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Abstract

Hypergraph Clustering has gained significant at-
tention due to its capability of capturing high-
order structural information. Among different
approaches, contrastive learning-based methods
leverage self-supervised learning and data augmen-
tation, exhibiting impressive performance. How-
ever, most of them come with the following lim-
itations: 1) Augmentation strategies like feature
dropout can potentially disrupt the intrinsic clus-
tering structure of hypergraphs. 2) High computa-
tional demands hinder their real-world application.
To address the above issues, we propose a sim-
ple yet effective Hypergraph Clustering Network
framework (HCN). Specifically, HCN replaces the
hypergraph convolution operation with smoothing
preprocessing, which avoids high computational
complexity. Besides, to retain intrinsic structure, it
develops two key modules: the self-diagonal con-
sistency module and the structure alignment mod-
ule. They respectively align the similarity matrix
with the identity matrix and the structural affin-
ity matrix, which ensures intra-cluster compact-
ness and inter-cluster separability. Extensive ex-
periments on five benchmark datasets demonstrate
HCN’s superiority over state-of-the-art methods.

1 Introduction
Hypergraphs have emerged as a compelling extension of tra-
ditional graphs that can effectively capture high-order rela-
tionships among entities [Bretto, 2013; Antelmi et al., 2023;
Kim et al., 2024]. Unlike traditional graphs, which model
pairwise relationships through edges, hypergraphs extend this
concept by introducing hyperedges that simultaneously con-
nect multiple nodes. This unique property makes hypergraphs
highly effective in modeling complex data structures, such as
social networks [Li et al., 2013; Zhu et al., 2018], biological
systems [Feng et al., 2021; Dai and Gao, 2023], and recom-
mendation systems [Xia et al., 2021; Yu et al., 2021], where
interactions often go beyond simple pairwise relationships.

∗Corresponding Author

Inspired by the remarkable success of graph neural net-
works (GNNs) [Chen et al., 2024b; Chen et al., 2024a;
Chen et al., 2025], recent research has increasingly focused
on the development of hypergraph neural networks (HNNs)
[Feng et al., 2019; Cai et al., 2022; Wang et al., 2023], aim-
ing to leverage hypergraphs to characterize complex relation-
ships. HNNs iteratively aggregate node features into their
incident hyperedges and then propagate the hyperedge fea-
tures back to their incident nodes. Although these meth-
ods demonstrate promising results, they primarily focus on
(semi-)supervised node classification tasks. However, in real-
world scenarios, there exist massive unlabeled data due to
the high expense and complexity of hypergraph data annota-
tion. These methods depend on label guidance and confront
difficulties when processing the unlabeled data. Therefore,
several unsupervised hypergraph learning methods were de-
veloped to mitigate this problem, among which, hypergraph
clustering is the most representative approach.

Hypergraph clustering aims to partition the nodes of a hy-
pergraph into several disjoint groups in an unsupervised man-
ner. Existing hypergraph clustering methods can be broadly
categorized into traditional and deep learning-based methods.
For instance, traditional hypergraph clustering methods in-
clude applying spectral clustering to hypergraphs [Zhou et
al., 2006; Yang et al., 2021]. Nevertheless, these methods are
inadequate for capturing complex and high-order structural
information, while deep approaches can effectively mitigate
this issue. Especially, contrastive learning-based hypergraph
clustering [Wei et al., 2022; Xia et al., 2022; Wu et al., 2024;
Qian et al., 2024] significantly improves representation capa-
bilities as a self-supervised method. Most of them typically
employ various data augmentation strategies, such as simple
feature dropout or structural perturbation, to generate distinct
views of the hypergraph. Subsequently, they utilize HNNs to
learn representations for each view and employ contrastive
learning to maximize the similarity between positive pairs
while minimizing the similarity between negative pairs.

Although hypergraph contrastive clustering has achieved
promising results, they have the following drawbacks: 1) The
data augmentation strategies can inadvertently distort the se-
mantic information of the hypergraph, which risks altering
the intrinsic clustering structure of the hypergraph and un-
dermining its ability to accurately capture high-order depen-
dencies. 2) HNNs typically require iterative updates of node

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

representations during training process, which results in high
computational complexity. Therefore, a simple yet effective
hypergraph clustering network is highly expected.

In this paper, we propose a Hypergraph Clustering Net-
work (HCN) to address the aforementioned issues. Specifi-
cally, it first implements a hypergraph smoothing preprocess-
ing step instead of the hypergraph convolution operation, ef-
fectively reducing the computational complexity. Then, we
feed the preprocessed hypergraph data into unshared Multi-
layer Perceptron (MLP) encoders to generate distinct views.
Additionally, HCN incorporates a self-diagonal consistency
module to enhance consistency by aligning the similarity ma-
trices across different views with the identity matrix, thereby
preserving shared semantic information. In parallel, it intro-
duces the structure alignment module to capture the intrinsic
structural patterns by aligning the similarity matrices with the
hypergraph’s structural affinity matrix, which ensures intra-
cluster compactness and inter-cluster separability. Finally, we
fuse the representations from different views for clustering.
The major contributions are summarized as follows:

• We propose a simple yet effective hypergraph clustering
network, which explores hypergraph learning in cluster-
ing tasks.

• We utilize hypergraph smoothing preprocessing instead
of hypergraph convolution for structural information
representation with better computational efficiency.

• We introduce the self-diagonal consistency module and
structure alignment module to maintain consistency and
simultaneously capture the intrinsic hypergraph struc-
tural patterns.

2 Related Work
In recent years, advancements in HNNs have demonstrated
significantly improved performance by effectively exploring
high-order information inherent in complex data structures.
HGNN [Feng et al., 2019] is the first work to propose hy-
pergraph neural networks, extending GCNs to a more general
form. Unignn [Huang and Yang, 2021] is a unified frame-
work that extends GNNs to hypergraphs, enabling seamless
adaptation of advanced GNN architectures for effective hy-
pergraph representation learning. HSL [Cai et al., 2022] re-
fines hypergraph structures and trains HNNs end-to-end using
sampling and contrastive learning to enhance performance.
AllSet [Chien et al., 2021] introduces a highly flexible and ex-
pressive hypergraph neural network framework by leveraging
multiset functions. However, these methods primarily focus
on node classification guided by label information, making
them unsuitable for unsupervised scenarios.

Given the powerful representation learning capabilities of
contrastive learning, researchers have leveraged it for hyper-
graph representation learning. HyperGCL [Wei et al., 2022]
improves hypergraph neural networks in low-label settings
by combining domain-driven and generative augmentation
strategies to construct effective contrastive views. MMACL
[Lee and Chae, 2024] integrates high-order and pairwise rela-
tionships through mixed-attention mechanisms and leverages
multi-view contrastive learning for more expressive node rep-

resentations. TriCL [Lee and Shin, 2023] introduces tri-
directional contrastive learning on hypergraphs, capturing
both node- and group-level structural information through
three complementary contrastive objectives. CHGNN [Song
et al., 2024] combines adaptive view generation, enhanced
hypergraph encoding, and contrastive learning to achieve su-
perior classification accuracy on hypergraphs. CCL [Wu et
al., 2024] alternates contrastive learning between standard
graphs and hypergraphs to collaboratively enhance node rep-
resentations. However, on the one hand, inappropriate data
augmentation strategies may alter the semantic information of
hypergraphs, thereby disrupting the intrinsic clustering struc-
ture of hypergraphs. On the other hand, these approaches
often involve substantial computational overhead, which hin-
ders their practicality in real-world scenarios.

3 The Proposed Method
In this section, we introduce a novel framework for a Hy-
pergraph Clustering Network (HCN). As illustrated in Fig-
ure 1, the framework is built upon three pivotal modules: hy-
pergraph data preprocessing, self-diagonal consistency mod-
ule, and structure alignment module. The subsequent sections
will provide an in-depth exploration of each module, outlin-
ing its mechanisms and contributions to the overall approach.

3.1 Notations and Problem Definition
Notations: Consider a hypergraph data H = {X,H, E}, let
V = {v1, v2, ..., vn} represents a set of n nodes belonging
to k distinct classes, and E = {e1, e2, ..., em} denotes a set
of hyperedges. The attribute matrix of all nodes is given by
X ∈ Rn×d, where d indicates the dimension of the node at-
tributes. The incidence matrix H ∈ {0, 1}n×m encodes the
relationship between nodes and hyperedges, where Hij = 1
if node vi is contained in hyperedge ej , and Hij = 0 other-
wise. We define Dv ∈ Rn×n as the diagonal degree matrix
of nodes and DE ∈ Rm×m as the diagonal degree matrix of
hyperedges. For node vi and hyperedge ek, Di

v represents the
number of hyperedges connected to vi, while Dk

E denotes the
number of nodes contained in ek.
Problem Statement: The objective of deep hypergraph clus-
tering is to encode nodes using a neural network in an un-
supervised manner and then partition them into several dis-
joint groups. In general, the hypergraph neural network F
embeds the node attribute X and structural information H of
the hypergraph into low-dimensional representations Z. Sub-
sequently, clustering algorithms such as k-means or spectral
clustering are employed to partition these low-dimensional
representations into k disjoint groups.

3.2 Hypergraph Data Preprocessing
Existing hypergraph methods employ hypergraph neural net-
works to capture meaningful node features by iteratively up-
dating hyperedge representations via their incident nodes and
node representations via their incident hyperedges [Feng et
al., 2019; Gao et al., 2022; Lee and Shin, 2023; Kim et
al., 2024]. However, these methods often require substantial
computational resources, which restricts their practical appli-
cability.
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Unshared 
Parameters
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Module

Structure 
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Node representation

Pre-processed 
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Cross-view 
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Cross-view 
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Figure 1: The framework of our proposed HCN. HCN consists of three key modules: hypergraph data preprocessing (HDP), self-diagonal
consistency module (SDC), and structure alignment module (SAM). Specifically, HDP separates the exploitation of hypergraph structural
information from the model training process. SDC ensures the consistency of individual node representations across different views by
aligning cross-view similarity matrices with the identity matrix, thereby preserving shared semantic information while mitigating view-
specific noise. SAM aligns node representations with the hypergraph’s structural relationships by minimizing the discrepancy between the
off-diagonal elements of the similarity matrix and the structural affinity matrix, ensuring that nodes within the same hyperedge exhibit
consistent semantic properties.

Inspired by [Tang et al., 2024], we utilize hypergraph
smoothing preprocessing instead of hypergraph convolution
for structural information representation, thereby reducing
the computational burden. Specifically, we first define the
hyperedge weight matrix, which is calculated as:

M =
m∑

k=1

Hik ·Hjk

Dk
E

. (1)

That is, the numerator equals 1 if ek contains both vi and
vj simultaneously; otherwise, it equals 0. Then, we generate
the hypergraph propagation matrix P as follows:

P = (1− α)t(D̂−1/2M̂D̂−1/2)t

+ α
t−1∑
l=0

(1− α)l(D̂−1/2M̂D̂−1/2)l,
(2)

where M̂ = M + In, and D̂ ∈ Rn×n denotes the diagonal
degree matrix corresponding to M̂. t represents the number
of propagation layers. Specifically, each propagation step ex-
tends the spread of node information to more distant neigh-
bors. When t = 1, the propagation is limited to direct neigh-
bors, while t > 1 indicates that the information is propagated
to nodes at greater distances. Additionally, a high value of α
places greater emphasis on preserving the intrinsic informa-
tion of each node, whereas a lower α amplifies the contribu-
tion of information from neighboring nodes. Then, we obtain

the preprocessed hypergraph data, which can be represented
as follows:

X̂ = PX, (3)

where X̂ denotes the preprocessed hypergraph data. Through
the preprocessing process, we can train the processed hyper-
graph data using a simple network, significantly reducing the
training time.

3.3 Self-Diagonal Consistency Module
The preprocessed hypergraph data is input into MLP encoders
to generate node representations, which can be formulated as
follows:

Zv = MLPv(X̂), v = {1, 2}, (4)

where MLP1 and MLP2 represent two unshared MLP en-
coders, while Z1 and Z2 correspond to the first and second
views of node representations, respectively. By mapping X̂
into different subspaces, this approach captures diverse se-
mantic information. Unlike other data augmentation tech-
niques (e.g., feature dropout), this method preserves the hy-
pergraph’s structural and attribute integrity, thereby avoiding
alterations to its semantic information.

To ensure consistency among node representations across
different views, we introduce the self-diagonal consistency
module. Specifically, the similarity between the two node
representations, Z1 and Z2, is formally defined as follows:

S =
Z1 · (Z2)⊤

∥Z1∥ ∥Z2∥
, (5)
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where S ∈ Rn×n is a cross-view similarity matrix. To keep
the consistency of individual nodes across different views, we
align the similarity matrix with the identity matrix. This can
be expressed as:

Lc =
1

n

n∑
i=1

(Sii − Iii)
2, (6)

where I ∈ Rn×n is an identity matrix. By minimizing this
loss, the alignment of corresponding node representations
across views is effectively promoted. This ensures that each
node’s representation remains consistent and invariant across
different views, preserving the shared semantic information
while mitigating the influence of view-specific noise.

3.4 Structure Alignment Module
Considering the structural information inherent in hyper-
graphs, nodes within the same hyperedge are more likely to
exhibit similar semantic characteristics. To effectively cap-
ture and reinforce this property, we propose the structure
alignment module. This module aims to align the relation-
ships between nodes within the hypergraph structure, ensur-
ing the consistency of their representations. Specifically, to
quantify the relationships between nodes, we compute the
product of the incidence matrix H and its transpose. For-
mally, it is defined as follows:

A = HH⊤, (7)

where A ∈ Rn×n represents the structural affinity matrix.
Here, Aij encodes the strength of the relationship between
nodes vi and vj based on their shared membership in hyper-
edges.

To ensure structural consistency, we align the off-diagonal
elements of the cross-view similarity matrix S with the corre-
sponding elements of A. The structure alignment loss is thus
defined as:

Ls =
1

n2 − n

n∑
i=1

n∑
j=1,j ̸=i

(Sij −Aij)
2. (8)

By minimizing Ls, the structure alignment module encour-
ages the learned representations to align with the hypergraph
structure, promoting semantic coherence among nodes that
share hyperedges. This ensures that the hypergraph’s intrin-
sic connectivity patterns are preserved, ultimately enhancing
the quality and reliability of the node representations across
different views.

3.5 The Objective Function
The objective function of the proposed HCN framework inte-
grates the self-diagonal consistency loss Lc and the structure
alignment loss Ls. In summary, the objective function is de-
fined as follows:

L = Lc + βLs, (9)
where β is a trade-off parameter that balances the contribu-
tions of Lc and Ls.

To obtain the final clustering results, we first fuse node rep-
resentations Z1 and Z2 as follows:

Z =
1

2
(Z1 + Z2). (10)

CORA CITESEER PUBMED CORA-CA 20NEWS
Nodes 1,434 1,458 3,840 2,388 16,242

Hyperedges 1,579 1,079 7,963 1,072 100
Memberships 4,786 3,453 34,629 4,585 65,451

Features 1,433 3,703 500 1,433 100
Classes 7 6 3 7 4

Table 1: Statistical characteristics of five datasets used in our exper-
iments.

The fused representation Z is then utilized as input to the k-
means clustering to partition the nodes into multiple disjoint
groups.

4 Experiments
4.1 Experimental Settings
Benchmark Datasets. The experiments are conducted on
five benchmark hypergraph datasets, including CORA [Sen
et al., 2008], CITESEER [Sen et al., 2008], PUBMED [Sen
et al., 2008], CORA-CA [Rossi and Ahmed, 2015], and
20NEWS [Dua and Graff, 2017]. Among these datasets,
CORA, CITESEER, and PUBMED are co-citation datasets,
while CORA-CA is a co-authorship dataset. The 20NEWS
dataset is sourced from the UCI Categorical Machine Learn-
ing Repository. The detailed characteristics and statistics of
datasets are provided in Table 1.
Comparison Methods. To validate the effectiveness of the
proposed HCN, we perform a comparative analysis against
state-of-the-art baseline methods, encompassing four deep
graph clustering methods and four deep hypergraph methods.
Deep graph clustering methods include CCGC [Yang et al.,
2023a], HSAN [Liu et al., 2023], CONVERT [Yang et al.,
2023b], NS4GC [Liu et al., 2024], while deep hypergraph
methods encompass HyperGCL [Wei et al., 2022], MMACL
[Lee and Chae, 2024], TriCL [Lee and Shin, 2023], CHGNN
[Song et al., 2024].
Evaluation Metrics. We assess clustering performance using
four standard metrics: Accuracy (ACC), Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI), and Macro
F1-score (F1), where higher values indicate superior perfor-
mance. To avoid the influence of randomness, the mean and
standard deviation of these metrics are calculated over 10 in-
dependent runs for each method.
Implementation Details. The experiments are conducted on
a system equipped with an Intel Core i9-13900K CPU, an
NVIDIA GeForce RTX 4090 GPU, and 64GB of RAM. All
experiments are implemented using the Pytorch framework,
with a maximum training epoch limit of 400. The Adam op-
timizer [Kingma, 2014] is used to minimize the total loss, and
the k-means algorithm is applied to the fused embeddings to
obtain the final clustering results. For deep graph clustering
methods, since these methods cannot be directly applied to
hypergraphs, we transform the hypergraphs into graphs using
clique expansion before applying them.

4.2 Comparison Results
In Table 2, we comprehensively compare our proposed
method with the other eight state-of-the-art methods on four
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Dataset Metric
Graph Methods Hypergraph Methods

CCGC HSAN CONVERT NS4GC HyperGCL MMACL TriCL CHGNN HCN

CORA

ACC 69.75±2.58 71.95±0.73 71.46±1.26 73.11±2.12 57.29±3.78 73.50±0.61 75.46±1.42 52.63±3.58 75.95±0.41
NMI 50.59±3.55 53.32±0.74 52.61±1.18 54.46±2.99 38.51±3.09 56.16±0.93 57.20±0.98 41.21±2.35 58.52±0.59
ARI 44.94±4.28 47.83±0.90 46.89±1.48 48.64±3.68 31.08±3.93 49.63±0.71 55.60±1.76 30.15±3.41 56.65±0.69
F1 64.97±2.72 67.99±1.35 67.12±1.97 69.81±1.87 55.99±3.74 69.37±2.33 72.69±2.76 46.33±5.04 73.54±0.48

CITESEER

ACC 67.97±2.30 69.72±0.62 65.84±1.02 69.47±0.92 49.11±2.54 68.78±0.78 69.73±0.79 50.96±2.26 71.67±0.86
NMI 42.64±2.49 44.61±0.68 40.04±1.40 43.28±1.26 24.81±3.28 44.93±1.06 44.27±0.91 30.78±2.04 46.85±0.63
ARI 41.93±3.07 45.24±1.28 40.27±1.67 44.68±1.75 22.85±3.43 45.13±0.99 45.95±1.34 28.36±3.03 47.75±1.26
F1 61.05±2.40 63.43±1.78 60.84±1.45 61.70±2.03 45.07±2.56 62.25±1.05 63.74±1.25 44.02±1.66 64.55±1.70

PUBMED

ACC 64.84±0.78 65.96±1.00 70.17±2.08 68.08±0.58 60.96±5.39 68.42±0.31 68.46±1.39 62.37±3.58 72.45±0.38
NMI 28.55±0.54 28.34±0.65 29.25±2.13 27.98±0.35 20.32±4.75 31.69±1.07 33.34±0.83 23.99±4.34 33.07±0.79
ARI 25.71±0.74 26.67±1.10 31.62±3.47 28.97±0.57 19.94±5.65 29.87±0.48 30.43±1.44 21.57±4.53 36.72±0.79
F1 63.85±0.76 65.09±1.00 68.33±2.26 67.37±0.61 60.35±5.74 67.97±0.30 67.82±1.34 62.32±3.73 71.01±0.28

CORA-CA

ACC 62.45±2.30 64.02±1.39 64.70±2.31 67.45±0.87 47.42±4.93 71.27±0.94 72.04±1.51 42.50±0.90 73.59±0.74
NMI 42.12±1.98 44.86±0.92 42.09±2.25 46.05±2.10 28.66±4.32 51.60±1.36 51.87±2.44 29.44±1.02 53.66±1.20
ARI 37.24±2.65 37.83±1.81 37.10±2.95 41.65±1.75 21.75±4.83 46.43±0.91 47.96±2.07 16.78±4.04 51.04±1.68
F1 56.57±3.84 60.32±4.31 63.51±2.28 64.18±2.94 44.44±4.71 67.80±2.00 69.28±1.41 41.74±1.70 71.68±0.69

20NEWS

ACC 56.93±0.79

OOM

58.46±1.27 65.83±1.08 65.24±3.47

OOT

71.62±0.81 69.35±3.12 74.85±1.14
NMI 20.76±1.64 22.77±1.54 31.49±1.12 30.17±3.30 40.71±2.05 39.22±2.48 41.83±1.57
ARI 24.75±1.05 27.31±1.70 33.22±1.02 34.48±4.51 44.04±2.71 40.29±4.64 49.90±1.89
F1 48.82±0.85 52.81±1.07 57.33±1.48 61.40±3.51 66.66±1.99 64.70±4.61 70.57±1.51

Table 2: The clustering performance is assessed across ten runs on five benchmark datasets using four evaluation metrics, with results reported
as mean values accompanied by standard deviations. The best and second-best performances are highlighted in Red and Blue, respectively.
‘OOM’denotes the out-of-memory failure, while ‘OOT’signifies no results are obtained within 24 hours.

Dataset
Modules Metrics

HDP SDC SAM ACC NMI ARI F1

CORA

✔ ✔ ✗ 74.24±0.81 57.17±1.15 51.08±1.34 70.52±0.86

✔ ✗ ✔ 72.75±1.18 56.12±0.72 49.34±1.11 68.47±1.82

✗ ✔ ✔ 66.03±1.71 45.62±1.61 39.62±1.79 64.32±1.83

✔ ✔ ✔ 75.95±0.41 58.52±0.59 56.65±0.69 73.54±0.48

CITESEER

✔ ✔ ✗ 71.42±0.85 46.33±0.58 47.26±1.17 63.89±1.77

✔ ✗ ✔ 67.01±1.92 41.90±1.92 41.19±2.58 61.98±1.56

✗ ✔ ✔ 67.52±1.19 41.34±0.75 41.09±1.30 61.54±1.18

✔ ✔ ✔ 71.67±0.86 46.85±0.63 47.75±1.26 64.55±1.70

PUBMED

✔ ✔ ✗ 71.22±1.76 33.16±1.57 33.71±2.44 70.11±1.59

✔ ✗ ✔ 68.17±0.96 31.14±1.83 29.26±1.63 66.96±1.37

✗ ✔ ✔ 65.62±0.41 26.10±0.47 25.55±0.48 65.63±0.43

✔ ✔ ✔ 72.45±0.38 33.07±0.79 36.72±0.79 71.01±0.28

CORA-CA

✔ ✔ ✗ 69.18±1.55 49.50±1.71 43.63±1.56 66.44±2.14

✔ ✗ ✔ 64.15±1.91 47.24±1.15 37.84±1.82 59.75±3.39

✗ ✔ ✔ 64.64±2.22 43.66±1.41 36.47±3.70 60.97±3.24

✔ ✔ ✔ 73.39±0.74 53.66±1.20 51.04±1.68 71.68±0.69

20NEWS

✔ ✔ ✗ 69.16±0.71 40.16±1.43 42.14±1.37 65.15±1.26

✔ ✗ ✔ 69.47±0.52 40.78±1.67 42.47±0.49 66.63±0.21

✗ ✔ ✔ 67.39±0.95 36.29±3.23 37.95±1.28 63.70±2.03

✔ ✔ ✔ 74.85±1.14 41.83±1.57 47.90±1.89 70.57±1.51

Table 3: Ablation study on five datasets. ✔ denotes HCN with this
module, ✗ denotes HCN without this module.

evaluation metrics, where the best and the sub-optimal per-
formance are denoted in red and blue, respectively. From the
results, we have the following observations:

• Our method consistently outperforms all compared ap-
proaches across most datasets, demonstrating its ro-
bustness and effectiveness. Notably, on the 20NEWS
dataset, our approach achieves substantial improvements
over the second-best method, TriCL, with performance
gains of 3.23% in ACC, 1.12% in NMI, 5.86% in ARI,
and 3.91% in F1. These significant improvements un-
derscore the effectiveness of our model in leveraging

(a) CORA (b) CITESEER

(c) PUBMED (d) CORA-CA

Figure 2: The sensitivity analysis of hyper-parameter β across four
evaluation metrics on four datasets.

hypergraph structure information to capture meaning-
ful and complex relationships among nodes, leading to
more precise clustering results.

• Compared with four other state-of-the-art contrastive
learning-based hypergraph methods, our method shows
significant advantages. These methods employ various
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Figure 3: The experimental results of different data augmentation strategies across four datasets.
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Figure 4: The sensitivity analysis of hyper-parameter α across two
evaluation metrics on four datasets.

data augmentation strategies to generate different views,
treating the same node across views as positive samples
and different nodes as negative samples. In contrast,
our method makes full use of the inherent structure of
the hypergraph to define positive and negative pairs in a
more effective manner. Nodes that share similar struc-
tural properties are regarded as positive samples, while
those with distinct structural characteristics are treated
as negative samples. Another critical distinction is that
many contrastive learning-based methods rely on sim-
ple feature dropout or structural perturbation augmen-
tations to construct different views, which can inadver-
tently alter the semantic information of the hypergraph.
Our method, however, avoids any modification to the hy-
pergraph itself. Instead, we employ unshared encoders
to map the hypergraph into different subspaces. This
approach allows for richer and more discriminative rep-
resentations without the risk of information loss caused
by augmentation techniques.

4.3 Ablation Studies
In this subsection, we conduct ablation experiments to verify
the effectiveness of each module.

Ablation on Model Modules. We start by examining the
contributions of key modules in our proposed framework. For
simplicity, we denote hypergraph data preprocessing, self-
diagonal consistency module, and structure alignment mod-
ule as ‘HDP’, ‘SDC’, and ‘SAM’, respectively. From the re-
sults in Table 3, the best performance can be achieved when
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Figure 5: The sensitivity analysis of hyper-parameter t across two
evaluation metrics on four datasets.

all modules are considered. Omitting any single module re-
sults in a noticeable decline in clustering accuracy, empha-
sizing the critical role each plays in enhancing the method’s
overall performance.

Ablation on Data Augmentation Strategies. We also
conduct an in-depth analysis of the impact of different data
augmentation strategies on the results. Specifically, three
strategies are evaluated: drop features, drop incidence, and
permute hyperedges. The detailed experimental results are
illustrated in Figure 3, which clearly demonstrate that our
strategies achieves superior performance compared to other
strategies. Unlike the other three augmentation strategies, our
method does not alter the hypergraph itself. Instead, we use
unshared encoders to project the hypergraph into distinct sub-
spaces, thereby preserving its semantic information.

4.4 Parameter Sensitivity Analysis
In this subsection, we study the sensitivity of hyper-
parameters: the trade-off hyper-parameter β, the number of
layers t, and hyper-parameter α on four datasets.

Effect of hyper-parameter β. To evaluate the impact of
hyper-parameter β, we conduct sensitivity analysis across
four benchmark datasets: CORA, CITESEER, PUBMED,
and CORA-CA. The results, presented in Figure 2, illustrate
the performance variations under different values of β, which
are chosen from the set {0.01, 0.1, 1, 10, 100}. From the re-
sults, we observe that the clustering performance remains rel-
atively stable with minor fluctuations as β increases. Notably,
the best overall performance is achieved when β = 1, and we
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Dataset
Graph Methods Hypergraph Methods

CCGC HSAN CONVERT NS4GC HyperGCL MMACL TriCL CHGNN Ours

CORA 7.90 5.07 10.13 5.41 34.25 658.67 36.56 16.39 3.36
CITESEER 6.25 5.71 11.58 4.75 29.18 540.10 27.72 12.73 2.56
PUBMED 13.86 21.03 9.31 8.39 160.99 9792.04 218.17 734.85 2.83
CORA-CA 11.50 10.78 19.03 8.47 38.18 1048.05 34.10 17.12 3.71
20NEWS 52.78 OOM 53.83 429.53 181.38 OOT 139.60 23.02 22.50

Avg. 18.46 - 20.78 91.31 88.80 - 91.23 160.82 6.99

Table 4: Comparison of training time with eight baselines, with all results reported in seconds. The best and second-best results are highlighted
in Red and Blue, respectively. ‘Avg.’indicates the average training time across the five datasets.

CCGC HSAN CONVERT NS4GC HyperGCL MMACL TriCL CHGNN Ours

Figure 6: The visualization of consensus node representation using the t-SNE algorithm. The first row and second row correspond to CORA
and PUBMED, respectively.

set β = 1 as the default value for subsequent experiments.
Effect of hyper-parameter α and t. In addition, we fur-

ther investigate how the hyper-parameter α and t in the hyper-
graph data preprocessing module influence clustering perfor-
mance. Following by [Tang et al., 2024], α is selected from
the set {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5},
while t is chosen from {1, 2, 4, 8, 16}. Figure 4 and 5 il-
lustrate the variations in ACC and NMI of our approach as
α and t change. From Figure 4, we observe that for the
PUBMED dataset, clustering performance decreases as α in-
creases. In contrast, for the CORA and CORA-CA datasets,
clustering performance improves with increasing α until it
reaches a peak, after which it gradually declines. A larger α
value places greater emphasis on preserving the intrinsic in-
formation of the node, whereas a smaller α value amplifies
the impact of information derived from neighboring nodes.
From Figure 5, we can see that as t increases, clustering per-
formance gradually improves before leveling off. Based on
these observations, selecting appropriate values of α and t is
critical for achieving optimal clustering performance.

4.5 Efficiency Comparison
We evaluate the training efficiency of HCN by comparing
it with eight baselines on five datasets under identical 400-
epoch settings. As shown in Table 4, HCN achieves the
fastest training speed across all datasets, outperforming re-
cent contrastive hypergraph methods by at least 12× on aver-
age. This efficiency stems from two key designs: (1) Unlike
the hypergraph neural networks used in hypergraph methods,
our architecture consists of unshared MLPs, significantly re-
ducing the number of network parameters. (2) The hyper-
graph data preprocessing module employs smoothing prepro-

cessing instead of hypergraph convolution, significantly sim-
plifying the training process.

4.6 Visualization Analysis
In this subsection, we employ t-SNE [Van der Maaten and
Hinton, 2008] for visualizing the clustering results, providing
an intuitive perspective on the effectiveness of HCN in ad-
dressing the CORA and PUBMED datasets. As illustrated in
Figure 6, the consensus representation derived from our ap-
proach demonstrates a significantly more compact and well-
defined cluster structure. This enhanced compactness high-
lights HCN’s superior capability to capture the intrinsic rela-
tionships and latent patterns within the data, setting it apart
from the other baseline methods.

5 Conclusion
In this work, we propose a simple yet effective hypergraph
clustering network, named HCN, aiming at addressing the
limitations of hypergraph learning in clustering tasks. Specif-
ically, we first employ hypergraph smoothing preprocessing
to simplify the process and enhance training efficiency. Then,
the preprocessed hypergraph data is passed through unshared
encoders to generate different views, thereby preserving the
original semantic information. Next, the self-diagonal consis-
tency module enhances the intrinsic coherence of node rep-
resentations by increasing the self-correlation of each node.
Finally, to reveal the structural relationships between nodes,
we adopt the structure alignment module, which employs the
structural information of the hypergraph to enhance the rep-
resentation learning capability. Extensive experiments on five
benchmark datasets demonstrate the effectiveness of our pro-
posed method.
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