=1,
so that when passed to a synthesizer S, the generated audio
signal ŷ = S(x̂) closely matches the target sound y. The
synthesis parameters x include n attributes that define the be-
havior of the synthesizer, such as the waveform type of os-
cillators, amplitude envelope, filter configurations, and mod-
ulation depth. We employ a neural network model πθ, which
takes the target sound as input and estimates the correspond-
ing synthesis parameters, x̂ = πθ(y).

Our model training process consists of three stages, as il-
lustrated in Figure 1. First, we train the model by minimiz-
ing the parameter loss using only in-domain sounds. In the
subsequent stage, we gradually introduce RL loss to further
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Figure 2: Overall model architecture of SynthRL. A feature map is extracted from the melspectrogram of the target sound using 2D CNN and
transformer encoder. The transformer decoder models the relationships among synthesis parameters via self-attention on learnable queries
and outputs the estimated parameters through cross-attention with the feature map and projection heads.

enhance performance on in-domain sounds. Finally, RL is
applied exclusively to fine-tune the model on out-of-domain
sounds, improving the cross-domain generalization of sound
matching. Through the following sections, we provide a
detailed breakdown of our proposed approach including the
model architecture and the specifics of the learning process.

3.2 Model Architecture
Our proposed SynthRL model is based on a transformer
encoder-decoder architecture (Figure 2). First, the target
waveform y is converted into a single-channel melspectro-
gram of size F ×T × 1. The encoder begins with a stack of ℓ
2D convolutional layers, each with a stride of 2, reducing the
input melspectrogram from size F×T×1 to F/2ℓ×T/2ℓ×d,
where d is the output channel dimension. The output of the
2D CNN is flattened into a vector of size (FT/22ℓ) × d and
passed into the transformer encoder with 2D positional en-
coding added. The final output of the encoder is a feature
map z ∈ R(FT/22ℓ)×d of the target sound.

The decoder adopts a non-autoregressive transformer de-
coder architecture [Carion et al., 2020]. It takes as input a set
of n learnable query vectors in parallel, each of dimension d,
where n corresponds to the number of synthesis parameters.
Each query vector represents a different synthesis parameter.
These queries first undergo self-attention to capture depen-
dencies among the synthesis parameters, followed by cross-
attention with the feature map z. In this step, the feature map
serves as the key and value, allowing the decoder to incorpo-
rate relevant information from the target sound representation
while attending to each query. The resulting decoder output
vectors are then passed through n projection heads, which
generate logits to estimate x̂i for each synthesis parameter.

Each projection head is designed to handle a specific syn-
thesis parameter. In most synthesizers, each synthesis param-
eter xi ∈ x belongs to either a categorical or numerical type.
For example, x1 could denote the wave type of an oscillator,
taking one of four categorical values: sine, triangle, square or

sawtooth. In contrast, x2 might correspond to the filter cutoff
frequency, which is a continuous numerical value ranging be-
tween 0 and 1. To unify the estimation process, we discretize
all numerical parameters into 25 equally spaced classes, con-
verting their estimation into a classification problem. Conse-
quently, each projection head maps the d-dimensional output
of its corresponding decoder query to a vector with a dimen-
sionality equal to the number of classes for the associated pa-
rameter.

3.3 Parameter Loss

Building upon the classification framework for synthesis pa-
rameters introduced earlier, we define the parameter loss as
a cross-entropy loss between the ground truth parameters x
and their corresponding estimates x̂. For discretized nu-
merical parameters, however, a direct application of cross-
entropy can overlook the inherent structure of these parame-
ters, where errors involving adjacent classes are less signifi-
cant than those involving distant ones.

To address this issue, we smooth the ground truth label dis-
tribution by redistributing a portion of the probability mass
from the true class to its neighboring classes. Specifically,
the ground truth label is convolved with a Gaussian kernel
and the smoothed distribution is normalized to maintain the
total probability, following the prior work [Chen et al., 2022].
This approach ensures that predictions closer to the ground
truth are penalized less severely, which better aligns with the
numerical relationships between the classes.

3.4 Reinforcement Learning Procedure

In this section, we provide a detailed description of the RL
procedure applied to synthesizer sound matching. First, we
present the RL formulation, followed by the design of the
reward function. Finally, we elaborate on the use of PER with
our modification to enhance the learning efficiency.
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RL Formulation
A typical RL formulation considers problems as Markov De-
cision Process (MDP) defined by a tuple (S,A, R, P ), where
S denotes a state space, A is an action space, R is a reward
function, and P is a transition probability. The objective of
RL is to learn an optimal policy that maximizes the expected
cumulative reward. We formulate the problem of synthesizer
sound matching within an RL framework, defining the state
as the target sound y ∈ S , the action as the estimated syn-
thesis parameter x̂ ∈ A, the reward as the similarity between
the target and generated sound. The policy corresponds to the
SynthRL model πθ, which takes y as input and outputs x̂.

In contrast to the majority of RL tasks that revolve around
multi-step decision processes, our problem formulation is
centered on a single-step decision process which still fits
within the MDP framework. This formulation can also be
viewed as a contextual bandit problem [Lu et al., 2010].
Therefore, the cumulative reward is equivalent to the sin-
gle reward for the current state-action pair (y, x̂), and our
RL objective function to maximize is given by J(θ) =
Ex̂∼πθ

[R(y, ŷ)], where ŷ = S(x̂) is the generated sound
by the synthesizer S. We employ REINFORCE [Williams,
1992], which is a simple yet effective algorithm particularly
for single-step processes. REINFORCE updates the policy
by gradient ascent, where the gradient of the objective func-
tion is computed with respect to the policy parameters. The
gradient of the objective function is defined as follows:

∇θJ(θ) = Ex̂∼πθ
[R(y, ŷ)∇θ log πθ(x̂|y)]. (1)

From this equation, the reward R(y, ŷ) is a scalar value com-
puted from the target and generated sounds, and the gradi-
ent is required only for the log-probability of the policy πθ.
Therefore, our RL objective enables policy optimization for a
non-differentiable synthesizer S, utilizing a reward based on
sound similarity.

Reward Function
To optimize the policy for estimating synthesis parameters
that produce sounds ŷ = S(x̂) closely resembling the target
sound, we design the reward function based on perceptual
similarity metrics. We integrate the following three metrics
which are commonly used in sound similarity measurement:

• Spectrogram MAE [Arık et al., 2019]:

Spec(y, ŷ) = ∥ log(STFT(y))− log(STFT(ŷ))∥1, (2)

• Spectral convergence [Arık et al., 2019]:

SC(y, ŷ) =
∥STFT(y)− STFT(ŷ)∥F

∥STFT(y)∥F
, (3)

• MFCC MAE [Horner et al., 2011]:

MFCC(y, ŷ) = ∥MFCC(y)−MFCC(ŷ)∥1, (4)

where STFT(·) is the short-time Fourier transform and
MFCC(·) is the 13-band mel-frequency cepstral coefficients.
These metrics all exhibit lower values as sound similarity in-
creases. The reward function is defined as the reciprocal of a
weighted sum of the metrics as follows:

R = [w1 · Spec(y, ŷ)+w2 · SC(y, ŷ)+w3 ·MFCC(y, ŷ)]−1.
(5)

Algorithm 1 Reward-based PER
Require: Synthesizer S, policy πθ, learning rate α, buffer
capacity m, dataset D
Initialize: Prioritized replay buffer B

1: for epoch = 1, N do
2: for each iteration do
3: Sample mini-batch of target sounds: yi ∼ D

// Prioritized replay buffer update
4: Sample actions from policy: x̂i ∼ πθ(·|yi)
5: Generate sounds ŷi = S(x̂i)
6: Calculate rewards Ri = R(yi, ŷi) using Eq. 5
7: if epoch ≤ m then
8: Store experiences (yi, x̂i, Ri) into B
9: else if Ri > min(R(yi, ŷ) ∈ B) then

10: Replace argmin
(yi,x̂,R)∈B

R(yi, ŷ) with (yi, x̂i, Ri)

11: end if
// Policy training

12: Sample experiences: (y, x̂, R(y, ŷ)) ∼ B
13: Update πθ using Eq. 6:
14: θ ← θ + α∇θJ(θ)
15: end for
16: end for

The weights w1, w2, and w3 are hyperparameters, and we
empirically set their default values to w1 = 0.27, w2 = 0.7,
and w3 = 0.03 considering the scale of each metric. In the
experimental section, we will provide a detailed analysis of
the reward function including alignment between the com-
puted reward and subjective evaluations of similarity, as well
as limitations of using a single metric as the reward.

Reward-based PER
As mentioned earlier, the REINFORCE algorithm updates the
policy πθ using rewards R(y, ŷ) obtained from stochastically
sampled actions x̂ ∼ πθ(y) by gradient ascent using Equa-
tion 1. This learning process enables the policy to iteratively
improve by assigning higher probabilities to actions that yield
greater rewards. However, we found that directly applying
this approach to synthesizer sound matching did not lead to
effective learning from our preliminary experiments.

From the perspective of RL, the synthesizer sound match-
ing task involves a complex action space comprising hun-
dreds of synthesis parameters. Moreover, even minor
changes to certain parameters can drastically alter the result-
ing sound, particularly for categorical parameters where dis-
crete changes can result in significant timbre shifts. Conse-
quently, stochastically sampling actions from the policy can
give rise to sparse occurrences of high-reward actions, im-
pairing the learning efficiency.

To mitigate this challenge, we leverage PER, a technique
originally proposed to enhance learning efficiency in off-
policy RL algorithms by prioritizing experiences that would
most likely lead to an improvement in the policy or value
function. In our approach, we selectively reuse experiences
with high rewards which are directly associated with the
learning objective. Concretely, for each target sound y, we
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Spectrogram Spectral MFCC MAE MFCC MAE
Dataset Method MAE Convergence (13-band) (40-band)

in-domain

PresetGenVAE 0.675 ± 0.007 1.014 ± 0.011 22.65 ± 0.23 15.03 ± 0.20
Sound2Synth 0.496 ± 0.002 0.666 ± 0.003 15.40 ± 0.01 9.52 ± 0.01
SynthRL-p (Ours) 0.477 ± 0.002 0.654 ± 0.005 14.59 ± 0.09 9.01 ± 0.08
SynthRL-i (Ours) 0.461 ± 0.001 0.607 ± 0.004 13.61 ± 0.02 8.46 ± 0.04

out-of-domain

PresetGenVAE 1.009 ± 0.013 1.199 ± 0.046 27.55 ± 0.58 15.74 ± 0.52
Sound2Synth 1.355 ± 0.021 1.752 ± 0.028 35.35 ± 0.85 19.52 ± 0.18
SynthRL-i (Ours) 1.001 ± 0.032 1.356 ± 0.016 26.87 ± 0.46 14.96 ± 0.27
SynthRL-o (Ours) 0.845 ± 0.013 1.028 ± 0.018 22.40 ± 0.39 12.67 ± 0.10

Table 1: Quantitative evaluation results. We report the mean and standard deviation of the evaluation results on the test set for models trained
with three random seeds.

maintain a prioritized replay buffer that stores m actions and
their corresponding rewards. When the buffer is full, a new
action x̂ sampled from the policy πθ(y) replaces the least-
rewarded experience in the buffer if its reward exceeds the
current minimum. These experiences stored in the prioritized
replay buffer are uniformly sampled to update the policy. In
this case, a discrepancy arises between the distribution µ(x̂|y)
used to sample actions induced by the prioritized replay
buffer and the policy πθ(x̂|y) being optimized, since REIN-
FORCE is inherently an on-policy algorithm which precludes
the reuse of old experiences. This mismatch is corrected by
importance sampling, where the gradient is reweighted based
on the ratio of probabilities under these two different distri-
butions [Jie and Abbeel, 2010]. As a result, the gradient of
the objective becomes as follows:

∇θJ(θ) = Ex̂∼µ[
πθ(x̂|y)
µ(x̂|y)

R(y, ŷ)∇θ log πθ(x̂|y)]. (6)

For practical implementation, we approximate the sampling
distribution as uniform over the buffer, µ(x̂|y) = 1/m. The
reinforcement learning process using reward-based PER is
summarized in Algorithm 1.

4 Experiment
4.1 Dataset
While our proposed method is applicable to various types of
synthesizers, we conducted our experiments using the Dexed1

synthesizer, which has been widely adopted in previous syn-
thesizer sound matching research. Dexed is an open-source
synthesizer modeled on the Yamaha DX7 which is one of
the most iconic FM synthesizers. It includes 144 synthe-
sis parameters that collectively shape the timbre, comprising
84 numerical and 60 categorical types. We use target sound
datasets consisting of single MIDI notes played at pitch 60
and velocity 85. Each note has a duration of 4 seconds, with
3 seconds of sustain followed by 1 second of release, provid-
ing a well-defined envelope for the synthesized sounds.

For the in-domain dataset, we use sounds generated from
approximately 30,000 publicly available Dexed sound pre-
sets collected in prior research [Vaillant et al., 2021]. This
dataset excludes redundant or silent sounds, processed by

1https://github.com/asb2m10/dexed

previous researchers. For the out-of-domain dataset, we use
sounds generated from a different type of open-source syn-
thesizer Surge XT2 that employs a subtractive hybrid synthe-
sis method. Due to the fundamental difference in synthesis
methods, Surge XT produces a distinct set of sounds com-
pared to those of Dexed. We collected approximately 3,500
non-redundant sounds from publicly available Surge presets.
These datasets were divided into training, validation, and test
sets using a ratio of 64%, 16%, and 20%, respectively.

4.2 Training Details
Through the following experiments, we compare SynthRL
with two baseline methods and investigate the effectiveness
of the proposed components in our method. The first baseline
is Sound2Synth, a SOTA method demonstrated on the Dexed
synthesizer for sound matching. The second is PresetGen-
VAE, which exhibits relatively smaller performance degrada-
tion on the out-of-domain dataset.

SynthRL is first trained on the in-domain dataset for 400
epochs. Over the initial 200 epochs, only the parameter loss
described in Section 3.3 is applied. During the next 100
epochs, both the RL loss from Equation 6 and the parameter
loss are used, with the ratio of the RL loss linearly increas-
ing from 0 to 1. The final 100 epochs of in-domain training
are performed using only the RL loss. After the in-domain
training is completed, the model is fine-tuned on the out-of-
domain dataset for an additional 400 epochs using only the
RL loss.

We assign distinct names to the trained models based on the
three training stages, for the ablation study on the RL training
which is a key component of our proposed method as follows:

• SynthRL-p is the model trained for initial 200 epochs
using only the parameter loss (stage 1).

• SynthRL-i is further trained model on the in-domain
dataset with the addition of RL loss from 200 to 400
epochs (stage 2).

• SynthRL-o is the fine-tuned model on the out-of-
domain dataset (stage 3).

The baseline models are trained on the in-domain dataset
for 400 epochs using the official source code released by the

2https://github.com/surge-synthesizer/surge
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Dataset Method MOS

in-domain

PresetGenVAE 3.17 ± 0.32
Sound2Synth 3.91 ± 0.20
SynthRL-p (Ours) 4.16 ± 0.17
SynthRL-i (Ours) 4.29 ± 0.14

out-of-domain

PresetGenVAE 2.09 ± 0.24
Sound2Synth 1.94 ± 0.19
SynthRL-i (Ours) 2.28 ± 0.28
SynthRL-o (Ours) 3.01 ± 0.26

Table 2: MOS test results with the average score and 95% CI.

authors. These in-domain-only trained models are also used
for evaluation on the out-of-domain dataset, since they are in-
herently incapable of out-of-domain training, which provided
significant motivation for our research as mentioned earlier.
Our source code and audio samples are available on the ac-
companying webpage3.

5 Result and Analysis
5.1 Quantitative Evaluation
Following previous studies [Vaillant et al., 2021; Barkan et
al., 2023], we evaluate sound similarity quantitatively using
spectrogram MAE, spectral convergence, and MFCC MAE.
Table 1 presents the results for all evaluation metrics on
both the in-domain and out-of-domain datasets. Overall, our
method outperforms the baselines across all metrics on both
domains.

For the in-domain results, SynthRL-p outperforms the
stronger baseline Sound2Synth by an average 4.1% across
all metrics. The performance gain of SynthRL-p over the
baselines is attributed to the model architecture of Syn-
thRL, as it is trained with only the parameter loss simi-
lar to other methods. It indicates that our proposed trans-
former encoder-decoder based architecture is effective for
synthesizer sound matching. A comparison of SynthRL-p
and SynthRL-i demonstrates that the addition of RL leads
to further performance improvement on average 5.8%. Our
RL approach successfully compensates for limitations of the
parameter loss, such as the difficulty in learning subtle pa-
rameter differences that result in noticeable timbre changes.

On the out-of-domain dataset, the baselines and SynthRL-
i all exhibit noticeable performance drops compared to the
in-domain case. This degradation inherently arises from
the limited in-domain sound distribution of the synthesizer.
Owing to the cross-domain applicability of our RL method,
SynthRL-o shows a substantial improvement over SynthRL-
i by an average 17.9% across all metrics. Compared to the
baselines, SynthRL-o outperforms PresetGenVAE by an av-
erage 17.2% and Sound2Synth by 37.7%.

5.2 Subjective Evaluation
We conducted Mean Opinion Score (MOS) and ABX similar-
ity tests through Amazon Mechanical Turk (MTurk). In the
MOS test, 64 evaluators rated the similarity of the samples to

3https://argaaw.github.io/synthrl-demo/

SynthRL-i vs. SynthRL-p

SynthRL-i vs. Sound2Synth

SynthRL-i vs. PresetGenVAE

37.9

53.9

80.8

40.2

30.5

8.5

21.9

15.6

10.7

Prefer SynthRL-i No Preference Prefer the Other

(a) In-domain

SynthRL-o vs. SynthRL-i

SynthRL-o vs. Sound2Synth

SynthRL-o vs. PresetGenVAE

72.7

80.5

70.5

7.4

5.5

7.6

19.9

14.0

21.9

Prefer SynthRL-o No Preference Prefer the Other

(b) Out-of-domain

Figure 3: ABX test results with the average preference rate reported
as a percentage.

the ground truth on a scale from 1 (completely different) to 5
(identical). In the ABX similarity test, 96 evaluators listened
to two samples generated by different models and chose the
sample more similar to the ground truth. For each test, 64
randomly selected target sounds were evaluated and all eval-
uators were instructed to wear headphones in a quiet environ-
ment. We intentionally included pairs of completely different
and identical sounds in the evaluation samples, and responses
from evaluators who failed to distinguish them were consid-
ered unreliable and excluded. The results of the MOS and
ABX tests are presented in Table 2 and Figure 3, respectively.

For the in-domain dataset, SynthRL-i achieves the high-
est MOS of 4.29. However, considering the 95% confi-
dence interval (CI), the differences from SynthRL-p (4.16)
and Sound2Synth (3.91) are not statistically significant. This
result indicates that all three models exhibit strong in-domain
performance, rather than highlighting the numerical differ-
ences since it is difficult for humans to distinguish subtle dif-
ferences using 5-point scale. The pairwise performance dif-
ferences between individual models are more clearly demon-
strated in the ABX test results. In this test, SynthRL-i is pre-
ferred over all other models, with a minimum of 37.9% win
and 21.9% loss compared to SynthRL-p.

In the out-of-domain MOS test, SynthRL-o scores 3.01
with a 95% CI of 0.26, considerably outperforming SynthRL-
i (2.28) and the other baselines. This remarkable improve-
ment is further validated by the ABX test, where SynthRL-o
achieves significantly higher preference rates compared to all
other models, with a minimum of 70.5% over PresetGenVAE.
Overall, these results demonstrate that our RL method leads
to consistent improvements across both domains from a hu-
man perceptual perspective, as well as in quantitative perfor-
mance.

5.3 Analysis of Reward Design
Our reward design is a combination of three sound similar-
ity metrics, motivated by the experimentally observed limi-
tations of using a single metric. For instance, spectrogram
MAE is a widely used metric for sound loss functions, along
with various variants such as multi-scale approaches [Engel
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Spec MAE : 0.292

Spec Conv : 0.765

MFCC MAE :   9.59

Spec MAE : 0.182

Spec Conv : 1.789

MFCC MAE :. 15.19

Figure 4: Examples of target (left) and estimated (right) sound pairs
along with calculated metric values. The top row shows an example
of drawback from SynthRL trained with only spectrogram MAE as
the reward, while the bottom row presents an example of nearly in-
distinguishable sounds for reference.
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Figure 5: Scatter plot of MOS obtained from the listening test and
calculated rewards. The error bars represent the 95% CI.

et al., 2020]. However, using a reward solely based on spec-
trogram MAE in RL can lead to undesired learning outcomes,
as illustrated in Figure 4. The top row depicts spectrograms
of a target sound with few harmonics (left) and the corre-
sponding output of a SynthRL model trained with the single
spectrogram MAE-based reward (right). In this case, the two
sounds differ significantly as the target sound is sustained for
a long duration, whereas the estimated one is transient. Nev-
ertheless, the spectrogram MAE between the two sounds is
0.182, which is notably low compared to 0.292 between spec-
trograms that are barely distinguishable as shown in the bot-
tom row. This low value stems from the widely distributed
low energy regions represented in black on the spectrograms.
Consequently, using only spectrogram MAE as the reward
leads the model to consistently output transient sounds for di-
verse target sounds with overall low energy. In contrast, the
other two metrics exhibit higher values compared to the bot-
tom row, particularly spectral convergence with a significant
high value of 1.789, effectively reflecting the difference of the
two sounds. The complementary relationship among these re-
ward components plays a crucial role in successful training of
SynthRL across diverse sounds.

We further investigate the alignment between our designed
reward function and human perception of sound similarity. A
total of 120 evaluators recruited via MTurk rated the similar-
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Figure 6: Ablation test results on reward-based PER. All results are
averaged over three random seeds and the shaded region represents
the standard deviation.

ity of randomly sampled pairs of sounds on a 5-point MOS
scale, with each pair being rated by 30 evaluators. Figure 5
shows the scatter plot of the rewards calculated from Equa-
tion 5 and the MOS for the sample pairs. It demonstrates
a clear positive relationship between the rewards and MOS,
with a Pearson correlation of 0.85 (p < 0.001). While the
deviations are relatively high in the mid-range MOS (2-4),
considering the subjective nature of sound similarity judg-
ments when the sounds are neither completely different nor
identical, the results suggest that our reward function is well-
designed to align with the intended goal.

5.4 Effect of Reward-based PER

We conduct an ablation study to analyze the effectiveness of
reward-based PER. Figure 6 illustrates average reward curves
on validation sets over training. Step 0 in the figure repre-
sents the point at which RL training begins for each domain,
corresponding to fully trained SynthRL-p for in-domain and
fully trained SynthRL-i for out-of-domain. The result demon-
strates that training with reward-based PER is more effec-
tive in both cases. Interestingly, the performance on in-
domain decreases during training when reward-based PER
is not used. We conjecture that the degradation occurs be-
cause the model already achieves sufficiently high perfor-
mance through parameter loss training before the introduction
of RL loss. In other words, applying RL without prioritized
sampling in the complex state and action space of the synthe-
sizer sound matching task can lead to inferior performance
compared to training with only parameter loss.

6 Conclusion

We introduce SynthRL, the first application of RL in synthe-
sizer sound matching, addressing the limitation of reliance
on parameter loss and the challenges of cross-domain gen-
eralization. SynthRL effectively incorporates perceptual loss
through RL, enabling fine-tuning on out-of-domain sounds
with non-differentiable synthesizers, as well as further im-
proving in-domain performance. Our extensive experiments
shed light on the essential factors for successfully applying
RL to synthesizer sound matching, including the effective re-
ward design and the importance of prioritized sampling.
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[Tatar et al., 2016] Kıvanç Tatar, Matthieu Macret, and
Philippe Pasquier. Automatic synthesizer preset gener-
ation with PresetGen. Journal of New Music Research,
45(2):124–144, 2016.

[Uzrad et al., 2024] Noy Uzrad, Oren Barkan, Almog El-
harar, Shlomi Shvartzman, Moshe Laufer, Lior Wolf, and
Noam Koenigstein. DiffMoog: a differentiable mod-
ular synthesizer for sound matching. arXiv preprint
arXiv:2401.12570, 2024.

[Vaillant et al., 2021] Gwendal L. Vaillant, Thierry Dutoit,
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