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Abstract
Recent advances in unsupervised deep graph clus-
tering have been significantly promoted by con-
trastive learning. Despite the strides, most graph
contrastive learning models face challenges: 1)
graph augmentation is used to improve learning
diversity, but commonly used random augmenta-
tion methods may destroy inherent semantics and
cause noise; 2) the fixed positive and negative sam-
ple selection strategy ignores the difficulty distri-
bution of samples when deal with complex real
data, thereby impeding the model’s capability to
capture fine-grained cluster patterns. To reduce
these problems, we propose the clustering-guided
Curriculum Graph contrastive Learning (CurGL)
framework. CurGL uses clustering entropy as the
guidance of the following graph augmentation and
contrastive learning. Specifically, according to the
clustering entropy, the intra-class edges and im-
portant features are emphasized in augmentation.
Then, a multi-task curriculum learning scheme is
proposed, which employs the clustering guidance
to shift the focus from the discrimination task to
the clustering task. In this way, the sample selec-
tion strategy of contrastive learning can be adjusted
adaptively from early to late stage, which enhances
the model’s flexibility for complex data structure.
Experimental results demonstrate that CurGL has
achieved excellent performance compared to state-
of-the-art competitors.

1 Introduction
In recent years, the representational capacity of graph data
has made it prevalent in various applications, including social
networks [Majeed and Rauf, 2020; Newman et al., 2002],
knowledge graphs [Ji et al., 2021], and traffic prediction
[Zhao et al., 2019; Li et al., 2023]. The prevalence has
been further amplified by the emergence of deep graph neu-
ral networks [Kipf and Welling, 2016a; Veličković et al.,
2017], which has enabled the efficient analysis of complex
graph data. Specifically, unsupervised deep graph learning

∗Corresponding author.

[Wang et al., 2021b; Liu et al., 2022a; Mo et al., 2022;
Chen and Li, 2022] has garnered extensive research interest
due to its ability to extract discriminative, and interpretable
graph features.

Graph contrastive learning is a fundamental paradigm
within the field of unsupervised graph learning, and consists
of two parts including graph augmentation and contrastive
learning. Data augmentation changes the original data graph
to obtain multiple views with similar semantics, thereby ex-
panding the selection space of positive and negative sample
pairs [Xu et al., 2024; Wang et al., 2021c]. For example,
many data augmentation methods select the nodes and edges
randomly, and delete/mask/disturb them to produce an aug-
mented graph [Zhu et al., 2020; You et al., 2020]. Con-
trastive learning enhances the similarity of samples with re-
lated semantics, while pushing samples with low relevance
away from each other. The above process helps to learn
graph embeddings with high discriminability, which in turn
reveals the implicit structure of the data. The early methods
[Hjelm et al., 2019; Veličković et al., 2018] take the non-
corresponding nodes among views as negatives, which can
mistakenly pull many intra-class samples far apart, resulting
in sampling bias. Some recent methods [Lin et al., 2022;
Zhao et al., 2021] have attempted to improve the selection
strategies for positive and negative samples, adopting spe-
cific strategies to select more appropriate positive and nega-
tive samples, such as taking the intra-class nodes as positives
and the inter-class nodes as negatives.

Existing methods for graph contrastive learning often en-
counter difficulties when dealing with complex data. On
the one hand, the widely used random graph data augmen-
tation methods [Fang et al., 2023] can potentially remove
intra-class edges and mask features essential for represent-
ing the class. Unlike ideal augmentation, this approach can
disrupt the graph structure critical to clustering, thereby lim-
iting the performance of contrastive learning frameworks.
On the other hand, most methods adopt the fixed strategy
to select positive and negative samples throughout the train-
ing process, which is not flexible in practical applications.
For example, two common strategies for positive/negative
samples selection in contrastive learning are: using corre-
sponding samples from other views as positives and treating
all others as negatives [Zhu et al., 2020; You et al., 2020;
?], or using pseudo-labels generated during training to de-
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fine positive and negative samples [Yang et al., 2023; Lin
et al., 2022; Xia et al., 2022]. The first approach focuses
on learning the discriminative features for each node. How-
ever, taking all non-corresponding samples as negatives hin-
ders intra-class compactness. The second approach employs
pseudo-labels generated by simple clustering methods to se-
lect positive/negative samples, which may be unreliable in
the early stages due to the insufficient discriminability of the
learned embeddings. The limitation of fixed strategy hin-
ders the model’s ability to explore the intrinsic representation
and complex topological relationship, potentially leading the
model to converge to a suboptimal solution for clustering.

To alleviate the above problems, we propose clustering-
guided Curriculum Graph contrastive Learning (CurGL)
framework. As shown in Fig. 1, the intermediate results of
the model are clustered to calculate the clustering entropy,
which serves as a clustering guidance for the whole frame-
work. On this basis, a clustering-friendly strategy is adopted
for performing structure-level and feature-level data augmen-
tation. Then, the multi-task curriculum learning scheme uses
clustering entropy to determine the clustering confidence of
samples and place them in different contrastive learning tasks.
As training progresses, samples are transited from the early
stage simple discrimination task to the more challenging clus-
tering task in the late stages, such that the flexible adjustment
of sample selection is achieved. The main contributions of
this paper are as follows.

• A clustering-guided graph contrastive learning frame-
work is established. The clustering entropy is defined to
serve as the clustering guidance, which is used to eval-
uate the importance and clustering confidence of nodes
throughout the whole framework.

• A clustering-friendly graph augmentation method is pro-
posed. Under the clustering guidance, structure augmen-
tation tends to preserve intra-class edges, while feature
augmentation is more likely to retain the class-specific
features.

• A multi-task curriculum learning scheme is developed
to explore the complex data structure. It allows the
model to first learn discriminative representations of the
samples and then move towards clustering optimization.
The dynamic contrastive learning effectively enhances
the capability to capture cluster-oriented discriminative
features.

2 Related Work
2.1 Graph Contrastive Learning
After making progress in image recognition[Zbontar et al.,
2021; Wang and Qi, 2022], contrastive learning combined
with Graph Neural Networks (GNNs) has also garnered sig-
nificant attention from many researchers. Explorations in
graph contrastive learning have primarily concentrated on
graph augmentation technologies and contrastive objectives.

Data augmentation enriches the diversity of training sam-
ples by generating different views. MVGRL [Hassani and
Khasahmadi, 2020] and DCRN [Liu et al., 2022b] utilize
graph diffusion to create augmented views, while methods

like GRACE [Zhu et al., 2020] and SCAGC [Xia et al.,
2022] achieve this through random attribute and edge per-
turbations. Most augmentation techniques are often stochas-
tic and uncontrollable, potentially disrupting semantics and
cause noise. Recently, several adaptive augmentation meth-
ods [Zhang et al., 2024] have been proposed. GCA [Zhu et
al., 2021] learns the weights of discarding adaptively, with
the expectation that the model’s final learned representations
will be insensitive to unimportant nodes or edges. However,
It is not necessarily suitable for downstream clustering tasks.
CurGL is designed with clustering as the objective, aiming to
obtain augmented views that better align with the underlying
clustering structure.

Contrastive objective learns the embedding by construct-
ing pairs of positive and negative samples. MVGRL de-
signs an InfoMax loss to maximize the cross-view mutual
information between nodes and the global summary of the
graph. AGE[Cui et al., 2020] devises a pretext task, us-
ing a cross-entropy loss to classify similar and dissimilar
nodes. Based on k-Means or other graph-based clustering
methods[Wang et al., 2021a], some methods[Lin et al., 2022;
Yang et al., 2023] use intermediate clustering results to guide
the contrast objective. CurGL designed two types of con-
trastive objectives to tackle tasks of varying difficulties, and
we employ curriculum learning to tailor the tasks for each
node based on the model’s current learning state.

2.2 Curriculum Learning
Curriculum learning [Bengio et al., 2009; Wang et al., 2021d]
is a training strategy that mimics the human learning pro-
cess. It allows the model to start with simpler samples
and gradually progress to more complex ones, as well as
to advanced knowledge. Some studies [Jiang et al., 2018;
Han et al., 2018] have theoretically demonstrated the ef-
fectiveness of curriculum learning in enhancing generaliza-
tion capabilities when dealing with noisy data. Curriculum
learning is widely applied across various areas of machine
learning[Zbontar et al., 2021] and deep learning[Matiisen et
al., 2019; Graves et al., 2017].

Curriculum Learning consists of two main parts: diffi-
culty measurer and training scheduler[Hacohen and Wein-
shall, 2019]. The difficulty measurer is used to evaluate the
difficulty of the sample. Predefined difficulty measurer [Pla-
tanios et al., 2019; Spitkovsky et al., 2010; Tay et al., 2019]
is mainly designed manually according to the data character-
istics of a specific task. The training scheduler determines the
appropriate training data to feed into the model based on the
evaluation results of the difficulty measurer. But existing pre-
defined training schedulers[Cirik et al., 2016] are usually data
and task independent, and most curriculum learning in vari-
ous scenarios uses a similar training scheduler. The discrete
scheduler adjusts the training data at each fixed round or when
the current data converges, while the continuous scheduler
adjusts the training data at each round according to a defined
scheduling function. Different from the general curriculum
learning that only controls the number of sample participa-
tion, CurGL lets samples perform tasks of different difficulty
at different stages of the model, which considers the difficulty
distribution of samples.
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Figure 1: Pipeline of CurGL. The Clustering Guidance Module clusters the embedding Z1 to obtain clustering guidance. Clustering-Friendly
Augmentation applies clustering-oriented structure augmentation and feature augmentation to the original data. According to the clustering
guidance, Crriculum Learning divides the nodes into high confidence groups and low confidence groups to perform different contrastive tasks
in Multi-Task Contrastive Learning.

3 Methodology
In this section, we will provide a detailed introduction to the
proposed CurGL method. The overall pipeline of CurGL is
shown in Fig. 1.

3.1 Notations and Problem Definition
In this paper, uppercase letters represent matrices and low-
ercase letters represent vectors. An undirected graph with n
nodes is defined as G = {X,A}, and X ∈ Rn×d is the orig-
inal feature matrix of the nodes, A ∈ Rn×n represents the
adjacency matrix of the graph data.

This paper aims to address an unsupervised graph cluster-
ing problem. Specifically, given a graph G = {X,A}, the
task is to train a GCN encoder such that Z = f(X,A), and
the resulting Z can be used to cluster all nodes V of the graph
G into k classes.

3.2 Clustering Guidance Module
The clustering guidance module is introduced to make the
learned embeddings more suitable for clustering tasks. Clus-
tering entropy is defined to guide subsequent augmentation
and contrastive learning. It also serves as a loss function to
improve the quality of pseudo-labels.

Given the original graph data G = {X,A} and embedding
Z1 computed by GCN, performing k-Means on Z1 results in
k cluster centroids C = {{c1}, {c2}, . . . , {ck}} and pseudo-
labels L of the samples. Then, we calculate the probability
assignment matrix P by

P = softmax(Z1 ·CT), (1)

where Z1 ·CT calculates the dot product similarity between
each sample and the cluster center, the softmax(·) performs

exponential normalization of each row of Z1 ·CT to obtain
the probability assignment matrix P ∈ Rn×k. Each row of
P represents the probability that the corresponding node is
assigned to all the centroids.

To assess the quality of the clustering, we propose the clus-
tering entropy

Ei = −
k∑

j=1

Pij log(Pij). (2)

Ei indicates the uncertainty of the probability distribution for
each node. Nodes with high Ei have probabilities that are
relatively close to each cluster centroid, indicating a lower
confidence in the clustering. Conversely, nodes with low Ei

have a higher confidence in clustering. For better clustering,
the samples with high confidence should increase during the
training procedure, such that a low clustering entropy can be
achieved. Therefore, a clustering entropy loss is designed to
optimize the clustering effect, defined as

LEN =
1

n

n∑
i=1

Ei. (3)

Optimizing LEN can drive the learned embedding Z to reveal
a clear cluster structure, and provide more reliable clustering-
oriented guidance for the subsequent modules.

3.3 Clustering-Friendly Augmentation
In this part, we design a clustering-friendly augmentation
method, which consists of structure augmentation and fea-
ture augmentation. They preserve edges between nodes of
the intra-class and important features that are beneficial for
the clustering task respectively.
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Structure Augmentation. Each edge is assigned with an
importance weight to determine its probability of being
deleted, which can be formulized as

uij
e = EiEj + µδ(Li − Lj , 0), (4)

where uij
e represents the importance measure between nodes

i-th and j-th. The indicator function δ(Li − Lj , 0) is 0 when
Li = Lj and 1 otherwise. The meaning of uij

e is that when
the nodes at both ends of the edge have low clustering entropy
and belong to the same class, the value of uij

e is relatively
smaller, indicating a higher importance of the edge, and thus
a lower probability of being removed. After normalization,
the probability of each edge being removed is obtained, and
the normalization method is given by

peu = min

(
umax
e − ue

umax
e − ūe

· pe, pτ
)
, (5)

where umax
e and ūe are the maximum and average values of

ue respectively. pe is the overall edge deletion probability,
and pτ is the truncation probability, which is used to prevent
the deletion probability of certain edges from being too high.

The structure augmentation emphasizes the edges that con-
nect reliable nodes of the same class. As a result, important
clustering-relevant semantic information is preserved.
Feature Augmentation. Feature augmentation aims to pre-
serve the representative class-specific features. For one-hot
encoded features, 1 indicates the presence of a feature, while
0 indicates its absence, the frequency of each feature appear-
ing in nodes within the same class reflects the importance of
that feature. Therefore the feature weight for the j-th class fj
can be defined as

fj =
∑
li=j

zi. (6)

For features that are not one-hot encoded, the distribution of
features within the class can also be used to obtain fj . If
the distribution of a feature is more concentrated among the
samples within a class, it will have a higher feature weight
fj , which can be determined by statistical measures such as
variance.

We can obtain the probability that each feature within each
class is masked by normalizing fj ,

pfju = min

(
fmax
j − fj

fmax
j − f̄j

· pf , pτ

)
, (7)

where pf is the overall probability of feature augmentation
and pτ is the truncation probability.

The augmentation approach emphasizes important features
within each cluster, which makes it more convenient to judge
the subordinate cluster of each sample. Features irrelevant to
clustering are more likely to be removed to reduce noise.

3.4 Multi-Task Curriculum Learning
The multi-task curriculum learning scheme is proposed to
deal with complex real data. In order to simulate the real-
world knowledge learning process, samples should start with
simple contrastive task and gradually turn to complex con-
trastive task. In the early stages of training, the embeddings

are not discriminable, and unsuitable for clustering. There-
fore, we start from the discrimination task, and gradually
transition towards the clustering task.
Self-Paced Curriculum Learning. In each training itera-
tion of the model, we categorize samples into low-confidence
and high-confidence groups to perform the discrimination and
clustering task, respectively. A self-paced curriculum learn-
ing is used to achieve automatic transformation of tasks ac-
cording to the clustering entropy.

To distinguish the confidence of samples, we define a in-
dicator vector v ∈ {0, 1}n, where vi = 0 denotes that the
i-th sample belongs to the low-confidence group. Self-paced
curriculum learning assigns the contrastive task to samples
by controlling each element in the indicator vector v. Given
n samples, we define nt

CT as the number of samples in the
model at the t-th epoch iteration that are selected to perform
the clustering task. The samples are chosen based on their
ranking in clustering entropy, and their corresponding ele-
ments in the indicator vector v are set to 1. Moreover, nDT is
the number of samples that perform discrimination task, and
nCT +nDT = n. Curriculum pace ε is defined to control the
number of high-confidence samples. With the total number
of iterations T , the nt+1

CT is computed as

nt+1
CT = min(nt

CT + ε
n

T
, n). (8)

When ε reaches 1, all samples participate in the clustering
task, the nCT will not increase any more.
Discrimination Task. The purpose of discrimination task
is to distinguish each sample individually and learn clear
self-representations. Since the discrimination task does not
consider the topological relationships between samples, it is
regarded as a relatively simple task. Samples in the low-
confidence group do not exhibit well-defined clustering struc-
tures, so we assign them to perform the discrimination task.

To push nodes apart in the embedding space, the positive
and negative sampling corresponding to the discrimination
task is that the positive sample is the augmented view of the
sample itself, while the negative samples are all other nodes.
For zi, the discrimination task loss is

ℓDT (i) = −1

2

2∑
j=1

log(

eS((z
1
i ,z

2
i )/τ)

eS((z
1
i ,z

2
i )/τ) +

∑
k ̸=i e

S((zj
i ,z

1
k)/τ) +

∑
k ̸=i e

S((zj
i ,z

2
k)/τ)

),

(9)

where zji denotes the i-th node in the j-th view, τ is the tem-
perature parameter, S(·) is the similarity calculation function.
The overall discrimination task loss can be expressed as

LDT =
1

nDT

n∑
i=1

(1− vi)ℓDT (i). (10)

By minimizing LDT , the low-confidence sample gradually
captures the key internal features, resulting in a more dis-
criminative embedding. As the discriminability improves, the
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topological relationship becomes more clear, and the samples
gradually transform into high-confidence ones. Then, they
can participate into the clustering task.
Clustering Task. Once the samples in the embedding space
exhibit sufficient discriminability, the pseudo-labels and -
centroids obtained by k-Means become more reliable. There-
fore, we can consider the complex topological relationships
between samples, aiming to push the intra/inter-class nodes
close/disperse for clustering improvement.

For the clustering task, the selection strategy for positive
and negative samples is as follows: positive samples are de-
fined as the cluster centroid of the sample and its own aug-
mented view, while negative samples are the centroids of
other clusters. For zi, the clustering task loss is

LCT (i) = −1

2

2∑
j=1

log(
eS((z

1
i ,z

2
i )/τ) + eS((z

j
i ,ci)/τ)

eS((z
1
i ,z

2
i )/τ) +

∑
k e

S((zj
i ,ck)/τ)

),

(11)
where ci is the pseudo-centroid corresponding to zi. Pulling
nodes closer to their centroids and pushing them away from
other centroids is beneficial to accelerate a clear clustering
distribution. The overall loss of clustering contrastive task is

LCT =
1

nCT

n∑
i=1

viℓCT (i). (12)

By minimizing LCT , the node features with sufficient dis-
crimination after discrimination task learning further show
the clustering structure and facilitates clearer clustering sepa-
ration.

Through the above task transition, the positive and negative
sampling strategy gradually changes from considering only
the node itself to mining the cluster structure, thus leverag-
ing the clustering information to guide contrastive learning.
The progression from easy to challenging tasks enables our
method to consistently learn clustering-oriented discrimina-
tive features.

3.5 Joint Loss and Optimization
Combining Eqs. (3), (9), and (11) , the joint loss is

L = αLDT + βLCT + γLEN , (13)

where α, β and γ are hyper-parameters.
The loss of the model can be considered as a function of the

model parameters W and the indicator vector v, which can be
expressed as L = g(W, v). To optimize the objective func-
tion, we use an alternate optimization algorithm to iteratively
update both. Specifically, v is first initialized as an all-zero

Dataset Samples Edges Dimensions Classes
CORA 2708 5429 1433 7
UAT 1190 13599 239 4
AMAP 7650 119081 745 8
AMAC 13752 245861 767 10
PUBMED 19717 44438 500 3

Table 1: Descriptions of real-world datasets.

vector, which means that all nodes perform the discrimina-
tion task at the beginning of the model training. Perform the
following two steps alternately until the final iteration.

Firstly, fix vt and solve Wt+1 by

Wt+1 = argmin
Wt

[
αLCT (v

t,Wt) + βLDT (v
t,Wt)

+ γLEN (Wt)
]
.

(14)

The model parameters Wt+1 can be solved using the Adam
optimizer.

Secondly, fix Wt and solve indicator vector vt+1 accord-
ing to the cluster entropy E

vt+1 = argmin
vt

N∑
i=1

vtiE
t
i , s.t. ∥vt∥1 = nt

CT , (15)

where nt
CT initially starts at 0 and increases with the cur-

riculum pace ε. ∥v∥1 is the L1 norm of the vector. As nCT

increases, the indicator vector v will eventually become an
all-ones vector, meaning that all nodes will participate in the
clustering task.

4 Experiments
4.1 Benchmark Datasets
To substantiate the efficiency of the CurGL, fix publicly ac-
cessible real-world datasets are adopted as benchmarks, in-
cluding CORA, UAT, PUBMED, AMAP, and AMAC. The
datasets are collected from a range of domains such as air
traffic, academic citation, and shopping networks. Further
details regarding these datasets are shown in Table 1.

4.2 Evaluation Metrics
The clustering result is evaluated with three well-known met-
rics, including Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), and Average Rand Index (ARI). All metrics
are positively correlated with clustering performance, and the
range is [0, 1].

4.3 Comparison with Competitors
Ten state-of-the-art node clustering algoritms are selected for
comparative analysis. This evaluation encompasses a range
of approaches, from the traditional k-Means algorithm to ad-
vanced GCN-based deep models, such as GAE [Kipf and
Welling, 2016b], DAEGC [Wang et al., 2019], and SDCN
[Bo et al., 2020], as well as contrastive learning-based tech-
niques including GCA [Zhu et al., 2021], SCAGC [Xia et al.,
2022], CCGC [Yang et al., 2023], DCGL [Chen et al., 2024],
DCRN [Liu et al., 2022b] and HSAN [Liu et al., 2023].
Setups. The k-Means algorithm only utilizes the original
node attributes as input. In contrast, other baseline meth-
ods use both the original node attributes and the topological
graph. The hyper-parameters for each competitor are con-
figured according to the recommendations provided in the
original papers. For the proposed CurGL, we use the adap-
tive hyper-parameter selection, which means α =

∥v∥1

N and
β = 1−α. Additionally, a parameter grid search is conducted
for γ. The advantage of this approach is that α will increase
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Dataset Metric k-Means GAE DAEGC SDCN GCA SCAGC DCGL DCRN CCGC HSAN CurGL

CORA
ACC 26.27 63.80 70.43 50.70 53.62 73.45 64.77 61.93 73.88 77.07 78.66
NMI 34.68 47.64 52.89 33.78 46.87 57.43 48.67 45.13 56.45 59.21 60.24
ARI 19.35 38.00 49.63 25.76 30.32 52.24 36.20 33.15 52.51 57.52 60.48

UAT
ACC 42.47 56.34 52.29 52.25 51.15 53.24 46.81 49.92 56.34 56.04 56.74
NMI 22.39 20.69 21.33 21.61 23.47 26.96 18.95 24.09 28.15 26.99 27.27
ARI 15.71 18.33 20.50 21.63 20.52 22.49 16.49 17.17 25.52 25.22 25.85

AMAP
ACC 36.53 42.03 60.14 71.43 69.51 75.25 62.13 79.94 77.25 77.02 80.16
NMI 19.31 31.87 58.03 64.13 60.70 67.18 57.26 73.70 67.44 67.21 72.21
ARI 12.61 19.31 43.55 51.17 49.09 56.86 42.21 63.69 57.99 58.01 63.75

AMAC
ACC 36.44 43.14 49.26 54.12 54.92 58.43 OOM OOM 53.57 OOM 67.79
NMI 16.64 35.47 39.28 39.90 44.36 49.92 OOM OOM 34.22 OOM 55.26
ARI 28.08 27.06 35.29 28.84 35.61 38.29 OOM OOM 32.42 OOM 54.13

PUBMED
ACC 43.83 62.09 68.73 59.21 69.51 72.42 OOM OOM 42.58 OOM 72.47
NMI 15.05 23.84 28.26 19.65 31.13 35.13 OOM OOM 21.87 OOM 37.02
ARI 11.43 20.62 29.84 17.07 30.85 34.19 OOM OOM 21.23 OOM 36.07

Table 2: Node clustering performance (%) of nine methods on five datasets. The optimal and sub-optimal results are decorated with bold and
underline, respectively. ’OOM’ means out-of-memory.

Dataset Metric wo/CL wo/CE wo/CUd wo/CUc CurGL

CORA
ACC 77.06 77.21 72.60 71.52 78.66
NMI 56.43 57.29 54.29 53.34 60.24
ARI 56.31 58.05 51.13 43.35 60.48

UAT
ACC 55.46 55.13 48.74 50.92 56.74
NMI 26.41 27.09 25.36 22.99 27.27
ARI 24.41 25.24 15.17 19.65 25.85

AMAP
ACC 77.28 78.95 78.17 77.49 80.16
NMI 67.28 71.33 70.05 69.60 72.21
ARI 57.97 62.43 59.37 58.95 63.75

AMAC
ACC 65.58 67.37 59.70 58.38 67.79
NMI 55.11 55.77 52.58 55.20 55.26
ARI 48.06 51.21 51.42 41.00 54.13

PUBMED
ACC 63.83 71.91 61.58 67.25 72.47
NMI 29.39 36.17 33.68 30.44 37.02
ARI 26.06 35.23 29.01 27.94 36.07

Table 3: Node clustering performance (%) of ablation study. The
optimal result are shown in bold.

as the number of nodes involved in the clustering task grows,
while β for the discrimination task will correspondingly de-
crease.

To ensure a fair comparison, each algorithm is executed 10
times to report the average. All deep models are trained with
a NVIDIA RTX-4090 GPU.

Performance Comparison. Table 2 displays the average
clustering performance of all algorithms. In general, the
proposed CurGL outperforms other advanced methods, and
achieves the best clustering results on all datasets, which indi-
cates the practicability of CurGL on various graph clustering
scenarios. From the experimental results, we also summarize
the following viewpoints. Firstly, all GCN-based methods
surpass k-Means on attributed graph clustering, which man-

ifests the advantage of GCN on graph data mining. GCN-
based deep models process the node attributes and the topo-
logical structure information simultaneously, so as to detect
the internal data distribution more precisely. Secondly, bene-
fiting from the efficient data augmentation techniques, GCN-
based models outperform the traditional graph auto-encoder
framework. The augmented view provide a more exten-
sive semantic space for presentation learning, so as to im-
prove clustering. Thirdly, compared to contrastive learning-
based baselines, CurGL introduces the clustering guidance
to improve the graph augmentation, which makes the aug-
mented views more suitable for the downstream clustering
task. Fourthly, unlike existing clustering-oriented methods
such as CCGC, SCAGC, and HSAN, the proposed CurGL ad-
justs the contrastive learning task based on the learning state
of the samples, alleviating the issue of unreliable pseudo-
labels in the early stages.

4.4 Ablation Study and Analysis
In this part, the ablation study is conducted to verify the effec-
tiveness of the new mechanisms. Three variants of CurGL are
designed, including wo/CL, wo/CE, wo/CUd and wo/CUc.
Specifically, in wo/CL, the cluster-friendly graph augmenta-
tion is substituted with random data augmentation. In wo/CE,
the clustering entropy loss is suspended. Furthermore, in
wo/CUd and wo/CUc, the curriculum learning mechanism is
suspended, allowing nodes to execute fixed contrastive learn-
ing during model training. wo/CUd represents that all nodes
only perform the discrimination task, and wo/CUc represents
that all nodes only perform the clustering task. Table 3 gives
the ablation comparison on five datasets. It can be seen that
CurGL still presents the best clustering scores, which proves
the effects of the new modules on graph clustering. Further-
more, Fig. 2 shows the visualization results of the embed-
dings. CurGL obtains the best sample distribution with a clear
cluster structure. The structure learned by wo/CUc is unclear
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(a) wo/CUc (b) wo/CUd (c) CurGL

Figure 2: 2D Visualization of learned embeddings on Cora dataset.
For better observation, only the first 100 samples of each class are
selected.
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Figure 3: Clustering performance of CurGL with a different edge
deletion probability pe and feature masking probability pf .

because only discriminative features of samples are learned.
wo/CUd fails to capture the discriminative features, so some
inter-class samples are grouped incorrectly.

Impact of Augmentation probability. The augmentation
probability determines the difference between the two views
during contrastive learning. The edge deletion probability pe
and feature masking probability pf control the intensity of
structure and feature augmentation respectively. Fig. 3 shows
the impact of different combinations of these two factors on
clustering performance. It can be observed that when the aug-
mentation probability is low, the data differences between the
two views are very small. In this case, the selection space for
positive and negative samples is limted, making it difficult
to learn robust representations. On the other hand, when the
augmentation probability is too high, the augmented views
are excessively perturbed, where critical structures and fea-
tures are damaged and original semantic information is lost.

Impact of Curriculum Pace. The curriculum pace ε deter-
mines the learning speed. When ε = 1, the model iterates
to the last epoch, and exactly all nodes are transferred to the
clustering task. When ε > 1, all nodes are transferred to the
clustering task before the end of training. Fig. 4 shows the ef-
fect of curriculum pace. The clustering performance reaches
the optimal when 1 < ε < 2. The results are consistent
with our original intention, as it tries to perform the cluster-
ing task for a period of epochs after all nodes complete the
discrimination task. Too large curriculum pace also leads to
poor clustering, since the sample is transferred to the clus-
tering task prematurely without a discriminative embedding.
The experimental result testifies the feasibility of multi-task
contrastive scheme.

0.5 0.7 1 1.3 1.5 1.7 2
Curriculum pace 

40
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100
ACC
NMI

ARI

(a) CORA

0.5 0.7 1 1.3 1.5 1.7 2
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100
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(b) AMAP

Figure 4: Effect of curriculum pace on clustering performance.
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90
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Figure 5: Clustering performance of CurGL with a fixed task ratio.
The dotted line represents the performance with automatic task ratio.

Impact of Task Ratio. We remove the curriculum learning
mechanism and fix the sample ratio of the two tasks to in-
vestigate the influence. When the task ratio is 0, all nodes
only perform the discrimination task during the entire model
training. When the task ratio is 1, all nodes engage in the
complex clustering task. The results are visualized in Fig.
5. Obviously, relying solely on either the discrimination task
or clustering task yields sub-optimal performances. The dis-
criminanation task neglects the clustering guidance, and the
clustering task suffer from the accumulation of adverse noise
in pseudo-labels. Compared to performing a single task (i.e.,
task ratio is 0 or 1), multi-task learning with a fixed sample
ratio can improve clustering effects, but it is still not as effec-
tive as CurGL with adaptive task allocation. To sum up, the
adaptive adjustment of discrimination and clustering tasks is
beneficial to learning clustering-friendly graph embedding.

5 Conclusion
In this paper, we establish a clustering-guided Curriculum
Graph contrastive Learning (CurGL) framework. Clustering
entropy is defined based on the embeddings to serve as the
clustering guidance. After that, a clustering-friendly augmen-
tation strategy is developed for structure-/feature-level graph
augmentation, which avoids the noise brought by random
augmentation. In addition, the proposed multi-task curricu-
lum learning scheme performs contrastive learning on dis-
crimination task in the early stage, and turns to clustering task
in the late stage. The flexible transition strategy adjusts the
sample selection strategy adaptively during the training pro-
cess, and is more suitable for data with complex distribution.
The efficiency of our method has been validated by a series of
comprehensive experiments. In the future, we plan to extend
CurGL to multi-view graph learning.
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Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.
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