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Abstract
RGBT tracking is to localize the predefined targets
in video sequences by effectively leveraging the in-
formation from both visible light (RGB) and ther-
mal infrared (TIR) modalities. However, the qual-
ity of different modalities changes dynamically in
complex scenes, and effectively perceiving modal
quality for multimodal fusion remains a signifi-
cant challenge. To address this challenge, we pro-
pose to employ the reliability of initial template
to explore the uncertainty across different modali-
ties, and design a novel template-based uncertainty
computation framework for robust multimodal fu-
sion in RGBT tracking. In particular, we introduce
an Uncertainty-aware Multimodal Fusion Module
(UMFM), which constructs the uncertainty of each
modality by leveraging the correlation between the
template and search region in the Subjective Logic
framework, aiming to achieve robust multimodal
fusion. In addition, existing methods focus on dy-
namic template update while overlooking the po-
tential role of a reliable initial template in the tem-
plate updating process. To this end, we design a
simple yet effective Contrastive Template Update
Module (CTUM) to assess the reliability of the
new template by comparing its quality with that of
the initial template. Extensive experiments suggest
that our method outperforms existing approaches
on four RGBT tracking benchmarks.

1 Introduction
In recent years, RGBT tracking has attracted increasing at-
tention from researchers due to its broad and practical ap-
plication prospects in fields such as assisted driving, human-
computer interaction, and security surveillance [Zhang et al.,
2024]. The goal of RGBT tracking is to achieve robust all-
weather and around-the-clock tracking by fully leveraging
the complementary advantages of RGB and TIR modalities.

∗Corresponding author

However, the quality of the two modalities fluctuates dynam-
ically in complex scenes. Thus, it is crucial for the designed
model to be aware of this for adaption.

Current research on RGBT tracking primarily focuses on
the fusion of modality information. These studies can be
roughly divided into three categories. The first type of ap-
proach [Liu et al., 2023; Chen et al., 2024; Hui et al., 2023a]
typically focuses on designing suitable methods to achieve
adaptive modal fusion. The second category is to realize the
full utilization of different modal information by designing
different types of prompts or adapters based on the frozen
RGB tracker [Cao et al., 2024; Hou et al., 2024; Zhu et al.,
2023]. For instance, BAT [Cao et al., 2024] designs a simple
bidirectional adapter, effectively achieving comprehensive
fusion of modality features and enhancing the performance
of the tracker. The third type of approach [Li et al., 2019b;
Li et al., 2024a; Liu et al., 2024] focuses on mining the dis-
criminative features of each modality through feature inter-
action or attribute decoupling, thereby improving the perfor-
mance of RGBT trackers. However, existing methods typ-
ically generate the dynamic weights of the two modalities,
with poor interpretability and difficulty in measuring the qual-
ity of the final multimodal outcome. In contrast, uncertainty-
based multimodal fusion can effectively reflect the quality of
each individual modality as well as the quality of the fused
multimodal result to achieve robust multimodal fusion.

Based on the above discussion, we propose an Template-
based Uncertainty Multimodal Fusion Network (TUMFNet)
for RGBT tracking, which dynamically evaluates the qual-
ity of different modalities by modeling their uncertainty us-
ing the reliability of the initial template and Subjective Logic
(SL) [Jsang, 2018]. Although the SL theory has made sig-
nificant progress in uncertainty modeling, current works fo-
cus on multimodal classification tasks and is not suitable for
directly applying SL to RGBT tracking. Therefore, we pro-
pose to employ the reliability of the initial template to ex-
plore the uncertainty of different modalities. To this end,
we innovatively propose an Uncertainty-Aware Multimodal
Fusion Module (UMFM) that leverages the correlation be-
tween the template and search region as well as SL to model
modal uncertainty. Specifically, UMFM first fuses the tem-
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plate features from both modalities and then uses the inte-
grated template tokens and the search region tokens from
each modality to perform correlation matrix computation sep-
arately for each modality, resulting in two distinct correlation
matrices. Subsequently, UMFM utilizes these correlation ma-
trices to construct the subjective opinions for each modality.
To fully leverage the information from both modalities, we
introduce an evidential multimodal fusion method to com-
bine the subjective opinions of the two modalities for reliable
token-level weight. Meanwhile, we construct modality-level
weights based on the uncertainty of the two modalities and
the uncertainty of the multimodal fusion. By leveraging both
modality-level and token-level weights, we effectively sup-
press the impact of low-quality modality noise while enhanc-
ing the target features.

Additionally, the template plays a crucial role in tracking
tasks. Existing tracking methods rely on the initial template
and search regions to track the target, making it difficult to
capture changes in the target’s appearance. To solve this prob-
lem, some methods [He et al., 2023; Wang et al., 2024] up-
date the template after a certain interval but fail to ensure the
reliability of the template. Other methods [Zhang et al., 2019;
Chen et al., 2022] design different modules to assess the re-
liability of the template but overlook the potential role of the
initial template in the template update process. The initial
template is inherently reliable, making it reasonable to rely
on it to assess the quality of the new template. Therefore,
to mine spatio-temporal contextual information from the tar-
get and fully leverage the reliable initial template, we design
a simple yet effective contrastive template update module.
Specifically, we first use the predicted maximum classifica-
tion score to select candidate templates for template update.
Then, we design a simple template quality perceptor that de-
termines whether to update the template by comparing the
quality of the initial and candidate templates.

In summary, our major contributions are as follows.

• We propose a novel template-based uncertainty compu-
tation framework, which models the uncertainty of dif-
ferent modalities by leveraging the correlation between
the template and search region in the Subjective Logic
framework.

• We design a novel uncertainty-aware multimodal fusion
module, which evaluates the quality of different modali-
ties by constructing modality-specific uncertainty using
the correlation between the template and search region,
thereby suppressing the interference from low-quality
modalities.

• We develop a simple yet effective contrastive template
update module that utilizes the initial template to assess
the quality of templates and determine whether the dy-
namic template should be updated.

• Extensive experiments demonstrate that our method out-
performs existing RGBT tracking methods on four pop-
ular RGBT tracking datasets, including GTOT [Li et al.,
2016], RGBT210 [Li et al., 2017], RGBT234 [Li et al.,
2019a] and LasHeR [Li et al., 2021].

2 Related Work
2.1 RGBT Tracking
RGBT tracking leverages the complementary strengths of
both modalities to achieve robust visual tracking, effectively
overcoming the limitations of the data from each modality.
Existing RGBT tracking methods can be broadly classified
into two categories. The first type of approach [Liu et al.,
2023; Chen et al., 2024; Hui et al., 2023a; Zhu et al., 2020]
achieves effective fusion of features from both modalities
by designing specific fusion strategies. TGTrack [Chen et
al., 2024] designs a top-down cross-modal guidance atten-
tion mechanism to enable interaction between modality infor-
mation. The second category of methods [Cao et al., 2024;
Hou et al., 2024; Zhu et al., 2023; Hong et al., 2024] typ-
ically focuses on transferring the capabilities of an RGB
tracker to a new RGBT tracker through prompt learning or
adapters. BAT [Cao et al., 2024] and SDSTrack [Hou et al.,
2024] introduce a simple adapter for multimodal information
interaction. The third type of approach [Li et al., 2024a;
Liu et al., 2024; Zhang et al., 2021] focuses on enhancing
representation learning across different modalities. However,
these methods struggle to handle the dynamic changes in
modality quality in complex scenarios. Therefore, we pro-
pose UMFM, which addresses the variation in modal quality
by leveraging the correlation between the reliable template
and search region to model the uncertainty of the modalities.

In addition, existing tracking methods typically rely on
the initial template to track the target in the search region,
making it difficult to adapt to changes in the target’s appear-
ance. To address this issue, some methods [He et al., 2023;
Wang et al., 2024] update the template at specific intervals,
but they struggle to ensure the reliability of the template.
Other methods [Zhang et al., 2019; Chen et al., 2022] achieve
template update by designing different modules to assess the
reliability of the new template. For example, [Chen et al.,
2022] propose a regression model to control the template
updating process. Although these methods improve track-
ing performance, they overlook the potential role of the reli-
able initial template in the template update process. To mine
spatio-temporal contextual information of the target and fully
leverage the reliable initial template, we propose a simple
yet effective contrastive template update module, which de-
termines whether to update the template by comparing the
quality of the initial and new templates.

2.2 Uncertainty-aware Multimodal Learning
Uncertainty-aware multimodal learning has developed
rapidly in recent years, researchers from different fields
have explored the application of the Subjective Logic (SL)
theory in their respective tasks fields [Li et al., 2024b;
Xu et al., 2024; Kotelevskii et al., 2024]. For instance,
[Han et al., 2022] pioneer the application of the SL frame-
work to tackle the issue of low-quality data in multi-view
classification tasks. [Xu et al., 2024] further introduce
reliable conflictive multiview learning to resolve potential
conflicts in multiview data. In other fields, [Li et al., 2024b]
propose an adaptive uncertainty learning framework using
SL for cross-modal person re-identification. These methods
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demonstrate the significant advantages of the SL theory
in exploring uncertainty. However, directly transferring it
to RGBT tracking is not suitable. To bridge this gap, we
innovatively propose an uncertainty-aware multimodal fusion
module that leverages the correlation between the template
and search regions as well as SL to model modal uncertainty.

3 Method
3.1 Framework Overview
The overall structure of the proposed method is illustrated in
Figure 1. This framework mainly consists of two core com-
ponents: the Uncertainty-aware Multimodal Fusion Mod-
ule (UMFM) and the Contrastive Template Update Module
(CTUM). To dynamically perceive the quality of different
modalities, UMFM models uncertainty to assess the quality
of each modality by the correlation between the template and
search region in the Subjective Logic framework. It is worth
noting that UMFM is inserted into the 10th, 11th, and 12th
encoders of the ViT. In addition, to mine spatio-temporal con-
textual information from the target during the tracking pro-
cess, CTUM performs dynamic template update by compar-
ing the quality of the candidate template with the initial tem-
plate.

3.2 Uncertainty-aware Multimodal Fusion Module
Although most existing RGBT tracking methods [Hui et al.,
2023a; Cao et al., 2024] have improved tracking performance
by designing various modal fusion strategies, they struggle
to achieve robust tracking when faced with dynamic changes
in modality quality. To address this issue, we propose an
Uncertainty-aware Multimodal Fusion Module that models
the uncertainty of modalities to perceive changes in modal-
ity quality, thereby suppressing low-quality modality infor-
mation and fully achieve multimodal fusion. It should be
noted that we model the uncertainty of different modalities
by employing the reliablility of initial template and Subjec-
tive Logic [Jsang, 2018].
Subjective Logic Framework. Subjective Logic (SL) pro-
vides a formal representation of the uncertainty alloca-
tion principle from Dempster-Shafer theory [Liu and Yager,
2008], which is modeled as a Dirichlet distribution. Thus,
it offers a method to quantify uncertainty within a well-
established theoretical framework using the principles of sub-
jective logic. Specifically, we first need to obtain the evidence
vector ei for the i-th element. Then, we model the uncertainty
u and the belief mass p = {pk}Nk=1 of each element, with the
specific process outlined as follows:

pk =
ek
S
, u =

N

S
, (1)

where S =
∑N

k=1(ek + 1) is the the intensity of Dirich-
let distribution, pk denotes the belief probability and the pa-
rameters of the corresponding Dirichlet distribution are α =
{ek + 1}Nk=1. We can observe that uncertainty is inversely
proportional to the total evidence, meaning that as the total
evidence increases, uncertainty decreases. Additionally, the

Dirichlet distribution represented by α can be defined as fol-
lows:

D(p | α) =

{
1

B(α)

∏N
j=1 p

αj−1
j for p ∈ SN ,

0 otherwise,
(2)

where B(α) represents the N-dimensional beta function, and
SN is the N-dimensional unit simplex.
Template-based Uncertainty Calculation. To extend the SL
to the RGBT tracking task, the initial step is to construct the
evidence vector ei. In particular, we first concatenate the
two template features Tr, Tt from both modalities and pass
them through a 1x1 convolutional layer (Conv) for feature fu-
sion to obtain the multimodal template features. Then, we
calculate the correlation between the search region features
Sr, St of each modality and the multimodal template features
Tf , obtaining two correlation matrices, Cr ∈ RNt×Ns and
Ct ∈ RNt×Ns . Nt and Ns represent the number of tokens in
the template and search region, respectively. Considering that
the correlation matrix reflects the correlation between search
region tokens and multimodal template tokens, we first com-
pute the mean of the two correlation matrices along the col-
umn dimension and process them using the ReLU activation
function. In this way, we obtain the overall correlation be-
tween the search region tokens and the reliable multimodal
template features, which is the evidence ei = {ei}Ns

i=1 we
need, as shown Figure 1. The specific processing procedure
is as follows:

Tf = Conv(concat(Tr, Tt)),

Cr =
QKT

√
d

=
SrWq(TfWk)

T

√
d

,

Ct =
QKT

√
d

=
StWq(TfWk)

T

√
d

,

(3)

eri = ReLu (Mean (Cr)) , eti = ReLu (Mean (Ct)) , (4)

where eri and eti represent the evidence vectors of the RGB
modality and the TIR modality, respectively.

Following the subjective logic framework mentioned
above, we can obtain the parameters αi of the Dirichlet dis-
tribution as well as model the uncertainty u of each modality.
Thus, we obtain the subjective opinions for each modality.
The specific process is as follows:

αi = ei + 1, u =
Ns

S
, (5)

where S =
∑Ns

i=1(αi) is the intensity of Dirichlet distribu-
tion.
Uncertainty-based Multimodal Fusion. To suppress the
noise from low-quality modalities as well as to achieve ef-
fective multimodal fusion, we introduce a simple evidential
multimodal fusion method. The process is as follows:

bmi =
briu

t + btiu
r

ur + ut
, um =

2urut

ur + ut
, ami =

ari + ati
2

(6)

where bri , a
r
i , u

r represent the belief mass, Dirichlet distribu-
tion parameters, and uncertainty corresponding to the RGB
modality, respectively. Similarly, bmi , ami , um represent the
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Figure 1: The overall architecture of our proposed method. EMF denotes evidential multimodal fusion. Every N frames, the model updates
the dynamic template based on the quality score of templates. At this point, the input of the model includes the search regions of the N -th
frame, the search regions of the N

2
-th frame, the initial templates, the dynamic templates, and the candidate templates. If the quality score Qc

of the candidate template is higher than that Qi of the initial template, the candidate template is updated as the dynamic template.

belief mass, Dirichlet distribution parameters, and uncer-
tainty corresponding to the multimodal fusion. In addition,
we obtain modality-level weights wr, wt based on uncertainty
to suppress noise from low-quality modalities. Meanwhile, to
further enhance the target features, we also introduce a token-
level weight wm. The detailed computation process is as fol-
lows:

wr =
um

ur
, wt =

um

ut
, wm =

ami
Sm

(7)

Figure 2: The uncertainty scores and dynamic weights of four
frames in the sequence boytakingbasketballfollowing from the
LasHeR dataset. Ur and Ut represent the uncertainty scores of the
RGB and TIR modalities, respectively, while wr and wt represent
the dynamic weights of the two modalities.

where Sm =
∑Ns

i=1(α
m
i ) is the intensity of Dirichlet distri-

bution. Finally, to achieve effective uncertainty-aware learn-
ing, we propose an novel loss function Lu, which supervises
the learning process, as shown below:

α1 = (αm − 1) · y, α2 = (αm − 1) · (1− y)

LU = − log

∑Ns

i=1 e
−α2∑Ns

i=1 e
−α1 +

∑Ns

i=1 e
−α2

(8)

where αm represents the Dirichlet distribution parameter, y
denotes the mask of the target token, α1 refers to the relevant
parameters for the target, and α2 refers to the relevant param-
eters for the background. We present the uncertainty scores
for a sequence, as shown in Figure 2. It can be observed that
under strong light or jitter, the quality of the RGB modality
deteriorates, resulting in higher uncertainty scores, while the
uncertainty scores of the TIR modality remain relatively sta-
ble.

3.3 Contrastive Template Update Module
In existing tracking methods [Zhang et al., 2019; Wang et al.,
2024], template update is often used to capture the appear-
ance changes of the target, thereby achieving robust track-
ing. However, current methods typically rely on classifica-
tion scores and IoU scores to determine whether to update
the template, overlooking the potential role of the initial tem-
plate in the template update process. To explore the spatio-
temporal context information and fully leverage the reliable
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Figure 3: The illustration of quality scores for the initial tem-
plate and candidate templates in three sequences from the LasHeR
dataset.

initial template, we design a simple yet effective CTUM in-
cluding a template quality perceptor and a dual-template con-
trastive training strategy.

Specifically, the template quality perceptor consists of two
linear layers, one ReLU layer and one Softmax layer, as
shown in Figure 1. To effectively train the perceptor for
perceiving the quality of different templates, we design the
dual-template contrastive training strategy. During the train-
ing phase, for each sampling from the sequence, we select
two distinct templates and a search region. Each of the differ-
ent templates from the same sequence will interact with the
same search region to extract features. The features of the two
different templates are then input into the perceptor for qual-
ity perception, resulting in the quality scores Qk, Qj for both
templates. In addition, to facilitate the learning of the percep-
tor, we generate pseudo labels based on the IoU derived from
the prediction results. For two identical search regions Sk,
Sj , we perform interactions with different templates. If the
IoU obtained by a search region feature after being input into
the predictor is higher, we infer that the template interacting
with this search region exhibits superior quality. Therefore,
the label generation process is described as follows:

yk =

{
0, IoUk < IoUj

1, IoUk > IoUj
, yj =

{
1, IoUk < IoUj

0, IoUk > IoUj
, (9)

where IoUk and IoUj the IoU of the prediction results for
the k-th and j-th search regions, respectively. In this way,
we obtain the labels indicating the relative quality of the two
templates.

In the tracking phase, our template update strategy is as
follows:
• Candidate Template Selection. The classification score

output by the tracking model reflects the discriminability
between the foreground and background, and many meth-
ods [Wang et al., 2024] use it as a criterion to assess the

reliability of the prediction results. Therefore, we use the
maximum classification score to obtain the candidate tem-
plate. Specifically, if the maximum classification score of
the current frame exceeds the average of the past classifi-
cation scores, we consider the current prediction to be rel-
atively reliable and update the candidate template accord-
ingly.

• Quality-contrast Template Update. Although the max-
imum classification score enables continuous updating of
the candidate template, its actual reliability needs further
evaluation. The template quality perceptor assesses the
quality of both the initial and candidate templates to de-
termine whether the dynamic template should be genuinely
updated. The specific template update process is shown in
Figure 1. In the tracking process, we performs candidate
template quality assessment every N frames. Specifically,
for the N -th frame, both the initial template and the candi-
date template interact with the same two N

2 -th frame. The
features Ti, Tc of both templates are then input into the
perceptor, which predicts the initial template quality score
Qi and candidate template quality score Qc. If Qc > Qi,
the dynamic template is updated. We present the template
update process for three sequences, as shown in Figure 3.
It can be observed that when the target in the template is
occluded or tracking fails, the perceptor correctly deter-
mines whether the current candidate template should be
discarded.

3.4 Loss Function
Our method adopts the traditional center point prediction
method, where the regression and classification branches pre-
dict the target bounding box, and the model learns using both
classification and regression losses. Additionally, we intro-
duce a novel loss function LU for the learning of UMFM. To
effectively train the template quality perceptor, we also in-
troduce a binary cross-entropy loss LBCE . The overall loss
function is as follows:

L = Lcls + λ1L1 + λ2Lgiou + λtLU + λ3LBCE , (10)

where Lcls denotes the weighted focal loss, L1 represents the
L1 loss, and the generalized IoU loss is represented by Lgiou.
The parameters λ1 and λ2 are kept unchanged according to
the settings in previous works [Ye et al., 2022]. The parame-
ter λt = min(0.1, t/T ) ∈ (0, 0.1] is the annealing coefficient,
t is the index of the current training epoch, and T is the an-
nealing step. In our experiments, λ1 is set to 5, λ2 to 2 and
λ3 is set to 0.01.

4 Experiment
4.1 Implementation Details
We take OSTrack [Ye et al., 2022] as the base tracker, which
employs ViT as the backbone network for feature extraction.
In addition, we use the parameters from DropMae[Wu et al.,
2023] as the pre-trained weights. Our model is implemented
using PyTorch and experiments are conducted on one RTX
4090 GPU. We train the overall tracking network end-to-end
using the LasHeR training set to evaluate GTOT, RGBT210,
RGBT234, and LasHeR test set. The input search region and
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Figure 4: Visualization of our method with other RGBT trackers
on four representative sequences that include multiple challenge at-
tributes from LasHeR dataset.

template sizes of the model are 256×256 and 128×128, re-
spectively. The learning rate for the backbone network is set
to 1×10−5, while the learning rate for the other parameters is
set to 1× 10−4. The model is trained for a total of 15 epochs.
Additionally, we use the AdamW optimizer with a weight de-
cay of 1 × 10−4. Note that our UMFM is inserted into the
10th, 11th, and 12th blocks of the ViT. λ3 is set to 0.01 and
N is set to 20.
Inference: During the inference phase, at every interval of
N frames, the input of the model consists of the initial tem-
plate, dynamic template, and the search region. When per-
forming quality assessment of the candidate template every
N frames, the input of model includes the initial template,
dynamic template, candidate template, the search region of
the N -th frame, and the search region of the N

2 -th frame.

4.2 Evaluation Datasets and Metrics
GTOT [Li et al., 2016] dataset is the earliest publicly avail-
able RGBT tracking dataset, containing a total of 50 se-
quences and approximately 15,000 frames. RGBT210 [Li
et al., 2017] dataset consists of 210 pairs of RGBT video
sequences, totaling 209.4K frames, and includes annotations
across 12 attributes. RGBT234 [Li et al., 2019a] dataset ex-
tends RGBT210 dataset, offering more precise annotations.
It contains a total of 234 pairs of RGBT video sequences,
amounting to approximately 233.4K frames. LasHeR [Li
et al., 2021] is a large RGBT tracking dataset, consisting of
1,224 aligned video sequences with approximately 1,469.6K
frames. It includes 245 test sequences and 979 training se-
quences, covering 19 real-world challenge attributes.

Following the previous works [Liu et al., 2023; Hui et al.,
2023b], we use Precision (PR) and Success Rate (SR) as the

main evaluation metrics in one-pass evaluation for quantita-
tive performance analysis, which are commonly employed in
current RGBT tracking tasks. To consider target size, we nor-
malize PR to obtain Normalized Precision (NPR) for evaluat-
ing tracking performance on the LasHeR dataset.

4.3 Comparisons With State-of-the-Art Methods
We evaluate our algorithm on four popular RGBT tracking
datasets and compare its performance with current state-of-
the-art methods.
Evaluation on GTOT dataset. The comparison of the exper-
imental results in GTOT dataset is shown in Table 1, where
our method outperforms the current state-of-the-art methods,
with gains over HMFT, QAT and US-Track in PR/SR by
4.3%/5.3%, 4.0%/4.7%, and 2.1%/1.9%, respectively. We
further compare our method with the CKD tracker, which
eliminates modality gaps. In terms of PR and SR, our method
outperforms CKD by 2.3% and 3.0%, respectively.
Evaluation on RGBT210 dataset. We compare our method
with 7 existing RGBT trackers on RGBT210 dataset, and the
results are shown in Table 1. Specifically, compared to TBSI,
QAT, and TATrack, our method achieves significant improve-
ments of 5.4%/3.3%, 3.9%/3.9%, and 5.4%/4.0% in PR/SR,
respectively. We further compare our method with the top-
performing approach, CKD, and observe a performance im-
provement of 2.3%/0.6% in PR/SR.
Evaluation on RGBT234 dataset. To further validate the
effectiveness of our method, we compare it with other 17
state-of-the-art RGBT trackers on RGBT234 dataset. When
comparing our method with QAT, BAT, and US-Track on
RGBT234 dataset, it is observed that our method achieves
improvements of 2.4%/3.4%, 4.0%/3.7%, and 3.7%/4.1% in
PR/SR, respectively. Finally, when comparing with the best-
performing method on RGBT234 dataset, CKD, our method
outperforms it by 0.8% in PR and 0.4% in SR.
Evaluation on LasHeR dataset. We compare our method
with 13 state-of-the-art RGBT trackers on the most challeng-
ing LasHeR dataset, and the evaluation results are shown in
Table 1. Our method significantly outperforms existing ad-
vanced methods due to its effective perception of modality
quality and its ability to fully utilize dynamic templates to
extract spatio-temporal information, achieving state-of-the-
art performance with PR, NPR, and SR scores of 76.4%,
72.7%, and 61.4%, respectively. Compared to TATrack and
BAT, our method exceeds them by 5.2% and 5.3% in both PR
and SR metrics. We also compare our method with the top-
performing tracker on this dataset, CKD. Our method outper-
forms CKD by 3.2%/3.4%/3.3% in terms of PR/NPR/SR.

Additionally, to further validate the effectiveness of the
proposed method, we visualize the tracking results of four se-
quences with multiple challenges, as shown in Figure 4. We
can observe that in the sequence manoncall, when the target is
heavily occluded, BAT, ViPT, and SDSTrack fail to track the
target, while only our method and TBSI manage to locate the
target accurately. When faced with the sequence boyaftertree,
includes challenges such as occlusion and low-light condi-
tions, all other methods fail to track the target, while only our
method achieves stable tracking.
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Methods Pub. Info. Backbone GTOT RGBT210 RGBT234 LasHeR FPS
PR↑ SR↑ PR↑ SR↑ PR↑ SR↑ PR↑ NPR↑ SR↑ ↑

APFNet [Xiao et al., 2022] AAAI 2022 VGG−M 90.5 73.7 − − 82.7 57.9 50.0 43.9 36.2 1.3
DMCNet [Lu et al., 2022] TNNLS 2022 VGG−M 90.9 73.3 79.7 55.5 83.9 59.3 49.0 43.1 35.5 2.3

ProTrack [Yang et al., 2022] ACM MM 2022 ViT−B − − − − 78.6 58.7 50.9 − 42.1 30
HMFT [Pengyu et al., 2022] CVPR 2022 ResNet−50 91.2 74.9 78.6 53.5 78.8 56.8 − − − −

MFG [Wang et al., 2022] TMM 2022 ResNet−18 88.9 70.7 74.9 46.7 75.8 51.5 − − − −
CMD [Zhang et al., 2023] CVPR 2023 ResNet−50 89.2 73.4 − − 82.4 58.4 59.0 54.6 46.4 30

ViPT [Zhu et al., 2023] CVPR 2023 ViT−B − − − − 83.5 61.7 65.1 − 52.5 −
TBSI [Hui et al., 2023b] CVPR 2023 ViT−B − − 85.3 62.5 87.1 63.7 69.2 65.7 55.6 36.2
QAT [Liu et al., 2023] ACM MM 2023 ResNet−50 91.5 75.5 86.8 61.9 88.4 64.4 64.2 59.6 50.1 22

TATrack [Wang et al., 2024] AAAI 2024 ViT−B − − 85.3 61.8 87.2 64.4 70.2 66.7 56.1 26.1
BAT [Cao et al., 2024] AAAI 2024 ViT−B − − − − 86.8 64.1 70.2 − 56.3 −

Un-Track [Wu et al., 2024] CVPR 2024 ViT−B − − − − 84.2 62.5 66.7 − 53.6 −
SDSTrack [Hou et al., 2024] CVPR 2024 ViT−B − − − − 84.8 62.5 66.5 − 53.1 20.9

OneTracker [Hong et al., 2024] CVPR 2024 ViT−B − − − − 85.7 64.2 67.2 − 53.8 −
US-Track [Xia et al., 2024] IJCAI 2024 ViT−B 93.4 78.3 − − 87.1 63.7 − − − 84.2

CKD [Lu et al., 2024] ACM MM 2024 ViT−B 93.2 77.2 88.4 65.2 90.0 67.4 73.2 69.3 58.1 96.4
Ours − ViT−B 95.5 80.2 90.7 65.8 90.8 67.8 76.4 72.7 61.4 41

Table 1: PR/NPR and SR scores (%) for advanced trackers on four datasets. The best and second results are in red and blue colors,
respectively.

Component RGBT234 LasHeR
UMFM CTUM MPR MSR PR NPR SR

88.5 66.2 70.6 67.0 56.7
✓ 90.0 67.1 73.1 69.4 58.9
✓ ✓ 90.8 67.8 76.4 72.7 61.4

Table 2: Component analysis on RGBT234 and LasHeR dataset.

Inserting Layers RGBT234 LasHeR
10 11 12 MPR MSR PR NPR SR

88.5 66.2 70.6 67.0 56.7
✓ 89.4 66.9 74.8 70.9 60.0
✓ ✓ 90.3 67.7 75.7 72.0 60.6
✓ ✓ ✓ 90.8 67.8 76.4 72.7 61.4

Table 3: Inserting layers of the proposed UMFM.

4.4 Ablation Study
Analysis of Different Components. We first analyze the ef-
fectiveness of the designed UMFM and CTUM, with the re-
sults presented in Table 2. It can be seen that when UMFM is
incorporated into the baseline, the model performance shows
significant improvement. With the addition of CTUM, the
performance is further enhanced due to the utilization of
spatio-temporal information.
Analysis of Hyperparameters. We first evaluate different
inserting layers of our proposed UMFM and summarize the
experimental results in Table 3. As UMFM is added layer
by layer, it can be observed that the overall performance of
the model gradually improves. We then explore the impact of
the interval N on the performance of the proposed method,
and the experimental results are shown in Table 4. It can be
observed that when the interval N is set to 20, the perfor-
mance of our method achieves the best result. Compared to
the other two template selection methods, although they also
achieve significant performance gains, our method demon-

strates a more prominent improvement in performance. For
more experimental results and visualizations, please refer
to the supplementary materials*.

N MAX/RADNOM/CTUM
PR NPR SR

10 74.1/74.0/76.0 70.4/70.1/72.3 59.5/59.3/ 60.1
20 74.7/73.6/76.4 71.2/69.8/72.7 60.1/59.1/ 61.4
30 74.6/73.8/75.6 71.4/70.0/71.9 59.9/59.1/60.5
40 74.1/73.9/74.6 70.7/70.0/70.9 59.7/59.3/60.0

Table 4: Analysis of hyperparameters N on LasHeR dataset. MAX
denotes selecting the result with the highest classification score
within the interval N as the updated template. RANDOM indicates
that a result is randomly selected within the interval N for template
updating.

5 Conclusion
In this work, we propose a novel template-based uncertainty
framework consisting of an uncertainty-aware multimodal fu-
sion module and a contrastive template update module, for
RGBT tracking. UMFM utilizes the reliablility of initial tem-
plate and Subjective Logic to model the uncertainty of dif-
ferent modalities, addressing the issue of dynamic modal-
ity quality changes in complex scenarios. CTUM explores
the role of the initial template in the template update pro-
cess, facilitating efficient dynamic template update. Exten-
sive experiments on four publicly available RGBT tracking
datasets demonstrate the effectiveness of our method com-
pared to other state-of-the-art RGBT trackers. In the future,
we will continue to explore novel and effective dynamic tem-
plate update strategies and integrate the uncertainty-aware
multimodal fusion module into other tracking frameworks.

*https://github.com/dongdong2061/IJCAI25-TUMFNet
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