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Abstract
Deep neural networks easily lead to the over-fitting
issue due to the influence of noisy labels. How-
ever, previous label correction methods for dealing
with noisy labels often need expensive computation
cost to achieve effectiveness and ignore the gener-
alization ability of the model. To address these is-
sues, in this paper, we propose a new meta-based
self-correction method to achieve accurate filtering
of noisy labels and to enhance the generalization
ability of the label correction model. Specifically,
we first investigate a new gradient score method to
filter noisy labels with less computation cost, and
then theoretically design a new generalization reg-
ularizer into the meta-learner and the base learner,
for correcting noisy labels as well as achieving the
generalization ability. Experimental results on real
datasets verify the effectiveness of our proposed
method in terms of different classification tasks.

1 Introduction
The remarkable success of deep neural networks (DNNs) in
various fields heavily depends on high-quality labels [Algan
and Ulusoy, 2021; Wei et al., 2023a; Sukhbaatar and Fergus,
2014; Arpit et al., 2017]. However, many real-world datasets
contain noisy labels for different reasons [Hospedales et al.,
2021]. For example, in medical datasets, even experienced
professionals may occasionally produce noisy labels [Karimi
et al., 2020; Ju et al., 2022]. Consequently, mitigating the
impact of noisy labels is becoming a critical problem for
researchers. Due to the fact that noisy labels can degrade
model performance, reducing noise has become one of solu-
tions for addressing the problem of learning with noisy labels.
Among these, label correction is very popular since it substi-
tutes original noisy labels with high-confidence pseudo labels
to achieve significant model performance.

Label correction methods can be broadly categorized into
two types based on the requirements for auxiliary infor-
mation, i.e., non-self-correction methods and self-correction
methods. Existing non-self-correction methods often uti-
lize auxiliary information to replace noisy labels with high-

∗Corresponding authors (seanzhuxf@gmail.com).

confidence pseudo labels. For example, [Ahn et al., 2023]
utilize a pre-trained model to learn effective feature repre-
sentations for the generation of high-quality pseudo-labels.
[Wu et al., 2021] utilize soft labels of meta learning to correct
noisy labels with clean samples. Self-correction methods in-
tegrate the self-iteration process of the model with deep neu-
ral networks to correct noisy labels, without using auxiliary
information. For example, [Tanaka et al., 2018] design a spe-
cialized network architecture to first estimate and then correct
the distribution of noisy labels, while [Li et al., 2022] design
a noise correction loss function to correct noisy labels and [Li
et al., 2023] utilize noisy tolerant methods under the frame-
work of meta learning to correct noisy labels. Due to the flex-
ibility of noise correction rules, self-correction methods are
more popular than non-self-correction methods in real-world
applications.

Although previous label correction methods have achieved
significant correction performance, there are still some limi-
tations to be tackled. First, both non-self-correction and self-
correction methods focus solely on minimizing losses during
the optimization process, without considering overall gener-
alization ability of the model. Consequently, this may lead
to poor generalization performance. For example, the meth-
ods (such as Co-teaching [Yu et al., 2019] and MLNT [Li et
al., 2023]) perform well on the training set, but their correc-
tion performance significantly decreases wit the increase of
the noise ratio, resulting in low generalization ability. Sec-
ond, current self-correction methods frequently employ loss-
based methods (i.e., Beta Mixture Model (BMM) [Arazo et
al., 2019] and Gaussian Mixture Model (GMM) [Permuter et
al., 2006]) to filter noisy labels, and thus requiring expensive
computation resources and receiving limited filtering effec-
tiveness for noisy labels.

To address above issues, we propose a new self-correction
method, namely Meta Label Correction with Generalization
Regularizer (MLCGR), as shown in Figure 1, to achieve ac-
curate filtering of noisy labels and to enhance generalization
ability. To do this, the proposed framework includes the filter
and the corrector. The filter uses the gradient score (including
the norm and the cosine angle between two adjacent gradi-
ents of every sample) to partition the whole dataset into three
parts, resulting in accurate data partition and thus exploring
the second issue of previous methods. The corrector designs
a generalization regularizer into previous meta-learner and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: The framework of the proposed MLCGR, including two modules, i.e., the filter and the corrector. Given the input D, the filter first
partitions D into three datasets, i.e., the clean data Dcl, the complex data Dcp, and the noisy data Dny , based on the gradients of the model
parameters, and then conducts data augmentation on these three datasets, which are augmented by different data augmentation methods.
Specifically, we apply weak augmentation on the complex data and strong augmentation on both the clean data and the noisy data. The
corrector trains the meta learner by the augmented clean data and the noisy data as well as trains the base learner by the augmented complex
data. Moreover, the trained meta learner supervises the update of the base learner, followed by that the updated based learner supervises the
update of the meta learner.

base-learner. Moreover, we theoretically demonstrate that our
method really achieves the generalization ability, thus explor-
ing the first issue of previous methods.

Compared to previous label correction methods, the main
contributions of our method can be summarized as follows:

• The proposed method investigates a new method that
allows the meta-based model to automatically correct
noisy labels without manual specifying the meta-set.

• We theoretically explain the reasons that affect the gen-
eralization ability of the model, as well as design a new
regularizer to achieve the generalization ability of the
model.

• Extensive experiments on two synthetic datasets with
different noise ratios and one real-world dataset validate
the effectiveness of the proposed method compared to
all comparison methods on classification tasks.

2 Method
Denoting D = {X,Y} = {(xi,yi)}n1 as the original dataset
with n samples where xi is the i-th training sample and yi ∈
{0, 1}C is the corresponding label with C classes, denoting
ỹ and ŷ, respectively, as the predicted label and the corrected
label, the goal of label correction is to train a classification
network w with the guidance of a label correction network θ.

2.1 Motivation
Meta-based methods for label correction attempt to replace
noisy labels with high-confidence pseudo labels. For exam-
ple, [Shu et al., 2019] first use Meta Weight Net to relieve
negative effect caused by noisy labels, and then assign dif-
ferent values to different losses. [Wu et al., 2021] propose

to replace noisy labels with high-confidence pseudo labels
directly. However, these methods need to manually spec-
ify the clean data as the meta-set for the extraction of meta-
knowledge. Unfortunately, the meta-set is difficult to obtain
in real scenarios. Moreover, the scale of meta-set is quite
essential for model performance. In addition, the optimiza-
tion of existing works only consider the minimization of the
loss by ignoring the impact of the generalization ability of
the model. To address these issues, we propose the MLCGR
method to achieve better correction and generalization per-
formance, as shown in Figure 1.

2.2 Noisy Label Filtering
The goal of filtering methods is to distinguish noisy labels
from others. Previous DNN methods tend to fit samples with
clean labels fast by setting them with a small loss, compared
to the samples with noisy labels [Wei et al., 2023b]. For ex-
ample, [Arazo et al., 2019] use BMM to distinguish clean
and noisy labels by estimating predicted confidence of every
sample. [Li et al., 2020] try to fit a two-component GMM to
filter clean and noisy labels considering the flexibility in dis-
tribution prediction. Although these loss-based methods can
effectively filter clean and noisy labels, they still have disad-
vantages. For example, in the early stage of the model train-
ing, clean labels can result in significant loss, but the model
may lead to wrong filtering results. Besides, classic methods
like GMM require extra memory to make the usage condi-
tions stringent. To address these issues for achieving better
filtering performance, we investigate the gradient-based mea-
surement to filter noisy labels.

Given a dataset D with noisy labels, we first divide original
dataset into multiple batches. Specifically, we use convolu-
tional neural network (CNN) to train all samples and record
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their gradient scores (G) during the training process, i.e.,

G = {(g1
1,g

1
2, ...,g

1
n), (g

2
1,g

2
2, ...,g

2
n
), ..., (gm

1 ,gm
2 , ...,gm

n )}, (1)

where m is the number of epochs. To distinguish noisy la-
bels, we consider the change in gradient scores as well as the
variations in gradient angles, which is formulated by:

Scorei = Norm(
1

m− 1

m∑
j=2

∥gj
i − gj−1

i
∥22)

− λs

m− 1

m∑
j=2

cos(gj
i ,g

j−1
i ), i ∈ {1, 2, ..., n},

(2)

where λs is a non-negative parameter to balance two terms
and Norm is the normalization operator.

The first term in Eq. (2) calculates the norm of gradient
variations of the same sample in adjacent rounds. We av-
erage all gradient variations and normalize them to make it
match the second term. After that, the second term calculates
the angle between two gradients of the same sample in two
sequential epochs to prevent the occurrence of gradient vari-
ations, where the value of the norm changes slightly and the
direction changes significantly. When all scores are sorted by
their values, the higher the score is, the more likely its corre-
sponding label is noisy. Furthermore, we use a non-negative
parameter T (0 < T < 1) to divide all samples into three
subsets. Specifically, scores smaller than T will be consid-
ered as clean samples (i.e., Dcl), scores bigger than 1 − T
will be considered as noisy samples (i.e., Dny), and scores in
between T and 1− T will be considered as complex samples
(i.e., Dcp). As a result, score calculation by Eq. (2) makes
our method early capture the variations of the gradient norm
in two consecutive epochs and the changes in the cosine sim-
ilarity of two gradients in two consecutive epochs. Early de-
tection of gradient variations leads to early detection of noisy
labels. Therefore, noisy labels can be accurately filtered and
the model requires less memory (verified in Section 3.3). In
contrast, other noisy filtering methods, i.e., GMM, filter noisy
labels by modeling the distribution of the sample loss, mak-
ing it difficult to detect noisy labels during the early stage of
the training process.

After partitioning the inputted data into three subsets,
i.e., Dcl, Dcp, and Dny , by scoring gradient variations, the
size of every subset is small. Hence, it is crucial to add the
sample size. In this case, data augmentation has played an
important role in meta-label correction. However, previous
works generally treat all samples equally. For example, [Hus-
sain et al., 2017] use flipping to capture features that appear in
various orientations. [Puttaruksa and Taeprasartsit, 2018] ap-
ply color jittering to help the model learn more invariant fea-
tures. However, in these methods, data augmentation makes
the samples with noisy labels amplify the noise information
as well. In order to address this issue, we investigate to apply
different methods of data augmentation to different subsets.
Specifically, we apply weak augmentation with flipping and
random cropping on complex data, as well as strong augmen-
tation (such as AutoAugment [Cubuk et al., 2018] and Ran-
dAugment [Cubuk et al., 2020]) on both the clean data and
the noisy data. After this, we obtain the final augmented data

with the following form: D̄cl = Augstrong(Dcl)
D̄cp = Augweak(Dcp)
D̄ny = Augstrong(Dny)

. (3)

In Eq. (3), weak augmentation preserves the fundamen-
tal characteristics of the data with noisy labels, but does not
introduce significant changes. Hence, it mitigates the disrup-
tive influence of noisy labels on model training. In contrast,
strong augmentation enhances data diversity, compelling the
model to learn robust features and thus improving its perfor-
mance. Therefore, applying various augmentation strategies
on different data is superior to equally treating all data.

2.3 Meta Label Correction with Generalization
Regularizer

After data augmentation, each sample is expected to pro-
vide additional useful information for the downstream tasks.
These augmented subsets (i.e., D̄cl, D̄cp and D̄ny) are then
sent to the meta-learner and the base-learner for noisy label
correction. However, previous works typically minimize the
loss function to obtain high-confidence pseudo labels, which
are then used to replace original noisy labels. For example,
both MLC and MSLC utilize the meta-learner to train a net-
work of label correction with the help of soft labels and label
smoothing. However, they ignore the generalization ability of
the model, and thus they can not guarantee robustness of the
downstream tasks. To solve this issue, we propose to correct
noisy labels by taking the generalization ability of the model
into account.

To achieve this, we first follow Model-agnostic Meta
Learning (MAML) [Finn et al., 2017], including the inner
(i.e., the base-learner Ltr with the parameter w) and the outer
(i.e., meta-learner Lme with the parameter θ), to use the fol-
lowing cross-entropy loss ℓ:

ℓ = −
∑
x∈X

C∑
i=1

yi log(f(xi;θℓ)), (4)

where yi denotes the ground truth label and f(xi;θℓ) denotes
the predict result. After this, the loss function of the meta-
learning can be formulated as:{

ℓtr(w) = ℓ(ytr, f(xtr,w))

ℓme(θ) = ℓ(yme, f(xme,w(θ))),

(5)
(6)

where θ and w are the parameters of the meta-learner and the
base-learner.

Since Eq. (5) only takes the original label y into account,
it ignores the positive effect of predicted label ỹ. To address
this issue, we use Eq. (7) to take both labels into account by
setting ŷ0 = y, where ŷ is the correct label and λy is the
balance parameter.

ŷ(t) = λyŷ
(t−1)

+ (1− λy)ỹ
(t). (7)

After that, Eq. (5) can be rewritten as follows:

ℓtr(w) = ℓ(ŷcp, f(xcp,w)). (8)
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In order to make better use of the information after data
augmentation, we first regard noisy labels as negative infor-
mation for the meter-learner, and then rewrite Eq. (6) as:

ℓme =−
∑

(x,y)∈D̄cl

C∑
i=1

ycl
i log(f(xcl

i ,θ))

− λny

∑
(x,y)∈D̄ny

C∑
i=1

yny
i log(1− f(xny

i ,θ)),

(9)

where λny balances the clean set and the noisy set. Eq. (9) in-
troduces noisy label information into the loss function, which
drives the predicted labels far away from incorrect ones to re-
duce the impact of noisy labels on model performance, and
result in learning discriminative features.

Although Eq. (9) can handle the problem of noisy labels, it
only focuses on the loss of the model and ignores the model
generalization. In this paper, we propose a new regularizer to
take the generalization ability of the model into account, i.e.,

min
φ∈Ψ

H(Θ) =
∑

p,q∈y,p<q
4 z1(Θ)

z
(p,q)
2 (Θ)

s.t.

 z1(Θ) = min
u

max
xi∈X

∥φ(xi;Θ)− φ(X;Θ)σ(u)∥22
z2(Θ) = max

v,s
∥φ(Xp)σ(v)− φ(Xq)σ(s)∥22

,

(10)
where H(Θ) is a function to calculate VC dimension
(i.e., dV C) that can bound the generalization ability of the
mode and φ is the feature extraction network with parame-
ter Θ. In addition, z1(Θ) is a function to calculate R which
is the radius of a sphere, z2(Θ) is a function to calculate M
which is the distance between nearest sample and the hyper-
plane. The variables (such u, v and s) are learnable vectors
to help project samples on the sphere. The details of Eq. (10)
will be explained in Supplementary Materials Section B.

2.4 Objective Function
By letting LV C = H(Θ) in Eq. (10) and making the ex-
pression concise, we set e = φ(x; Θ), so our proposed loss
function is formulated as follows.

{
Ltr(w) = ℓtr(ŷtr, f(etr,w)) + γLV C

Lme(w∗(θ)) = ℓme(f(eme;w∗(θ)),yme) + γLV C . (11)

By minimizing the loss of Ltr and Lme, we obtain the min-
imized LV C . Furthermore, small dV C can tighten the upper
bound of the generalization error, and thus achieving the gen-
eralization ability of the model. In this paper, we design a
new bi-level minimization method to optimize our proposed
objection function, i.e., w∗(θ) = argmin

w
Ltr(w;θ)

θ∗ = argmin
θ

Lme(w∗(θ))
. (12)

Specifically, we employ Stochastic Gradient Descent
(SGD) [Amari, 1993] to alternately optimize Eq. (12). The
adaptive optimization process is separated into three steps. In

Algorithm 1 The pseudo-code of the proposed MLCGR.

Input: Training data D = {X,Y}, the batch size, the maxi-
mal epoch (Max E), and the maximal correction iteration
(Max C).

Output: the parameter of the target classifier network w.
1: Initialize the parameters of the meta network, i.e., w(0)

and θ(0), the filtering network θf , and the parameters,
i.e., λs, T , λy , λny , and γ.

2: while I < Max E do
3: G = WarmUp(D,θf ).
4: Dcl,Dcp,Dny = Score(X,Y,G).
5: while t < Max C do
6: {(xme

cl ,yme
cl ), (xme

ny ,y
me
ny )} = Batch(Dcl,Dny).

7: {(xtr
cp,y

tr
cp)} = Batch(Dcp).

8: x̄me = Augstrong(x
me), x̄tr = Augweak(xtr).

9: Update θ(t+1) by Eq. (14).
10: Update w(t+1) by Eq. (15).
11: Update (ỹ(t+1), ŷ(t+1) with parameters w(t+1) and

θ(t+1).
12: end while
13: end while

the first step, we extract a small batch of meta samples from
Xtr as {(xtr

i ,ytr
i )}n1

i=1, where n1 is the number of training
samples, the parameter w can be updated by the following
rule:

ŵ(t) = w(t) − η1∇wLtr(w;θ)

= w(t) − 1

n1
η1(

n1∑
i=1

∇wItri )|w(t) ,
(13)

where Itri = ℓtr(f(etri ;w(t)), ŷtr
i (θ(t))).

After updating the base-learner parameter w(t) to ŵ(t)

through Eq. (13), in the second step, we update the parameter
θ of the mete-learner by:

θ(t+1) = θ(t) − η2∇θLme(ŵ(θ))

= θ(t) − 1

n2
η2(

n2∑
i=1

∇θJ
me
i )|θ(t) ,

(14)

where Jme
i = Lme(f(eme

i ; ŵ(t)),yme
i )andandn2 is the

number of training samples.
The update of w is under the help of unmodified label cor-

rection network, so it may lead to inaccurate pseudo labels.
To address this issue, in the third step, we re-update w after
the update of θ (i.e., θ(t+1)), so the specific update rule for
w(t+1) is:

w(t+1) = w(t) − η1∇wLtr(w;θ(t+1))

= w(t) − 1

n1
η1(

n1∑
i=1

∇wKtr
i )|w(t) ,

(15)

where Ktr
i = ℓtr(f(etri ;w(t)), ŷtr

i (θ(t+1))).
By the re-update process, the noise ratio in either the meta-

learner or the base-learner can gradually reduce. Therefore,
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noisy labels can be corrected more accurately (verified in
Section 3.4). Different from traditional meta label correc-
tion methods (such as MSLC and MLC) that solely focus on
the smoothness of predict pseudo-labels and the prediction of
soft classification outcomes, our proposed method utilizes the
information in noisy labels as well as takes the model gener-
alization into account. Obviously, our method achieves effec-
tiveness as well as generalization ability. We list the pseudo-
code of the proposed MLCGR in Algorithm 1.

3 Experiments
In this section, we conduct experiments on two synthetic
datasets and one real-world dataset with different noisy ra-
tios, compared our proposed MLCGR with seven comparison
methods, with respect to image classification task in terms of
accuracy (ACC).

3.1 Experimental Setup1

Datasets: We conduct experiments on two synthetic datasets
(i.e., CIFAR10 and CIFAR100 [Krizhevsky et al., 2009]) and
one real-world dataset (i.e., Clothing1M [Xiao et al., 2015]).
Their specific information is summarized in Supplementary
Meterials C.1. In our experiments, we follow [Zheng et
al., 2021] to corrupt original labels (i.e., CIFAR10 and CI-
FAR100) with symmetric and asymmetric noise.

Comparison Methods: Seven comparison methods include
three meta-based methods (i.e., , MLC [Zheng et al., 2021],
MSLC [Wu et al., 2021], and MLNT [Li et al., 2023]),
three traditional label correction methods (i.e., Bootstrapping
[Reed et al., 2014], M-Correction [Arazo et al., 2019], and
Co-teaching [Han et al., 2018]), and the baseline method,
i.e., Cross-Entropy [De Boer et al., 2005].

Implementation Datails: We conduct all experiments on
a computer with an Intel CPU Core(TM) i9-12900K @3.2
GHz 16-core and a NVIDIA GeForce RTX3090 to imple-
ment all methods including the proposed MLCGR with Py-
Torch framework. We obtain the source code of all com-
parison methods from the authors, and set the parameters by
following the original literature, so that all comparison meth-
ods achieve their best performance in our experiments. In the
proposed MLCGR, we apply ReLU as the activation func-
tion and SGD as the optimizer with a momentum of 0.9. We
also let the learning rate as 10−2 and then gradually decay as
10−5. For noisy filtering, we set the parameters λs and T as
0.3 and 0.1, respectively. For meta label correction, we set
the label smooth parameter λy as 0.2, the noisy label param-
eter λny as 0.1 and the generalization regularizer parameter
γ as 0.1. The proposed MLCGR employs ResNet32 as the
backbone to extract sample representation for the symmet-
ric noisy and the ResNet-28-10 [Zagoruyko, 2016] for asym-
metric noisy. For the real-world dataset Clothing1M, we fol-
low the setting of previous work [Tanaka et al., 2018], and
use ResNet-50 a pre-trained model on ImageNet as the back-
bone. Moreover, we set the number of the warm-up epoch
for CIFAR10, CIFAR100 and Clothing1M as 10, 20, and 50,
respectively.

1Related Work and more details of Experimental Setup are re-
ported in Supplementary Materials.

3.2 Result Analysis
We list the classification results of all methods in Tables 1 and
2. Obviously, the proposed MLCGR outperforms all com-
parison methods on all datasets, followed by Cross-Entropy,
Bootstrapping, M-Correction, Co-teaching, MSLC, MLC and
MLNT. For example, our method improves an average 3.41%
and 13.86%, respectively, compared to the best comparison
method (i.e., M-correction) and the worst comparison method
(i.e., Cross-Entropy). This indicates that it is necessary to si-
multaneously filter noisy labels with gradient variations and
correct them with the help of generalization regularizer for
label correction methods.

First, compared to traditional label correction methods
(i.e., Cross-Entropy, Bootstrapping, M-Correction and Co-
teaching), the proposed MLCGR outperforms them by a large
margin. For example, the proposed MLCGR achieves an av-
erage improvement of 3.14% over the best correction method
(i.e., M-Correction) on all datasets. This verifies the superior-
ity of meta-based label correction methods, as they have good
adaptability to various ratios of noisy labels.

Second, compared to meta-based label correction meth-
ods (i.e., MSLC, MLC and MLNT), the proposed MLCGR
achieves an average improvement of 5.97% over the best cor-
rection method (i.e., MLNT) on all datasets. This indicates
that the meta-based methods for label correction improve the
model performance by achieving the generalization ability of
the model.

3.3 Filtering Effectiveness
We investigate the memory consumption and filtering accu-
racy of GMM on all datasets to evaluate the filtering effective-
ness of the proposed MLCGR, and list the results in Figure 2.
Obviously, our proposed MLCGR requires less memory and
achieves higher filtering accuracy, compared to GMM.

Based on Figure 2a, MLCGR requires an average of
3149.88 KB less memory than GMM. In addition, with in-
creasing epochs, MLCGR is relatively stable, while GMM in-
creases significantly in terms of memory consumption. ML-
CGR’s additional memory consumption scales with sample
size, while GMM’s is tied to the dimensionality of the data’s
covariance matrix.

Based on Figure 2b, MLCGR achieves an average increase
of 13.62% in noisy label filtering accuracy. Moreover, with
the increasing epochs, MLCGR is very stable, while GMM is
with fluctuations, in terms of filtering noisy labels. The rea-
son is that the MLCGR method achieves good performance
for label filtering performance within a few epochs. In this
case, GMM depending on the loss function cannot achieve
good performance for label filtering because the loss of clean
samples is high during the early states of model training.

3.4 Correction Effectiveness
We report the correction accuracy of all methods on two
datasets (i.e., CIFAR10 and CIFAR100) under 20% noisy
ratio in Figure 32 Obviously, the proposed MLCGR out-
performs all comparison methods on these two datasets.

2Figure 3 does not report the results of Dataset Clothing1M since
it has no ground truth.
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Noise Type Symmetric

Dataset CIFAR10 CIFAR100

Method /ratio 20% 40% 60% 80% 20% 40% 60% 80%

Cross-Entropy [De Boer et al., 2005] 86.80 82.54 73.67 62.91 62.03 51.18 44.42 19.90
Bootstrapping [Reed et al., 2014] 91.46 88.75 84.03 63.80 69.79 63.73 57.20 17.63
M-Correction [Arazo et al., 2019] 93.02 92.47 89.36 86.82 73.90 68.53 59.32 48.20

Co-teaching [Han et al., 2018] 89.54 87.21 77.93 67.41 65.60 58.46 44.32 27.90

MSLC [Wu et al., 2021] 93.46 91.42 87.39 69.87 72.51 68.98 60.81 24.32
MLC [Zheng et al., 2021] 92.63 90.04 86.21 77.41 66.80 61.39 47.21 21.80

MLNT [Li et al., 2023] 92.95 91.35 84.48 74.39 68.50 64.29 55.73 42.40
MLCGR (Proposed) 95.32 94.87 93.57 92.34 75.36 71.09 63.47 48.27

Table 1: Classification accuracy of all methods on two datasets (i.e., CIFAR10 and CIFAR100) at different symmetrically noisy ratios, where
the best results are highlighted in bold.

Noise Type Asymmetric Real-world
Dataset CIFAR10 CIFAR100 Clothing1M

Method /ratio 20% 40% 60% 80% 20% 40% 60% 80% –

Cross Entropy [De Boer et al., 2005] 92.85 90.22 67.21 57.46 69.05 65.14 40.59 15.83 68.94
Bootstrapping [Reed et al., 2014] 93.08 91.18 87.24 81.07 70.93 67.82 44.53 15.85 69.12
M-Correction [Arazo et al., 2019] 89.36 87.45 87.59 67.78 72.41 69.54 60.51 16.06 71.00

Co-teaching [Han et al., 2018] 89.32 86.24 70.43 58.23 71.73 66.35 45.84 16.99 73.33

MSLC [Wu et al., 2021] 94.39 92.81 84.14 64.23 72.66 70.51 58.35 17.42 73.47
MLC [Zheng et al., 2021] 93.24 91.63 83.22 61.25 68.35 64.24 57.61 17.29 73.47
MLNT [Li et al., 2023] 92.14 89.24 82.93 60.52 70.63 68.57 58.03 17.16 75.78

MLCGR(Proposed) 96.04 94.69 90.36 84.54 73.14 71.06 60.54 17.82 75.83

Table 2: Classification accuracy of all methods on two synthetic datasets (i.e., CIFAR10 and CIFAR100) at different asymmetrically noisy
ratios and one real-world dataset Clothing1M, where the best results are highlighted in bold.

NLF GR CIFAR10 CIFAR100 Clothing1M20% 40% 60% 80% 20% 40% 60% 80%

− − 84.25 80.31 72.59 64.59 67.24 59.81 45.36 18.48 68.25
✓ − 90.72 86.21 81.64 75.29 71.49 64.08 52.91 27.42 70.24
− ✓ 93.75 92.43 91.54 90.85 73.56 69.47 59.26 45.31 73.28
✓ ✓ 95.32 94.87 93.57 92.34 75.36 71.09 63.47 48.27 75.83

Table 3: Classification accuracy of each module (i.e., Noisy Label
Filtering (NLF) and Generalization Regularizer (GR)) of our ML-
CGR on two datasets (i.e., CIFAR10 and CIFAR100) under different
symmetrically noisy ratios.

For example, our method averagely improves by 5.8% and
53.86%, respectively, compared to the best comparison
method (i.e., Co-teaching) and the worst comparison method
(i.e., MLC). This verifies that our method achieves the best
correction accuracy due to its generalization ability. In par-
ticular, our method does not achieve good classification per-
formance in the first epochs, such as the first 15 epochs for
Dataset CIFAR10 and the first 75 epochs for Dataset CI-
FAR100. After that, our method achieves good performance.
The reason is that 1) in the first epochs our method has a
limited number of clean samples to output bad correction ac-
curacy and 2) our method with the increasing clean samples
improves the generalization ability of the model with the in-
creasing epochs.
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Figure 2: Memory consumption and filtering accuracy of MLGCR
and GMM under 20% symmetric noise on all datasets.

3.5 Ablation Study
The proposed method includes two key components,
i.e., noisy label filtering (NLF) in the filter module and the
generalization regularizer (GR) in the corrector module. We
demonstrate the effectiveness of each component by reporting
the classification results of three methods (i.e., NLF without
GR in our method, GR without NLF in our method and our
proposed MLCGR) in Table 3.

First, the proposed method considering two modules im-
proves on average by 17.71%, compared to the method with-
out considering any module. Moreover, the method without
considering any module is worse than the methods consid-
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Figure 3: Correction accuracy of all methods on Datasets CIFAR10
and CIFAR100 under 20% symmetrical noise ( CE is Cross-Entropy,
BT is Bootstrapping, MC is M-Correction, CT is Co-Teaching).

ering only one module, i.e., NLF and GR. This verifies that
NLF or GR is useful for label correction. In particularly, our
method outperforms NLF or GR. This demonstrates that we
should consider both NLF and GR for label correction. Sec-
ond, in two modules, NLF outperforms GR. For example,
NLF improves on average about 7.71%, compared to GR,
on all datasets. The reason is that accurate filtering and cor-
responding adaptive augmentation can result in the meta-set
with the large sample size. Based on Lemma B.1 in the Sup-
plementary Materials, the increasing samples can reduce the
upper bound of the generalization error. Hence, NLF is able
to improve the generalization ability of the model.

3.6 Parameter Analysis
In Eq. (2), we employ parameters λs and T , respectively,
to achieve a trade-off between gradient norm and direction,
as well as to divide all samples into three subsets. In ex-
periments, we investigate their variations by setting λs ∈
[10−3, 103], T ∈ [0.1, 0.7], λny = 0.1 and γ = 0.1 and report
the results in the upper row of Figure 4. Obviously, our ML-
CGR obtains good performance if λs is smaller than 0.1 and
T is smaller than 0.3. However, if the value of λs is greater
than 1 and T is greater than 0.5, our MLCGR achieves bad
performance. This demonstrates that large values of T and
λs, respectively, result in more noise labels and recusing the
filtering accuracy, and thus affecting the label correction.

In Eq. (11), we employ parameters λny and γ, respectively,
to enrich the training information and control the generaliza-
tion ability. In experiments, we investigate their variations by
setting λny ∈ [10−3, 103], γ ∈ [10−3, 103, λs = 0.1 and
T = 0.1. We report the results in the bottom row of Figure
4. Obviously, the proposed MLCGR delivers superior perfor-
mance when λny and γ are smaller than 10−1. However, if
the values of λny and γ are greater than 100, the proposed
MLCGR cannot achieve satisfactory performance. This in-
dicates that the effectiveness of the Cross-Entropy loss may
be effected with the large values of λny and γ, thus failing to
provide sufficient high confidence labels for the model.

4 Conclusion
In this paper, we proposed an effective meta-based label cor-
rection method to address the issues in previous methods.
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Figure 4: Classification results of MLCGR under different parame-
ter settings (i.e., λs, T , λny and γ) on CIFAR10 (top), CIFAR100
(middle) and Clothing1M (bottom).

Specifically, we investigated a filter to first partition the en-
tire dataset to three subgroups based on the gradient scores
and then to adaptively conduct data augmentation on every
subgroups. for achieving better filtering subsets. We also
deigned a new generalization regularizer into both the meta-
learner and the base-learner to achieve the generalization ca-
pability of the model. Experimental results on real data sets
verify the effectiveness of the proposed method in terms of
different classification tasks in different noise ratios.
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