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Abstract
Large Language Models (LLMs), built on Trans-
former architectures, exhibit remarkable general-
ization across a wide range of tasks. However,
fine-tuning these models for specific tasks remains
resource-intensive due to their extensive parame-
terization. In this paper, we explore two remark-
able phenomena related to the attention mechanism
during the fine-tuning of LLMs (where Wq , Wk,
and Wv denote the weights of the query, key, and
value layers, respectively). The first phenomenon,
termed “Unequal Importance of Attention Matri-
ces”, highlights the impact of fine-tuning different
weight matrices. It shows that optimizing the Wv

matrix yields significantly better performance than
optimizing the Wk matrix. Fine-tuning only the
Wq and Wv matrices is computationally efficient
while delivering results comparable to, or even bet-
ter than fine-tuning all three matrices (Wq , Wk,
and Wv). The second phenomenon, “Attention
Matrices with Customized Learning Rate Lead to
Better Convergence”, emphasizes the importance
of assigning distinct learning rates to these matri-
ces. Specifically, a higher learning rate for the Wv

matrix compared to Wq and Wk accelerates con-
vergence and improves performance. Building on
these insights, we propose a new strategy that im-
proves fine-tuning efficiency in terms of both stor-
age and time. Experimental results on benchmark
datasets validate the effectiveness of this approach,
supporting our theoretical findings. Our analysis
lays the theoretical groundwork for configuring and
improving algorithms in LLMs fine-tuning.

1 Introduction
Large Language Models (LLMs) are often built on Trans-
former architectures [Vaswani et al., 2017] and possess a

∗Work done during the collaborative project with XiaoMi.
†Corresponding Author.

large number of parameters, enabling them to generalize
across a broad range of general tasks [Likhomanenko et
al., 2021; Touvron et al., 2021; Dosovitskiy et al., 2021;
Min et al., 2022]. However, achieving optimal performance
on specific tasks typically necessitates fine-tuning these pre-
trained models. Despite the formidable capabilities of LLMs,
the fine-tuning process is resource-intensive, requiring sig-
nificant computational power, storage, and time due to the
large scale of model parameters involved. Fine-tuning all the
parameters of a large language model, known as full fine-
tuning, is highly computationally expensive. To reduce the
computational cost, various parameter-efficient fine-tuning
(PEFT) methods have been proposed [Ding et al., 2023;
Houlsby et al., 2019; Lester et al., 2021; Li and Liang, 2021;
Hu et al., 2022], which only fine-tune a small number of (ex-
tra) model parameters. A fundamental component of trans-
formers is the attention mechanism, particularly the interac-
tions among the query matrix Wq (Wq), the key matrix Wk

(Wk), and the value matrix Wv (Wv).
During the fine-tuning of LLMs involving the attention

mechanism, two interesting phenomena have been observed1:
(1) Unequal Importance of Attention Matrices—optimizing
the Wv is pivotal for enhancing performance, significantly
more so than adjustments to the Wk, which exhibit limited
impact on the outcomes. Additionally, fine-tuning only the
Wq and Wv often yields results that are comparable to or
surpass those achieved by fine-tuning all three matrices Wq ,
Wk, and Wv , which also reduces the number of tunable at-
tention parameters by approximately 1/3, offering computa-
tional benefits (Section 3). (2) Attention Matrices with Cus-
tomized Learning Rate Lead to Better Convergence—using
the same learning rate for Wq&Wk and Wv is not optimal
for efficient convergence. In fact, it is essential to apply dis-
tinct learning rates for the Wq , Wk, and Wv components
to ensure optimal fine-tuning performance. Specifically, the
learning rate for Wv should generally be higher than that for
Wq and Wk to facilitate efficient convergence (Section 4).

While certain empirical guidelines, such as the original

1Extended version and code, are available at https://github.com/
XiaoMi/EfficientFT.
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Low-Rank Adaptation (LoRA) [Hu et al., 2022], explore
which weight matrices in transformers are suitable for the
application of LoRA, comprehensive theoretical analyses of
these phenomena are still limited. This includes aspects such
as selecting appropriate weight types for fine-tuning and op-
timizing learning rate settings. Reflecting on the attention
equation itself (Section 2): (1) In linear algebra, two matrices
multiplied without an intermediate activation can be equiv-
alent to a single matrix. Some studies [Noci et al., 2022;
Bao et al., 2024] often treat Wq and Wk as a single unit
(Wqk = WqW

T
k ), however, the benefits of fine-tuning

Wq&Wv alone have yet to be further clarified. (2) Con-
sidering the scenario where the values of Wq , Wk, and Wv

approach zero, the gradients of Wq&Wk tend to diminish to-
wards zero. In contrast, the gradient of Wv remains non-zero
due to the influence of softmax normalization. Driven by the
above motivations, this paper delves into the issue from the
following two perspectives.
• Generalization: advantages of fine-tuning Wq&Wv

over Wq,Wk,Wv together. We perform a thorough theo-
retical analysis to demonstrate the advantages. To be more
specific, we employ information-theoretic approaches [Xu
and Raginsky, 2017; Polyanskiy and Wu, 2019; Wang and
Mao, 2022; Zhu et al., 2024] to establish the generaliza-
tion bounds of fine-tuning pre-trained models with atten-
tion mechanism (See Theorem 1 for details). This indicates
that fine-tuning Wq&Wv instead of Wq,Wk,Wv reduces
the number of parameters, while improving generalization
bounds and potentially providing memory benefits.
• Optimization: convergence analysis of attention

mechanism with varying learning rate settings. To fur-
ther investigate the aforementioned phenomena, we examine
the optimization process of the attention mechanism. First,
we discuss the learning dynamics in transformers in Case
1, suggesting that Wv may experience instances of ineffi-
cient learning during downstream task fine-tuning. This nat-
urally leads to the hypothesis that accelerating the learning
of Wv in the early stages could potentially induce Wk and
Wq to begin learning earlier. Additionally, by using scal-
ing arguments for large width-n networks [Yang et al., 2022;
Hayou et al., 2024b], we illustrate (Theorem 2) that the fea-
ture learning of attention mechanism is efficient when the
learning rate for Wv should be generally much larger than
that of Wq&Wk in fine-tuning.

Building on our experimental and theoretical insights, one
can develop new algorithms to improve the effectiveness
(e.g., storage, and time) of fine-tuning. Experimental results
for our strategy (in Section 5) on benchmark datasets [Wang
et al., 2018] and open source pre-trained models [Liu et al.,
2019; AI@Meta, 2024] verify that the method can visibly in-
fluence fine-tuning efficiency. We do not make direct compar-
isons with various parameter-efficient fine-tuning methods, as
our strategy is primarily intended to demonstrate how theoret-
ical analysis can effectively guide experimental procedures.
A summary of the main theoretical analyses. According
to the traditional statistical learning viewpoint, performance
can be defined by the sum of optimization error and gener-
alization error. Our theoretical analyses in Sections 3 and 4
correspond to generalization and optimization, respectively.

In Section 3 (generalization, storage-friendly), we give The-
orem 1 (information-theoretic generalization bounds), show-
ing that with the same r value, fine-tuning Wq&Wv con-
sistently achieves results comparable to or even surpassing
those of fine-tuning Wq,Wk,Wv . This reduces the num-
ber of parameters for the same r, while improving general-
ization bounds and potentially providing memory benefits.
In Section 4 (optimization, time-friendly), we discuss the
learning dynamics in fine-tuning attention mechanism, and
we illustrate (Theorem 2) that the feature learning of atten-
tion mechanism is efficient when the learning rate for Wv

should be generally much larger than that of Wq&Wk in
fine-tuning. Building on our experimental and theoretical in-
sights, one can develop new algorithms to improve the effec-
tiveness (e.g., storage, and time) of fine-tuning.

2 Preliminaries and Background
In this section, we first describe the core components of our
study by reviewing some basic notations. The transformer
model serves as the backbone of most state-of-the-art pre-
trained models. For clarity, we briefly outline its key equa-
tions, focusing on the self-attention function, as follows.
Self-attention. Given a sequence of m vectors C ∈ Rm×din

over which we would like to perform attention and a query
vector x ∈ Rdin , that is, the input is [C,x] ∈ R(m+1)×din .
Conventional attention can be expressed as2:

Attn(xWq,CWk,CWv)

= softmax
(
xWqW

T
k C

T

√
dout

)
CWv, (1)

where Wq ,Wk,Wv ∈ Rdin×dout are query, key and value
(projection) matrices.
A unified framework for parameter-efficient fine-tuning.
Building on [He et al., 2022], we consider a unified frame-
work that establishes connections among various PEFT meth-
ods. Specifically, we reinterpret these methods as modifica-
tions applied to specific hidden states within pre-trained mod-
els, the composition function can be written as:

h← l1h+ l2∆h, (2)

where l1, l2 are coefficients, h is denoted as the hidden rep-
resentation to be directly modified and ∆h is a modification
vector. Moreover, h and x can represent the attention output
and input respectively. Here, we present two special cases:

LoRA. LoRA [Hu et al., 2022] injects trainable low-rank
matrices into transformer layers to approximate the weight
updates. Instead of directly adjusting the full weight ma-
trix W ∈ Rdin×dout , LoRA represents its update with a
low-rank decomposition W + ∆W = W + AB, where
A ∈ Rdin×r,B ∈ Rr×dout are tunable parameters. For a
specific input x, LoRA modifies the projection output h as
(where s ≥ 1 is a tunable scalar hyperparameter):

h← h+ s∆h, ∆h := xAB. (3)

2For simplicity, we focus on the last vector of input in a single-
head self-attention. Our analysis is readily generalizable to multi-
head self-attention.
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Prefix tuning. Prefix tuning [Li and Liang, 2021] prepends
r tunable prefix vectors to the keys and values of the atten-
tion mechanism at every layer. Specifically, two sets of prefix
vectors Pk,Pv ∈ Rr×dout are concatenated with the original
key CWk and value CWv , attention is then applied to the
prefixed keys and values as3:

h← (1− α(x)h+ α(x)∆h,

∆h := softmax(xWqP
T
k )Pv ≜ softmax(xA)B, (4)

where α(x) =
∑

i exp(xWqP
T
k )i∑

i exp(xWqPT
k )i+

∑
j exp(xWqWT

k CT )j
is a

scalar that represents the sum of normalized attention weights
on the prefixes. We derive a detailed equivalent form of Prefix
tuning to connect it with LoRA in Appendix A.1.

Remark 1. By defining A = WqP
T
k ,B = Pv in Eq.(4),

we can establish a connection with LoRA in Eq.(3). No-
tably, if we replace the softmax attention with linear at-
tention here, the two are equivalent to some extent. Intu-
itively, in the attention mechanism, A (WqP

T
k ) is respon-

sible for generating attention scores, while B (Pv) utilizes
these attention scores to produce the target content. There-
fore, during fine-tuning, query, key, and value are likely to
exhibit varying degrees of importance. This may also pro-
vide theoretical insights for recent works [Zhu et al., 2024;
Hayou et al., 2024a], which empirically observed an asym-
metry where the project-down matrix A is responsible for ex-
tracting features from the input, while the project-up matrix B
utilizes these features to generate the desired output in LoRA.

Θ Notation. We use standard asymptotic notation to de-
scribe behavior as the width n grows, following conventions
in [Yang et al., 2022; Hayou et al., 2024b]. Given sequences
cn ∈ R and dn ∈ R+, we write cn = O(dn) and cn = Ω(dn)
to mean cn < κdn or cn > κdn, respectively, for some con-
stant κ > 0. We denote cn = Θ(dn) when both cn = O(dn)
and cn = Ω(dn) hold, implying that cn and dn grow at com-
parable rates. For vector sequences cn = (cin)1≤i≤k ∈ Rk

(for some k > 0), we write cn = O(dn) when cin = O(din)
for all i ∈ [k], and analogous notation applies for other
asymptotic bounds. Finally, when the sequence cn is a vec-
tor of random variables, convergence is understood to refer to
convergence in the second moment (i.e., L2 norm).

3 Advantages and Generalization Analysis
In this section, we show our first interesting observation (Un-
equal Importance of Attention Matrices) in fine-tuning the
attention mechanism and the storage benefits of fine-tuning
only Wq and Wv (Section 3.1). Next, we give mutual infor-
mation based generalization bounds of fine-tuning only Wq

and Wv (Section 3.2), providing a better generalization error.

3.1 Empirical Advantages
To explore the Unequal Importance of Attention Matrices, we
focus our study on adapting only the attention weights for
downstream tasks, while freezing the other modules to ensure

3Without loss of generalization, we ignore the softmax scaling
factor for ease of notation.

simplicity and parameter efficiency. Furthermore, we investi-
gate the impact of adapting different types of attention weight
matrices in a Transformer, as outlined below. We present
our empirical results using LoRA to fine-tune a set of lan-
guage models (Roberta-base [Liu et al., 2019] and Llama3.1-
8b [AI@Meta, 2024]) across various benchmarks [Wang et
al., 2018]. Further details on the experimental setup and ad-
ditional empirical results are in Appendix B.1.

Table 1 provides a detailed comparison of the impact of
fine-tuning different weight matrices (Wq,Wk,Wv) across
various rank values r and weight update strategies in LoRA
fine-tuning on tasks like SST2, QNLI, QQP, and MNLI. We
can see a clear trend where solely updating the Wv matrix
outperforms just learning the Wq,Wk matrix. Interestingly,
the combination of fine-tuning both Wq and Wv often leads
to performance that matches or even exceeds that achieved
by fine-tuning all three matrices Wq,Wk, and Wv . This
pattern is consistently observed across various tasks and rank
values, further emphasizing the importance of these two ma-
trices over Wk during fine-tuning.
Computational benefits. Here, we show that the reduced
amount of adapted parameters by (roughly) 1/3 provides
computational gains. The key benefit of parameter-efficient
method is to save memory during training, storage and com-
munication [Lialin et al., 2023]. Fine-tuning Wq&Wv alone
as opposed to both Wq&Wv and Wk reduces the number
of parameters by 1/3, when the dimensions of Wq , Wk, and
Wv are the same. Moreover, we discuss in Appendix B.2
about why fine-tune Wq&Wv instead of Wk&Wv .

3.2 Information-Theoretic Generalization Bounds
In the previous part, we establish that the Unequal Impor-
tance of Attention Matrices among Wq , Wk, and Wv during
fine-tuning. Some studies [Noci et al., 2022; Bao et al., 2024]
often treat Wq and Wk as a single unit (Wqk = WqW

T
k ),

however, the benefits of fine-tuning Wq&Wv alone, rather
than fine-tuning Wq&Wv , and Wk together, have yet to be
further clarified. Therefore, we will further analyze this issue
from an information-theoretic generalization perspective.

Recently, information-theoretic generalization bounds [Xu
and Raginsky, 2017; Russo and Zou, 2019; Steinke and Za-
kynthinou, 2020; Wang and Mao, 2022] have been introduced
to analyze the expected generalization error of learning algo-
rithms. A key benefit of these bounds is that they depend
not only on the data distribution but also on the specific algo-
rithm, making them an ideal tool for studying the generaliza-
tion behavior of models trained using particular algorithms.
Generalization error. We let Z = X × Y be the instance
space and µ be an unknown distribution on Z , specifying
random variable Z. Here, X denotes the feature space and
Y is the label space. Suppose one observes a training set
SN ≜ (Z1, ..., ZN ) ∈ ZN , with N i.i.d. training examples
drawn from µ. In the information-theoretic analysis frame-
work, we let W be the space of hypotheses related to the
model, and a stochastic learning algorithmA which takes the
training examples SN as its input and outputs a hypothesis
W ∈ W according to some conditional distribution QW |SN

.
Given a loss function ℓ :W×Z → R+, where ℓ(w,Z) mea-
sures the “unfitness” or “error” of any Z ∈ Z with respect
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Weight Type Wq Wk Wv Wq,Wk Wq,Wv Wq,Wk,Wv

SST2(R)
r = 4 0.904 0.902 0.913 0.919 0.920 0.920
r = 8 0.914 0.906 0.918 0.915 0.919 0.922
r = 16 0.907 0.905 0.916 0.917 0.921 0.923

QNLI(R)
r = 4 0.854 0.835 0.878 0.866 0.888 0.887
r = 8 0.857 0.841 0.875 0.866 0.889 0.895
r = 16 0.854 0.840 0.875 0.867 0.890 0.890

QQP(R)
r = 4 0.812 0.804 0.828 0.823 0.838 0.843
r = 8 0.812 0.806 0.828 0.823 0.840 0.844
r = 16 0.812 0.804 0.831 0.823 0.839 0.844

QQP(L) r = 8 0.864 0.845 0.865 0.866 0.874 0.874
r = 16 0.864 0.845 0.869 0.867 0.874 0.874

MNLI(R)
r = 4 0.748 0.733 0.807 0.772 0.820 0.828
r = 8 0.749 0.733 0.809 0.778 0.820 0.827
r = 16 0.750 0.734 0.810 0.780 0.824 0.828

MNLI(L) r = 8 0.802 0.660 0.862 0.814 0.871 0.871
r = 16 0.803 0.663 0.863 0.815 0.871 0.871

Table 1: Performance comparison across different r values and weight types. To enable a fair comparison, we initialize the weights for all
tasks with the original pretrained weights. Test accuracy of Roberta-base (R) and Llama3.1-8b (L) fine-tuning on SST2, QNLI, QQP, MNLI,
with sequence length T = 128 and half precision (FP16). All values are averaged over 3 random seeds. The best result is shown in bold, the
second best result is shown in underline, and the third best result is shown with double underlines.

to a hypothesis w ∈ W . We take ℓ as a continuous function
and assume that ℓ is differentiable almost everywhere with
respect to w. The goal of learning is to find a hypothesis
w that minimizes the population risk, and for any w ∈ W ,
the population risk is defined as Lµ(w) ≜ EZ∼µ[ℓ(w,Z)].
However, since only can partially observe µ via the sam-
ple SN , we instead turn to use the empirical risk, defined as
LSN

(w) ≜ 1
N

∑N
i=1 ℓ(w,Zi). Then the expected generaliza-

tion error of A is defined as

ẽrror(A) ≜ EW,SN
[Lµ(W )− LSN

(W )],

where the expectation is taken over (SN ,W ) ∼ µN ⊗
QW |SN

.
Consider the following variations of fine-tuning algo-

rithms: tuning both Wk and Wq&Wv matrices (as in classic
attention mechanism in fine-tuning), tuning only Wq&Wv:

Definition 1 (Fine-tuning algorithms). Recalling A uni-
fied framework for parameter-efficient fine-tuning, we can
model the fine-tuning process of the attention mechanism as
h + ∆h = xW + x∆W. Let W = {Wi}Li=1 be a
set of abstract parameter matrices related to a pretrained
model, where each Wi is associated with the parameters
Wi

q,W
i
k,W

i
v . The indices 1, ..., L represent the layers of

the model where these parameters are to be fine-tuned. Let
I ⊆ {1, ..., L} denote the subset of layers selected for fine-
tuning. Given a fine-tuning training set SN , let r denote the
chosen lora-rank, and assume each tuned parameter is quan-
tized to q bits. Define the following algorithmic frameworks
for selecting an adaptation ∆W = {∆Wi}Li=1 (with other

details left open to choice). (1) AQKV : For each i ∈ I, op-
timize {Wi

q,W
i
k,W

i
v}i∈I to fit the data SN . (2) AQV : For

each i ∈ I, optimize {Wi
q,W

i
v}i∈I to fit the data SN .

Then we use the information-theoretic generalization
framework to bound the generalization error:
Theorem 1 (Generalization bounds on adapting Wq&Wv

and/or Wk). Consider the algorithms of Definition 1. As-
sume the loss ℓ(W, Z) is R-subGaussian under (∆W, Z) ∼
P∆W|W × µ. Then (See Appendix A.2 for a proof),

ẽrror(AQV ) ≤
√

4R2

N
qr

∑
i∈I

(din + dout),

ẽrror(AQKV ) ≤
√

6R2

N
qr

∑
i∈I

(din + dout),

where Wi
q,W

i
k,W

i
v ∈ Rdin×dout .

Remark 2 (Discussion of the advantages). We can evalu-
ate the empirical risk (LSN

) by observing the model’s per-
formance on the dataset we have. If the generalization er-
ror (Theorem 1) is determined, it is at least possible to es-
timate the population risk (Lµ). This generalization bound
increases with the number of parameters being tuned, which
grows as a function of r and the dimensions of the parameter
matrices. In Table 1, we know that with the same r value,
fine-tuning Wq&Wv consistently achieves results compara-
ble to or even surpassing those of fine-tuning Wq,Wk,Wv .
This reduces the number of parameters for the same r, while
improving generalization bounds and potentially providing
memory benefits.
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4 Convergence Analysis in Optimization
In Section 3, we have already demonstrated the generaliza-
tion performance of the attention mechanism during fine-
tuning. Our focus now shift toward optimizing convergence
efficiency. Some optimization observations have also been
reported in previous works [Hu et al., 2022; Li et al., 2023;
He et al., 2024], such as: [Li et al., 2023] provide theoretical
analyses of learning dynamics in transformers and observes a
roughly two-stage process of self-attention. [He et al., 2024]
empirically show that the attention mechanism, particularly
the value vector, stores the largest amount of memories and
has the greatest influence during fine-tuning. However, there
is not yet a satisfactory explanation for why this phenomenon
occurs or how it can be effectively leveraged. In this section,
we will explore these questions in more depth.

4.1 An Insight into Inefficient Learning
We first discuss the optimization process of attention mecha-
nism in the following simple case.
Case 1. Omitting the scale factor for qualitative analysis in
Eq.(1), we obtain:

Attn(xWq,CWk,CWv) = softmax
(
xWqW

T
k C

T
)
CWv.

Intuitively, if Wq,Wk,Wv are initialized as random matri-
ces close to zero and trained simultaneously, then in the ini-
tial step,∇Wk

L(∇Wq
L) contains the term Wq(Wk), which

is close to 0. By contrast, ∇Wv
L contains the softmax-

normalized attention weights. Therefore, during the initial
steps (in training), Wv intuitively grows at a much faster rate
than Wk(Wq).

The work of [Li et al., 2023] empirically exhibits Case 1
with an approximately two-stage phenomenon: (1) In stage
1 (initial steps), the norms of Wk and Wq remain close to
zero across all layers, while the norm of Wv increases signif-
icantly, accompanied by rapid changes in its orientation. (2)
In stage 2, the norms of Wk and Wq begin to grow signifi-
cantly, though much later than the Wv matrices. Briefly, in
this case, Wv reaches a certain level of learning during train-
ing before Wk and Wq begin to learn. This suggests that
when fine-tuning the model for downstream tasks, there may
also be instances of inefficient learning in Wv . Addition-
ally, is there a fine-tuning strategy that could facilitate more
effective learning for downstream tasks? For instance, ac-
celerating the learning of Wv in the early stages could
potentially induce earlier learning in Wk and Wq .

Next, we present the second interesting phenomenon At-
tention Matrices with Customized Learning Rate Lead to Bet-
ter Convergence. We use the General Language Understand-
ing Evaluation (GLUE, [Wang et al., 2018]) to evaluate the
fine-tuning performance of different fine-tuning strategies,
which consists of several language tasks that evaluate the un-
derstanding capabilities of language models. Using LoRA,
we fine-tune Roberta-base from the RoBERTa family [Liu
et al., 2019] and Llama3.1-8b [AI@Meta, 2024] on MNLI,
QQP, QNLI, and SST2 tasks with varying learning rates
(ηQK , ηV ) to identify the optimal combination. Other em-
pirical details are provided in Appendix B.1 and we evaluate
the LLaMA3.1-8B model on more complex benchmarks in

Appendix B.3. We present our empirical results using LoRA
to fine-tune language models, as visualized in the heatmaps
(Figure 1 and Figure 2).
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Figure 1: The test accuracy of RoBERTa-base fine-tuning was eval-
uated over 3 epochs for MNLI, QQP, and QNLI, and 6 epochs for
SST-2, with a sequence length T = 128 and using half-precision
(FP16). The LoRA hyperparameters were set to α = r = 8. All
reported values represent the average results across 3 random seeds.
We use red color to highlight (1) the best overall accuracy and (2)
the values where ηV /ηQK = 1. For better visualization, when ac-
curacy is lower than a fixed threshold, we set it to threshold.

In Figure 1 and Figure 2 (Appendix B.3), we observe that
(1) test accuracy consistently reaches its maximum for cer-
tain sets of learning rates where ηQK < ηV , outperforming
the standard practice of setting ηQK and ηV equal. (2) More
interestingly, the gap between the optimal choice of learning
rates overall and the optimal choice when ηQK = ηV varies
across different tasks. This is probably due to the fact that
harder task (like MNLI) requires more efficient feature learn-
ing. We compare two optimal learning rate (ηQK , ηV ) set-
tings in Figure 2 (Left), the ηV >> ηQK setting has a better
convergence than ηV = ηQK setting in Figure 2 (Right).

It is also important to note that due to limited computa-
tional resources in our experiments, we use a sequence length
of T = 128 and fine-tune for only 3 epochs on MNLI and
QQP. Therefore, it is expected that our test accuracies may
be lower than those reported by [Hu et al., 2022], where the
authors fine-tune RoBERTa-base with a sequence length of
T = 512 (for MNLI) and for more epochs (30 for MNLI).
We do not include confidence intervals for clearer visualiza-
tion, however, the fluctuations remain within acceptable lim-
its. See Figure 2 (Right) for instance. In Appendix B.3, we
provide additional results including the training loss.

4.2 Convergence Analysis for Learning Rate
It naturally raises the question of why ηQK and ηV should
be set differently. In practice, the large width (embedding di-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

mension) of state-of-the-art models makes it valuable to ex-
amine training dynamics as width approaches infinity.
Starting with a Toy setting. Revisiting Definition 1, we
have ∆h = softmax(xA)B. In the case of a linear attention
mechanism, we instead have ∆h = xAB. Then consider the
following toy setting:

f(x) = x(W ∗ + aT b),

where W ∗ ∈ Rn×1 are the fixed4 pre-trained weights, b ∈
R, a ∈ R1×n are adaptation weights, x ∈ Rn is the model
input (This corresponds to r = 1 in Definition 1). The
training goal is to minimize the loss L(θ) = 1

2 (f(x) − y)2

where θ = (a, b) and (x, y) is an input-output datapoint5.
Similar to LoRA, we generally aim to initialize the product
aT b to zero, ensuring that fine-tuning starts from the pre-
trained model. This requires at least one of the weights,
a (related toWq&Wk) or b (related toWv), to be initialized
to zero. If both are initialized to zero, Wq&Wk learning can-
not occur efficiently in init steps, as discussed in Section 4.1
(More detailed initialization settings are in Appendix A.3).

And we assume that x = Θ(1), meaning that the input
coordinates remain of the same order as the width increases.
In the subsequent analysis, we examine how the fine-tuning
dynamics evolve as the model width n increases.

To streamline the analysis, we assume W ∗ = 0, a common
simplification that can be applied without loss of generality.
This assumption is implemented by setting ŷ = y − xW ∗.
We denote the fine-tuning step by using subscript t. Let Ut =
ft(x)− y, the gradients are then computed as:

∂L
∂at

= xUtbt,
∂L
∂bt

= xaTt Ut.

And at step t with learning rate ηa, ηb > 0, we have

∆ft ≜ ft(x)− ft−1(x) = − ηa||x||2Ut−1b
2
t−1︸ ︷︷ ︸

δ1t

− ηb(xa
T
t−1)

2Ut−1︸ ︷︷ ︸
δ2t

+ ηaηb||x||2(xaTt−1)U
2
t−1bt−1︸ ︷︷ ︸

δ3t

.

Remark 3. The output update is influenced by three key
terms. The first two items δ1t , δ

2
t (order one in ηa/ηb) rep-

resent linear contributions to the update, meaning they result
from changes in the model output when either a is updated
with b held constant, or vice versa. The last item δ3t (order
two in ηaηb) corresponds to a multiplicative update that cap-
tures the combined effects of changes in both a and b. As we
scale the width6, the desirable feature updates are such that
∆ft = Θ(1), ensuring they remain unaffected by this scaling

4Here, we primarily focus on the case of ∆W to provide insight-
ful theoretical results.

5To simplify the analysis, we assume that the fine-tuning dataset
consists of a single sample, though our analysis can be easily gener-
alized to multiple samples. All conclusions remain essentially valid
when (a, b) are matrices.

6This property is generally satisfied in practice when the model
width is large (e.g., n ≈ 800 for Roberta-base and n ≈ 4000 for
Llama3.1-8b).

(the updates do not explode with width, see x for more de-
tails). Ideally, we aim for both δ1t and δ2t to be Θ(1). If this
condition isn’t met, it indicates that either a or b is not be-
ing updated efficiently. For example, if δ1t = o(1), it suggests
that as n→∞, the model behaves as if a is essentially fixed,
with only b being trained. We say that the feature learning
in the attention mechanism is efficient when δit = Θ(1) for
i ∈ {1, 2} and all t > 1, it means that both a and b parame-
ter updates significantly contribute to the change in ft(x). We
will see that when δ1t , δ

2
t are Θ(1), the term δ3t is also Θ(1).

Let us assume that we train the model with gradient de-
scent with learning rate ηa = Θ(nca), ηb = Θ(ncb) for some
ca, cb ∈ R. In the study by [Yang et al., 2022], it is noted
that the training dynamics primarily involve operations such
as matrix-vector products and the summation of vectors or
scalars. Given the nature of these operations, it is easy to see
that any quantity in the training dynamics should be of or-
der nγ for some γ ∈ R. We write v = Θ(nγ[v]), for any
quantity v in the training dynamics. When v is a vector, we
use the same notation when all entries of v are Θ(nγ[v]) (See
Appendix A.4 for the formal definition of γ).

With reference to the method of [Hayou et al., 2024b], we
start from the initialization in Starting with a Toy setting,
we have f0(x) = 0. Feature learning of attention mechanism
is efficient when δit = Θ(1) for i ∈ {1, 2} and all t > 1, and
ft(x) = Θ(1) for t > 1. This can be interpreted as: ca + 1 + 2γ[bt−1] = 0

(
δ1t = Θ(1)

)
cb + 2γ[xa⊤t−1] = 0

(
δ2t = Θ(1)

)
γ[xa⊤t−1] + γ[bt−1] = 0 (ft−1(x) = Θ(1)) ,

which, after simple calculations, implies that ca + cb = −1.
Notice that the above also leads to the ca+cb+1+γ[xa⊤t−1]+
γ[bt−1] = 0 (δ3t = Θ(1)). This is only a necessary con-
dition. In the following section, we will provide theoretical
conclusions in the toy model setting that offer guidance for
real-world experiments.

Theorem 2 (Efficient fine-tuning in attention mechanism (In-
formal)). In the case of Starting with a Toy setting, with
ηa = Θ(n−1) and ηb = Θ(1), we have for all t > 1,
i ∈ {1, 2, 3},δit = Θ(1). In other words, the feature learn-
ing of attention mechanism is efficient when ηQK(ηa) =
Θ(n−1), ηV (ηb) = Θ(1). We denote ηV /ηQK as λ. We refer
the reader to Appendix A.5 for more details on the proof.

Remark 4. In practice, Theorem 2 implies that the learning
rate for Wv should be generally much larger than that of
Wq&Wk in fine-tuning. We verify that this scaling is valid
for general neural network models in Section 4.1. Naturally,
the optimal ratio λ depends on the architecture and the fine-
tuning task through the constants in ‘Θ’. This represents a
limitation of the asymptotic results, as they do not provide
insights into how the task and neural architecture influence
these constants. We will further address this issue in future.

5 An Example of Improving Fine-tuning
Based on all our exciting insights, it becomes intuitive to de-
sign lightweight attention-based fine-tuning improvements,
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Method Trainable #Param (M) RTE STS-B MRPC CoLA MNLI SST-2 QQP QNLI
Before Fine-tune 0 45.12 -3.18 66.66 1.09 32.95 49.31 44.72 50.81
Full Fine-tune (QKV) 21.85 73.64 90.49 84.55 60.34 86.68 93.23 90.48 92.37
LoRA (QKV) r = 8 1.62 70.76 90.25 85.04 58.03 86.70 93.92 89.15 92.17
LoRA (QKV) r = 16 2.07 70.39 90.25 86.03 58.04 86.78 93.92 89.26 92.18
DoRA (QKV) r = 8 1.06 70.75 90.39 85.78 56.79 86.73 93.58 89.34 92.22
DoRA (QKV) r = 16 1.51 70.40 90.31 86.03 57.81 86.77 93.92 89.30 92.48

Full Fine-tune (QV) λ = 2 14.76 73.53 91.01 86.02 60.57 62.03 93.11 90.56 91.96
Full Fine-tune (QV) λ = 4 14.76 72.29 90.56 87.01 61.88 35.44 91.05 89.81 88.85
Full Fine-tune (QV) λ = 8 14.76 72.29 90.02 88.97 61.86 35.44 84.75 85.93 50.54

LoRA (QV) r = 8, λ = 2 1.48 71.84 90.37 86.02 58.54 86.85 94.03 89.47 92.33
LoRA (QV) r = 8, λ = 4 1.48 75.09 90.83 87.01 59.56 86.95 94.04 90.09 92.86
LoRA (QV) r = 8, λ = 8 1.48 76.13 90.75 88.97 61.88 86.93 93.46 90.01 92.34

LoRA (QV) r = 16, λ = 2 1.77 70.39 90.46 86.03 58.55 86.83 94.38 89.77 92.33
LoRA (QV) r = 16, λ = 4 1.77 76.17 91.05 87.99 60.06 87.19 94.03 90.30 92.73
LoRA (QV) r = 16, λ = 8 1.77 72.92 90.96 89.95 59.31 87.31 93.92 90.43 92.95

DoRA (QV) r = 8, λ = 2 0.90 71.12 90.29 87.01 58.54 87.08 93.96 89.60 92.60
DoRA (QV) r = 8, λ = 4 0.90 75.45 90.82 86.76 60.32 86.98 93.81 90.33 92.97
DoRA (QV) r = 8, λ = 8 0.90 70.76 90.38 87.75 57.01 87.12 94.15 90.45 92.48

DoRA (QV) r = 16, λ = 2 1.20 69.68 90.53 87.75 59.31 87.09 93.92 89.68 92.70
DoRA (QV) r = 16, λ = 4 1.20 76.16 90.77 88.48 60.84 86.96 94.15 90.34 93.01
DoRA (QV) r = 16, λ = 8 1.20 77.26 90.83 88.96 60.32 87.10 94.17 90.46 92.80

Table 2: Comparison of fine-tuning methods across GLUE benchmark. We report results on development set, Pearson correlation for STS-
B, Matthew’s correlation for CoLA, average accuracy for MNLI (matched and mismatched), and accuracy for other tasks. The best re-
sults on each dataset are shown in bold and the second best results are shown in underline. The QKV(QV) setting refers to fine-tuning
Wq,Wk,Wv(Wq,Wv). It is noted that the total number of parameters in the Roberta-base model is 124.65M. λ means ηV = ληQ and r
is the LoRA rank, and a larger λ does not necessarily lead to better performance.

particularly for downstream tasks. To illustrate how theoret-
ical analysis effectively guides experimental procedures, we
propose an example method where we freeze the Wk and
fine-tuning the Wq&Wv using different learning rates. This
procedure is reported in Figure 5. In Appendix B.2, we dis-
cuss how to set the ratio λ?

Experimental setup. We conduct experiments on widely
adopted benchmark datasets [Wang et al., 2018] and Roberta-
base model [Liu et al., 2019]. We selected mainstream base-
lines: Full Fine-tuning, LoRA [Hu et al., 2022] and DoRA
[Liu et al., 2024]. Additionally, we adapt only the atten-
tion weights for downstream tasks, keeping the other mod-
ules frozen to maintain simplicity and validate the theoretical
guidance through experiments. In our experiments, we eval-
uated the performance for λ values of 2, 4, and 8 (one can
also determine a general optimal ratio through experiments,
and even apply different settings across different layers of
the model). We report the average results based on 3 ran-
dom seeds, as shown in Table 2. The hyperparameter settings
for the experiments can be found in Appendix B.1 and the
base model performance for each task can be seen in Table 2
and Appendix B.3. We also extend ablation experiments on
Mistral-7B [AI@Mistral, 2023] in Appendix B.3.

Results. We leverage our theoretical results (Theorem 1
and Theorem 2) to enhance the efficiency of existing fine-
tuning methods, such as Full Fine-tune, LoRA [Hu et al.,
2022] and DoRA [Liu et al., 2024], on downstream tasks.
As shown in Table 2, the improved fine-tuning approach not

only outperforms the original version but also significantly re-
duces the number of parameters. For instance, on the MRPC
task, LoRA (QV) r = 16, λ = 8 (1.77M) achieves better per-
formance compared to Full Fine-tune (QKV) (21.85M) and
LoRA (QKV) r = 16 (2.07M). This series of experiments
clearly demonstrates that our theoretical insights effectively
enhance fine-tuning algorithms, particularly in terms of mem-
ory usage and optimization efficiency. Moreover, these theo-
retical results can guide the improvement of other fine-tuning
algorithms and even aid in the design of more efficient ones.

6 Conclusion and Limitation
In this paper, we present our key findings in fine-tuning atten-
tion mechanism: Unequal Importance of Attention Matrices
and Attention Matrices with Customized Learning Rate Lead
to Better Convergence. While theoretical analysis of these
phenomena is limited, this paper provides insights from two
angles: Generalization—fine-tuning only Wq and Wv im-
proves generalization and memory efficiency, and Optimiza-
tion—using different learning rates enhances the efficiency
of feature learning in the attention mechanism, leading to
more effective fine-tuning. Our analysis provides a theo-
retical foundation for the configuration and improvement of
lightweight algorithms in LLMs fine-tuning. However, fur-
ther studies are required on how task type and architecture
affect the optimal learning rate ratio λ. These studies will fur-
ther deepen our understanding of attention-based fine-tuning.
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