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Abstract

Graph contrastive learning (GCL) has achieved re-
markable success by following the computer vision
paradigm of preserving absolute similarity between
augmented views. However, this approach faces
fundamental challenges in graphs due to their dis-
crete, non-Euclidean nature—view generation of-
ten breaks semantic validity and similarity veri-
fication becomes unreliable. Through analyzing
11 real-world graphs, we discover a universal pat-
tern transcending the homophily-heterophily di-
chotomy: label consistency systematically dimin-
ishes as structural distance increases, manifesting
as smooth decay in homophily graphs and oscilla-
tory decay in heterophily graphs. We establish the-
oretical guarantees for this pattern through random
walk theory, proving label distribution convergence
and characterizing the mechanisms behind differ-
ent decay behaviors. This discovery reveals that
graphs naturally encode relative similarity patterns,
where structurally closer nodes exhibit collectively
stronger semantic relationships. Leveraging this in-
sight, we propose RELGCL, a novel GCL frame-
work with complementary pairwise and listwise
implementations that preserve these inherent pat-
terns through collective similarity objectives. Ex-
tensive experiments demonstrate that our method
consistently outperforms 20 existing approaches
across both homophily and heterophily graphs, val-
idating the effectiveness of leveraging natural rela-
tive similarity over artificial absolute similarity.

1 Introduction
Graph contrastive learning (GCL) has emerged as a pow-
erful approach for graph self-supervised learning, demon-
strating strong performance across node classification, clus-
tering, and similarity search tasks [Velickovic et al., 2019;
Zhu et al., 2020b; Thakoor et al., 2021]. Following the
success in computer vision [He et al., 2020; Chen et al.,
2020], these methods typically generate multiple views of the

∗Corresponding author.

(a)

generating views similar

alkene

nonsensicalmolecule

aspirin

different
properties

invalid 
structures

similar? dissimilar?

(b) (c)

Figure 1: Visual vs. Graph contrastive learning: (a) image views
preserve semantics, (b) graph augmentation may alter properties,
and (c) graph view similarity is hard to assess.

same graph through augmentation techniques, aiming to max-
imize the agreement between different views of the same in-
stance. This approach implicitly assumes that different views
should maintain absolute similarity in the embedding space—
an assumption that has proved powerful for visual representa-
tions [Chen and He, 2021] (as shown in Figure 1 (a)). How-
ever, graphs fundamentally differ from images in their dis-
crete, non-Euclidean nature [Thakoor et al., 2021]. This fun-
damental difference creates two critical challenges. First,
view generation often breaks semantic validity (as shown in
Figure 1 (b))—while rotating an image preserves its mean-
ing, removing an edge from a molecular graph could yield
an entirely different chemical compound with distinct proper-
ties [Lee et al., 2022]. Second, and more fundamentally, sim-
ilarity verification becomes unreliable (as shown in Figure 1
(c))—while humans can easily verify if two image views
represent the same object, judging similarity between graph
views often exceeds human intuition [Hou et al., 2022], espe-
cially for abstract graphs representing complex relationships.

These challenges suggest that enforcing absolute similar-
ity through artificial views fundamentally misaligns with the
nature of graph data. Rather than imposing external simi-
larity constraints, a more promising direction would be to
understand and leverage the inherent structural patterns that
naturally exist in graphs [Bramoullé et al., 2012; Zhu et al.,
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2020a]. This leads us to a more fundamental question: how
is similarity inherently encoded in graph structures them-
selves? While traditional similarity analysis in graphs focuses
on immediate neighborhood relationships—characterizing
graphs as either homophily graphs [McPherson et al., 2001]
where similar nodes connect, or heterophily graphs [Pei et al.,
2020] where dissimilar nodes connect—such local character-
ization fails to capture broader similarity patterns that could
provide richer signals for representation learning.

To obtain this broader perspective, we examine how node
labels distribute across multi-hop neighborhoods in 11 real-
world graph datasets: 8 homophily graphs and 3 heterophily
graphs (as shown in Figure 2). Through quantifying seman-
tic relationships via “label consistency"—the average pro-
portion of same-labeled nodes at each structural distance—
we discover an unexpected universal pattern: despite their
distinct local connectivity patterns, both types of graphs
show systematic diminishing of label consistency as struc-
tural distance increases. While this decay manifests differ-
ently (smooth in homophily graphs versus

✿✿✿✿✿✿✿✿
oscillatory in het-

erophily graphs), it reveals a fundamental principle: nodes
that are structurally closer tend to share stronger semantic re-
lationships collectively. We rigorously validate this empiri-
cal observation through random walk theory [Lovász, 1993;
Levin and Peres, 2017], establishing the first theoretical guar-
antees on universal label distribution convergence and re-
vealing the underlying mechanisms of distinct decay pat-
terns in homophily versus heterophily graphs. Our discov-
ery fundamentally shifts how we define similarity in GCL—
moving away from artificially imposed absolute similarity
(“whether two instances are similar") towards relative sim-
ilarity (“which instance is more similar to the anchor") in-
herent in structural proximity. Based on these theoretical in-
sights, we develop RELGCL (RELative Graph Contrastive
Learning), a novel GCL framework that leverages natural
relative similarity patterns encoded in structural proximity.
Through carefully designed collective similarity objectives,
we propose two complementary implementations of REL-
GCL (RELGCLPAIR and RELGCLLIST) that preserve these
inherent patterns from different perspectives. Extensive ex-
periments demonstrate state-of-the-art performance across 8
homophily and 3 heterophily graphs, consistently outper-
forming 20 existing approaches while showing strong gen-
eralization to large-scale graphs and diverse tasks.

2 Universal Decay Patterns in Graphs
Having identified the limitations of imposing absolute simi-
larity through artificial views, we now investigate how sim-
ilarity is naturally encoded in graph structures. While tradi-
tional similarity analysis of graph focuses on local neighbor-
hood patterns, our investigation extends to a broader neigh-
borhood range, revealing a universal property that goes be-
yond local homophily-heterophily differences.

In this section, we first present empirical evidence for
this universal pattern, followed by theoretical analysis that
explains its underlying mechanisms. Before the subse-
quent analysis, let’s first define the basic notation. Let
G = {V, E ,X,A} denote a graph with N nodes, where
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Figure 2: Label consistency (the average proportion of neighbors
sharing the same label as the anchor node) decay patterns: smooth
monotonic decay in homophily graphs versus

✿✿✿✿✿✿✿✿
oscillatory

✿✿✿✿✿
decay in

heterophily graphs, both exhibiting an overall diminishing trend.

V = {vi}Ni=1 is the node set, E ⊆ V × V is the edge
set, X ∈ RN×D is the node feature matrix, and A ∈
RN×N is the adjacency matrix. For each node vi, let
N (vi)

[n] denote its n-th hop neighbors, and yi denote the
label of node vi. When considering a k-hop neighborhood
range, we denote the set of neighbors at different hops as
N(vi)[k] = {N (vi)

[1],N (vi)
[2], . . . ,N (vi)

[k],N (vi)
[k+1]},

where N (vi)
[k+1] contains all nodes beyond k hops.

2.1 Empirical Evidence of Universal Decay
We examine a collection of 11 real-world datasets: 8 ho-
mophily graphs and 3 heterophily graphs. To quantify se-
mantic relationships at different structural scales, we intro-
duce the empirical label consistency measure (LC emp). For
a given structural distance k, LC emp(k) captures the average
proportion of k-hop neighbors sharing the same label as the
anchor node:

LC emp(k) =
1

N

∑
vi∈V

|{vj : vj ∈ N (vi)
[k] ∧ yi = yj}|

|N (vi)[k]|
. (1)

Our analysis of LC emp(k) across different structural dis-
tances reveals how label consistency evolves in different
types of graphs (as shown in Figure 2):

• Homophily Graphs: Display smooth, monotonic decay in
label consistency, reflecting their local preference for simi-
lar neighbors. Starting from high initial values (LC emp(1)
typically > 0.5), the consistency gradually diminishes as
structural distance increases.

• Heterophily Graphs: Exhibit
✿✿✿✿✿✿✿✿
oscillatory

✿✿✿✿✿✿
decay

✿✿✿✿✿✿✿
patterns,

where label consistency may occasionally increase at cer-
tain hops due to the graph’s tendency to connect dissimi-
lar neighbors, though the overall trend remains downward.
Starting from low initial values (LC emp(1) typically < 0.5),
the pattern shows possible local increases but maintains a
decreasing trend with structural distance.

Despite these distinct decay patterns, a universal property
emerges: label consistency exhibits an overall diminishing
trend with increasing structural distance across both graph
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types. This decay pattern is statistical in nature. At each
hop, we can still find nodes sharing the same label as the an-
chor node, but the proportion of same-labeled nodes among
all neighbors at each hop, when averaged across all nodes in
the graph, exhibits a clear decreasing trend as structural dis-
tance increases. Such universal decay suggests a fundamental
connection between structural proximity and semantic simi-
larity in graphs, independent of whether the graph exhibits
homophily or heterophily.

2.2 Random Walk Theory of Label Consistency
While these empirical observations reveal an intriguing uni-
versal pattern transcending local connectivity differences,
they raise fundamental questions: Why does label consis-
tency universally decay with distance? What mechanisms
drive the distinct decay patterns in homophily versus het-
erophily graphs? To answer these questions, we turn to ran-
dom walk theory [Lovász, 1993; Levin and Peres, 2017].

Following the notations defined in Section 2, consider a
random walk starting from a node with label i in a graph with
c distinct labels. We analyze this process at two levels: the
microscopic node-level transitions, where a walker moves be-
tween individual nodes with probability Puv = Auv/deg(u),
and the macroscopic label-level dynamics, where we track
transitions between different label classes. At the label level,
let pk(j|i) denote the probability of reaching a node with la-
bel j after k steps from any node with label i. The theoreti-
cal label consistency LC prob(k) = pk(i|i) then measures the
probability of returning to a node with the same label after
k steps. Let l(v) denote the label of node v. The evolution
of these probabilities is governed by a label transition matrix
T . We establish the following fundamental results about label
distribution dynamics:
Theorem 1 (Label Distribution Convergence). For a con-
nected graph where each node has a self-loop, there ex-
ists a unique probability distribution π (where πj =∑

u:l(u)=j deg(u)∑
v deg(v) ) such that:

lim
k→∞

pk(j|i) = πj , (2)

moreover, the convergence is exponential:

|pk(j|i)− πj | ≤ Cλk, (3)
where C > 0 and λ < 1 are constants from the graph.

Proof Sketch. The key is showing T satisfies Markov chain
properties. Perron-Frobenius theorem yields the unique sta-
tionary distribution π and exponential convergence.

This stationary distribution πj represents the proportion of
edges connected to nodes with label j, naturally characteriz-
ing the structural importance of different labels. This con-
vergence result leads us to analyze how Label Consistency
evolves during this process:
Corollary 1 (Label Consistency Decay). The Label Consis-
tency LC prob(k) = pk(i|i) exhibits a decay pattern where:

LC prob(0) = 1,

lim
k→∞

LC prob(k) = πi < 1,

|LC prob(k)− πi| ≤ Cλk.

(4)

Proof Sketch. Graph connectivity ensures πi < 1 since some
edges must connect to nodes with other labels. Exponential
decay follows from spectral decomposition of T k.

To further explain the distinct decay patterns in homophily
versus heterophily graphs, we analyze the spectral properties
of their transition matrices in a simplified two-label setting:

Proposition 1 (Decay Pattern Characterization). In a two-
label simplified model:

• Homophily Graphs: T ≈
[

p 1− p
1− p p

]
with p ≫ 0.5,

leading to λ2 = 2p− 1 > 0

• Heterophily Graphs: T ≈
[
1− p p
p 1− p

]
with p ≫ 0.5,

resulting in λ2 = 1− 2p < 0

These eigenvalue patterns explain the distinct decay behav-
iors: monotonic decay when λ2 > 0 (homophily) versus os-
cillatory decay when λ2 < 0 (heterophily).

In summary, empirical observations and theoretical anal-
ysis show that label consistency decays with structural
distance—both in smooth and oscillatory patterns. This de-
cay law will fundamentally change how we view similarity
in GCL, leading to a new framework that naturally captures
structural relationships, detailed next.

3 Methodology
Building upon our established observations and theoretical
foundations of the universal label consistency diminishing
property, we propose RELGCL (RELative Graph Contrastive
Learning), a principled framework to leverage this inherent
characteristic for GCL. The key insight is to preserve the nat-
urally encoded relative similarity patterns that persist across
both homophily and heterophily graphs. In this section, our
goal is to learn a graph encoder (we take graph convolu-
tional network [Welling and Kipf, 2016]) f : (X,A) →
H ∈ RN×d that maps nodes to low-dimensional represen-
tations (d ≪ D) while preserving the inherent relative sim-
ilarity patterns in graphs. Let hi ∈ Rd denote the learned
representation of node vi in the embedding space (i.e., the
i-th row of H). For clarity, we denote H[n]

i = {hj ∈ Rd :

vj ∈ N (vi)
[n]} as the set of representations in the embedding

space corresponding to vi’s n-th hop neighbors.

3.1 From Label Consistency to Relative Similarity
Building upon the universal label consistency diminishing
property established in Section 2, we formalize this statistical
pattern as a principled foundation for defining relative simi-
larity in graphs. Formally, for any node vi, we can quantify
the label consistency of its n-th hop neighbors through:

simstat(vi, n) =
|{vj : vj ∈ N (vi)

[n] ∧ yi = yj}|
|N (vi)[n]|

, (5)

similarly, for nodes beyond hop n, we define:

simstat(vi, >n) =
|{vj : vj ∈

⋃
m>n N (vi)

[m] ∧ yi = yj}|
|⋃m>n N (vi)[m]| . (6)
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Figure 3: A philosophical comparison of absolute similarity and relative similarity in GCL. The right side presents the core idea of RELGCL.

Our empirical and theoretical analyses in Section 2 prove
that while this relationship may not hold deterministically for
every individual node, it holds statistically across the graph:

Ev∈V [simstat(v, n)] > Ev∈V [simstat(v,>n)], (7)

this statistical property reveals a fundamental characteristic of
graphs: nodes at hop n collectively exhibit stronger semantic
similarity to the anchor node compared to further nodes, re-
gardless of the graph’s homophily nature. We term this the
“relative similarity" property, as it describes similarity from a
relative and collective perspective rather than an absolute or
individual one. To preserve this property in the learned rep-
resentations H, we need our embeddings to satisfy an analo-
gous relationship in the representation space. Let s(·, ·) de-
note a similarity measure between node representations. For
any node vi, its representation hi should maintain:

E

[∑
hj∈H[n]

i
s(hi,hj)

|H[n]
i |

]
> E

[∑
hj∈

⋃
m>n H[m]

i
s(hi,hj)

|⋃m>n H
[m]
i |

]
, (8)

this formulation translates the statistical patterns in label
space to constraints in the embedding space, providing a prin-
cipled objective for GCL. The key challenge lies in how to
effectively model and preserve such collective relative simi-
larity, which we address in the following sections.

3.2 Building Collective Similarity
The relative similarity property established in Section 3.1 re-
veals two key characteristics that guide our modeling choices:
(1) similarity should be measured collectively across groups
of nodes rather than individual pairs, and (2) the relationship
is statistical rather than deterministic. These insights drive
us to develop a framework that can effectively handle collec-
tive similarity patterns. A straightforward approach to han-
dle multiple positive examples [Khosla et al., 2020] in con-
trastive learning is to extend InfoNCE loss [Oord et al., 2018]
by summing over positive examples:

Lout = −
∑
p∈P

log
exp(θ(q, p)/τ)

exp(θ(q, p)/τ) +
∑

n∈N exp(θ(q, n)/τ)
, (9)

where θ(·, ·) = s(g(·), g(·)) combines a nonlinear projection
head g(·) and a cosine similarity measure s(·, ·), and τ is a
temperature parameter [Zhu et al., 2021; Chen et al., 2020;
Tschannen et al., 2019]. However, this formulation enforces

high similarity between the query q and each individual pos-
itive example p [Hoffmann et al., 2022; Khosla et al., 2020],
conflicting with the statistical nature of relative similarity in
graphs. A more principled approach is to sum over positive
examples inside the logarithm [Miech et al., 2020]:

Lin = − log

∑
p∈P exp(θ(q, p)/τ)∑

p∈P exp(θ(q, p)/τ) +
∑

n∈N exp(θ(q, n)/τ)
, (10)

this formulation offers several advantages: (1) The summa-
tion inside the logarithm naturally handles collective patterns
by comparing aggregate similarities between groups [Hoff-
mann et al., 2022; Miech et al., 2020], (2) it allows for vari-
ation within groups while maintaining their overall relative
relationships, and (3) the soft nature of the exponential terms
aligns with the statistical nature of our similarity definition.
From an optimization perspective, minimizing Lin leads to
maximizing the similarity ratio

∑
p∈P exp(θ(q,p)/τ)∑
n∈N exp(θ(q,n)/τ) , which si-

multaneously increases collective similarity with positive ex-
amples P while decreasing that with negative examples N—
naturally aligning with our goal of modeling relative similar-
ity, as it enhances the similarity distinction between different
node groups while maintaining their collective nature.

3.3 Learning Framework
Based on the collective similarity building block, specifically
adopting the Lin formulation (as shown in Equation 10) due to
its advantages in handling collective patterns, we now present
RELGCL for preserving the graph-inherent relative similar-
ity (an overview of RELGCL is presented in Figure 3). For
each node vi, within a k-hop neighborhood range, we aim
to ensure that its n-th hop neighbors (n ≤ k) are collec-
tively more similar to it than further neighbors. We propose
two complementary implementations of RELGCL that dif-
fer in how they handle the comparison with further neigh-
bors. Both approaches use a threshold α ∈ (0, 1) to prevent
over-optimization of similarity ratios, reflecting the statisti-
cal rather than deterministic nature of relative similarity es-
tablished in Section 2.2—while closer nodes exhibit stronger
collective similarity statistically, this relationship should not
be enforced as an absolute constraint.
RELGCLPAIR. This approach examines relative similar-
ity through sequential pairwise comparisons between hops
(e.g., comparing hop-1 vs. hop-2, hop-1 vs. hop-3, hop-2 vs.
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hop-3, etc.). For any node vi, we define the pairwise similar-
ity ratio between hop n and hop n+m as:

rn,m(hi) =

∑
h∗∈H[n]

i
exp(θ(hi,h∗)/τ)∑

h∗∈H[n]
i

exp(θ(hi,h∗)/τ) +
∑

h⋄∈H[n+m]
i

exp(θ(hi,h⋄)/τ)
. (11)

The overall pairwise objective is:

Lpair = −
∑
vi∈V

1

k

k∑
n=1

k−n+1∑
m=1

log[min(rn,m(hi), α)]. (12)

The pairwise implementation enables fine-grained model-
ing of structural transitions between specific hop distances,
potentially making it more suitable for capturing oscillatory
patterns in graphs (Proposition 1).
RELGCLLIST. This approach compares each hop against all
its subsequent hops as a whole (e.g., comparing hop-1 vs.
{hop-2, hop-3, ...}, hop-2 vs. {hop-3, hop-4, ...}, etc.). For
node vi, we define the listwise similarity ratio for hop n as:

rn(hi) =

∑
h∗∈H[n]

i
exp(θ(hi,h∗)/τ)∑k+1

m=n

∑
h⋄∈H[m]

i
exp(θ(hi,h⋄)/τ)

. (13)

The overall listwise objective is:

Llist = −
∑
vi∈V

1

k

k∑
n=1

log[min(rn(hi), α)]. (14)

The listwise implementation aggregates all subsequent
hops collectively, providing a holistic view of the broader
neighborhood structure.

4 Experiments
4.1 Experimental Setting
Datasets. To validate the universality of our approach, we
conduct experiments on 11 real-world datasets spanning di-
verse domains and scales (2K to 169K nodes), including 8 ho-
mophily graphs (Cora, Citeseer, Pubmed, WikiCS, Amazon-
Computers, Amazon-Photo, Coauthor-CS, and ogbn-arxiv)
and 3 heterophily graphs (Chameleon, Squirrel, and Actor).
Baselines. We compare RELGCL against 20 representative
methods across 5 categories: 2 supervised methods [Welling
and Kipf, 2016; Velickovic et al., 2018], 3 graph autoen-
coder methods [Kipf and Welling, 2016; Hou et al., 2022], 9
augmentation-based GCL methods [Velickovic et al., 2019;
Zhu et al., 2020b; Thakoor et al., 2021; Zhang et al.,
2021], 5 augmentation-free GCL methods [Peng et al., 2020;
Lee et al., 2022], 1 multi-task self-supervised learning based
method [Jin et al., 2021]. For baselines that either don’t use
standard splits or don’t report results on certain datasets, we
reproduce their results using official implementations under
the same experimental setup for fair comparison.
Evaluation Protocol. Following standard practice in
GCL [Velickovic et al., 2019; Zhu et al., 2020b; Thakoor et
al., 2021], we evaluate using linear evaluation: first train the
graph encoder in a self-supervised manner using our relative
similarity objectives, then freeze it to generate node embed-
dings for training a logistic regression classifier. For datasets
with multiple splits (e.g., WikiCS with 20 public splits), we

conduct experiments on all provided splits. We report the av-
erage classification accuracy and standard deviation over 20
random runs with different random seeds to ensure reliability.
Implementation Details. We implement RELGCL using
GCN [Welling and Kipf, 2016] as the encoder, optimized with
Adam [Kingma and Ba, 2014] on a NVIDIA V100 GPU.
Based on our empirical analysis in Section 2.1, we set the
neighborhood range k = 4 to capture meaningful structural
patterns, as the number of semantically similar neighbors be-
comes particularly small beyond 4 hops.

4.2 Overall Performance
Performance on Homophily Graphs. We first evaluate
RELGCL on 7 widely-used homophily graphs. Table 1
presents a comprehensive comparison against 20 baselines.
Several key observations emerge: (1) Both implementations
of RELGCL achieve superior performance across datasets,
outperforming all baselines with average ranks of both 1.6
versus the best baseline rank of 5.3. This demonstrates that
leveraging inherent structural patterns through relative sim-
ilarity is more effective than artificially imposing absolute
similarity constraints through augmentations. (2) The compa-
rable performance between pairwise and listwise implemen-
tations (achieving SOTA on 4 and 3 datasets respectively) val-
idates the robustness of our relative similarity framework—
both approaches effectively capture the smooth decay pat-
terns theoretically predicted in Section 2.2. (3) Methods
like SUGRL [Mo et al., 2022], AFGRL [Lee et al., 2022]
and GraphACL [Xiao et al., 2024] that only leverage local
absolute similarity, or AUTOSSL [Jin et al., 2021] that re-
lies on homophily-guided task search, achieve inferior re-
sults. This highlights the advantage of modeling broader
structural-semantic relationships over focusing solely on im-
mediate neighborhoods or artificial task designs.
Performance on Heterophily Graphs. We further evaluate
RELGCL on 3 heterophily graphs. Table 2 demonstrates the
effectiveness of our approach: (1) Both implementations of
RELGCL substantially outperform all baselines across these
datasets, validating that our approach of modeling relative
similarity patterns remains effective even when local connec-
tivity patterns differ significantly from homophily graphs. (2)
RELGCLPAIR consistently outperforms RELGCLLIST across
all 3 heterophily datasets, as the fine-grained pairwise im-
plementation may better capture the oscillatory decay pat-
terns characteristic of heterophily graphs. (3) AFGRL [Lee
et al., 2022] that assume local homophily (treating immediate
neighbors as similar) show significantly worse performance,
confirming the importance of moving beyond local connec-
tivity assumptions to capture universal structural patterns.
Extensibility Analysis. We demonstrate RELGCL’s extensi-
bility across different scales and tasks: (1) On the large-scale
ogbn-arxiv graph dataset (169K nodes, 1.2M edges), follow-
ing [Hu et al., 2020; Thakoor et al., 2021], both implemen-
tations outperform existing unsupervised methods (Table 3).
(2) For additional downstream tasks (node clustering and sim-
ilarity search), our method consistently achieves superior per-
formance across representative datasets (Table 4), with sub-
stantial improvements over methods that only consider local
patterns [Lee et al., 2022]. These results validate that captur-
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Method Cora Citeseer Pubmed WikiCS Computers Photo Co.CS Rank

GCN 81.5 70.3 79.0 77.19±.12 86.51±.54 92.42±.22 93.03±.31 16.7
GAT 83.0±.7 72.5±.7 79.0±.3 77.65±.11 86.93±.29 92.56±.35 92.31±.24 14.4
GAE 71.5±.4 65.8±.4 72.1±.5 70.15±.01 85.27±.19 91.62±.13 90.01±.71 21.4
VGAE 76.3±.2 66.8±.2 75.8±.4 75.63±.19 86.37±.21 92.20±.11 92.11±.09 19.7
GraphMAE 84.2±.4 73.4±.4 81.1±.4 77.12±.30 79.44±.48 90.71±.40 93.13±.15 11.9
DGI 82.3±.6 71.8±.7 76.8±.6 75.35±.14 83.95±.47 91.61±.22 92.15±.63 19.0
MVGRL 83.5±.4 73.3±.5 80.1±.7 77.52±.08 87.52±.11 91.74±.07 92.11±.12 13.6
GRACE 81.9±.4 71.2±.5 80.6±.4 78.19±.01 86.25±.25 92.15±.24 92.93±.01 15.4
GCA 82.1±.1 71.3±.4 80.2±.4 78.30±.00 87.85±.31 92.49±.09 93.10±.01 13.7
BGRL 82.7±.6 71.1±.8 79.6±.5 79.31±.55 89.62±.37 93.07±.34 92.67±.21 11.7
G-BT 81.5±.4 71.9±.5 80.4±.6 76.65±.62 88.14±.33 92.63±.44 92.95±.17 14.3
CCA-SSG 84.2±.4 73.1±.3 81.6±.4 78.65±.14 88.74±.28 93.14±.14 93.31±.22 6.4
gCooL 83.2±.5 72.7±.4 80.5±.4 78.74±.04 88.85±.14 93.18±.12 93.32±.02 8.3
HomoGCL 84.5±.5 72.3±.7 81.1±.3 78.84±.47 88.46±.20 92.92±.18 92.74±.22 8.9
COSTA 83.3±.3 72.1±.3 81.1±.2 79.12±.02 88.32±.03 92.56±.45 92.94±.10 9.7
SUGRL 83.4±.5 73.0±.4 81.9±.3 78.97±.22 88.91±.22 92.85±.24 92.83±.23 7.9
AFGRL 83.2±.4 72.6±.3 80.8±.6 77.62±.49 89.88±.33 93.22±.28 93.27±.17 8.0
SP-GCL 83.2±.2 72.0±.4 79.1±.8 79.01±.51 89.68±.19 92.49±.31 91.92±.10 12.6
GraphACL 84.2±.3 73.6±.2 82.0±.2 79.27±.45 89.80±.25 93.31±.19 92.77±.14 5.3
AUTOSSL 83.1±.4 72.1±.4 80.9±.6 76.80±.13 88.18±.43 92.71±.32 93.35±.09 11.0

RELGCLPAIR 84.4±.2 73.7±.4 82.2±.3 80.14±.51 90.14±.35 93.42±.44 93.53±.12 1.6
RELGCLLIST 84.5±.4 73.6±.5 82.7±.4 80.16±.58 89.99±.38 93.40±.48 93.50±.12 1.6

Table 1: Classification accuracies on 7 GCL benchmark datasets. ‘Rank’ refers to the average ranking across datasets. Bold indicates the best
and underline indicates the runner-up.

Method Chameleon Squirrel Actor

DGI 60.27± 0.70 42.22± 0.63 28.30± 0.76
GRACE 61.24± 0.53 41.09± 0.85 28.27± 0.43
GCA 60.94± 0.81 41.53± 1.09 28.89± 0.50
BGRL 64.86± 0.63 46.24± 0.70 28.80± 0.54
AFGRL 59.03± 0.78 42.36± 0.40 27.43± 1.31
SP-GCL 65.28± 0.53 52.10± 0.67 28.94± 0.69
GraphACL 69.12± 0.24 54.05± 0.13 30.03± 0.13

RELGCLPAIR 69.25± 0.89 57.67± 0.96 30.32± 0.91
RELGCLLIST 69.06± 0.86 57.53± 0.92 30.23± 0.88

Table 2: Performance on 3 heterophily graphs.

ing broader structural relationships through relative similarity
modeling produces versatile representations that generalize
well across scales and tasks.

4.3 Structural Pattern Analysis
Impact of Neighborhood Range. We investigate how the
choice of neighborhood range k affects model performance
across different graph types and scales. Figure 4 shows the
performance variations with different k values on 3 categories
of datasets: small homophily graphs (Cora), large homophily
graphs (WikiCS), and heterophily graphs (Squirrel, Actor).
The analysis reveals distinct patterns: (1) For small ho-
mophily graph, optimal performance is achieved with k = 1
or 2, with accuracy declining as k increases. This aligns with
our empirical analysis in Section 2.1, where label consistency
drops substantially (to around 20% at k = 4) in homophily
graphs—when graph size is small, the number of semanti-
cally similar nodes at larger distances becomes too sparse to

Method Validation Test

DGI 71.26± 0.11 70.34± 0.16
GRACE-Sampling 72.61± 0.15 71.51± 0.11
G-BT 71.16± 0.14 70.12± 0.18
BGRL 72.53± 0.09 71.64± 0.12
CCA-SSG 72.34± 0.21 71.24± 0.20
GraphACL 72.59± 0.20 71.68± 0.22

RELGCLPAIR 72.69± 0.14 72.06± 0.20
RELGCLLIST 72.75± 0.12 72.24± 0.19

Supervised GCN 73.00± 0.17 71.74± 0.29

Table 3: Performance on ogbn-arxiv.

provide meaningful signals. (2) For large homophily graph
and heterophily graphs, performance generally improves with
increasing k until k = 3 or 4. This suggests that larger graphs
benefit from capturing broader structural relationships, while
heterophily graphs require a wider range to effectively model
their oscillatory decay patterns characterized in Section 2.2.
(3) Performance stabilizes or declines beyond k = 4 across
most datasets, supporting our default setting.
Preservation of Label Consistency Pattern. To verify
whether our learned representations preserve the universal de-
cay property, we analyze the similarity distributions across
different structural distances in the embedding space. Fig-
ure 5 shows the cosine similarity distributions between node
representations at different hop distances on WikiCS datasets.
The results reveal that: (1) The similarities exhibit an overall
diminishing trend as structural distance increases, consistent
with Theorem 1’s prediction of exponential convergence in
label distributions. This empirically validates that our frame-
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Figure 4: Results of RELGCL with neighborhood range changing as k = 1, 2, 3, 4, respectively.

Dataset WikiCS Computers Photo
Metric NMI Sim@5 NMI Sim@5 NMI Sim@5

GRACE 0.4282 0.7754 0.4793 0.8738 0.6513 0.9155
GCA 0.3373 0.7786 0.5278 0.8826 0.6443 0.9112
BGRL 0.3969 0.7739 0.5364 0.8947 0.6841 0.9245
AFGRL 0.4132 0.7811 0.5520 0.8966 0.6563 0.9236

RELGCLPAIR 0.4354 0.7919 0.5643 0.8992 0.6935 0.9302
RELGCLLIST 0.4376 0.7951 0.5627 0.8988 0.6917 0.9297

Table 4: Performance of node clustering in terms of NMI and per-
formance of node similarity search in terms of Sim@5.
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Figure 5: Similarities between the anchor nodes’ and associated n-th
hop neighbors’ representations.

work effectively captures the universal decay pattern with-
out explicit constraints. (2) While maintaining this collective
trend, individual variations exist where some further neigh-
bors show higher similarity than closer ones. This aligns
with both our empirical observations in Section 2.1 and the
theoretical prediction that convergence occurs at a statistical
rather than individual level.

4.4 Framework Analysis
Collective Similarity Design. We compare our collective
similarity formulation Lin (Equation 10) against individual
similarity summation Lout (Equation 9) on 4 representative
datasets. Table 5 shows consistent performance degradation
(>1% drop on Cora and WikiCS) when switching to individ-
ual similarity summation. This validates the design motiva-
tion in Section 3.3—while nodes at different distances may
share labels with the anchor node (as established in our the-
oretical analysis), enforcing individual similarity constraints
fails to capture the statistical nature of these relationships.
Our collective formulation, by comparing aggregate similari-
ties between groups, maintains robustness to individual vari-

Method Cora Citeseer WikiCS Photo

RELGCLPAIR 84.4 73.7 80.14 93.42
-Lout 83.4(↓1.0) 73.1(↓0.6) 78.71(↓1.43) 93.16(↓0.26)

RELGCLLIST 84.5 73.6 80.16 93.40
-Lout 83.4(↓1.1) 73.3(↓0.3) 78.94(↓1.22) 93.18(↓0.22)

Table 5: Performance of RELGCL adopting different design.
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Figure 6: Results of RELGCL with different threshold of α.

ations while preserving the broader structural patterns.
Relative Similarity Control. We analyze the impact of
threshold α by varying it in [0.0001, 1.0] while keeping other
parameters fixed. Figure 6 shows that: (1) Both implemen-
tations achieve optimal performance at moderate α values—
extremely small thresholds overly restrict similarity relation-
ships, while large values fail to distinguish between differ-
ent structural distances. (2) RELGCLLIST consistently re-
quires smaller optimal α values than RELGCLPAIR, reflecting
their different granularities in modeling structural relation-
ships. This empirically supports our framework’s flexibility
in adapting to different similarity modeling strategies while
maintaining effective relative similarity control.

5 Conclusion
This work fundamentally reimagines similarity in graph con-
trastive learning by discovering a universal pattern: the sys-
tematic diminishing of label consistency with structural dis-
tance. Through rigorous analysis, we establish random walk
guarantees for this pattern in both homophily and heterophily
graphs. Building on these insights, we develop RELGCL,
a principled framework that preserves these inherent pat-
terns through collective similarity objectives. Extensive ex-
periments validate that leveraging natural relative similarity
yields superior performance across diverse graph types, open-
ing new directions for robust graph representation learning.
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