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Abstract

The nuclear norm (NN) has been widely explored
in matrix recovery problems, such as Robust PCA
and matrix completion, leveraging the inherent
global low-rank structure of the data. In this study,
we introduce a new modified nuclear norm (MNN)
framework, where the MNN family norms are de-
fined by adopting suitable transformations and per-
forming the NN on the transformed matrix. The
MNN framework offers two main advantages: (1)
it jointly captures both local information and global
low-rankness without requiring trade-off parameter
tuning; (2) under mild assumptions on the trans-
formation, we provide theoretical recovery guar-
antees for both Robust PCA and MC tasks—an
achievement not shared by existing methods that
combine local and global information. Thanks to
its general and flexible design, MNN can accom-
modate various proven transformations, enabling a
unified and effective approach to structured low-
rank recovery. Extensive experiments demonstrate
the effectiveness of our method. Code and sup-
plementary material are available at https://github.
com/andrew-pengjj/modified_nuclear_norm.

1 Introduction

The nuclear norm (NN), serving as a convex relaxation of
the matrix rank, is widely applied to various matrix opti-
mization problems due to its ability to effectively preserve
the global low-rank property of data while possessing many
desirable theoretical properties [Candes and Recht, 2012;
Candes et al., 2011; De Silva and Lim, 2008; Recht et al.,
2010; Gu et al., 2014]. The data property is typically en-
coded by a regularizer term R(-) and incorporated into the
following energy function (1):

n%én EX,Y):=L(X,Y) + \R(X), 1)
where X and Y represent the data to be recovered and the

observed data, respectively. The function L(X,Y) is the loss
function, which can be in the form of ¢; and ¢5 norm.
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Figure 1: Demonstrations of the global low-rank property and local
prior of data. (a) From top to bottom, showcasing the hyperspectral
data, CT images and surveillance video data, as well as a matrix
expanded along the third dimension; (b) Singular value curve of the
mode-3 unfolding matrices of the data in (a); (c) Difference maps
are obtained by applying difference operators. Difference maps have
sparsity, which means that the original data has local smoothness.

However, in many cases, alongside the global low-rankness
of data, local prior information also plays a crucial role, espe-
cially in data related to computer vision tasks such as hyper-
spectral image [Wang er al., 2017], multispectral image [Xie
et al.,2017], CT images [Wang et al., 2023], and surveillance
videos [Peng et al., 2022b], as shown in Fig. 1. Efficiently
integrating global and local information to obtain a model
with theoretical guarantees is an important issue for restora-
tion tasks. Previous methods of integrating global and local
information typically involve constructing multiple regular-
izer terms and combining them additively [Wang et al., 2017,
He et al., 2015; Xue et al., 2021; He et al., 2017; Shang et al.,
2023; Chen et al., 2023]. Taking global low-rankness and lo-
cal smoothness properties as an example, the traditional fused
regularization method is given by:

R(X) = [X]l« + Bl X][rv, 2

where || X||1v is the total variation (TV) regularizer to encode
the sparsity of difference map of the original data [Rudin er
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al., 1992], and 3 is the trade-off parameter need to be fine-
tuned for each data. The TV regularizer often fails to capture
the local smoothness of the data adequately. Therefore, in
many cases, additional regularizers need to be incorporated
in the manner (2). This inevitably introduces the problem of
selecting more balanced parameters. Besides, except for NN,
many regularizers don’t hold good theoretical properties.

To tackle the above two drawbacks, we introduce a new
modified nuclear norm (MNN) that can capture both the local
information and global low-rankness of data. Specifically, the
MNN is defined by adopting a suitable transformation and
then performing the NN on the transformed matrix, i.e.,

[X]Ivnn = [|D(X) |- 3)

Compared to NN, MNN (3) can concurrently capture local in-
formation and global low-rankness of data. Specifically, the
transformation D(-) exploits useful local correlation informa-
tion of the matrix and performing the NN on the transformed
matrix could finely utilize such local correlation based on the
compatibility of norms.

Specifically, the proposed MNN framework offers two key
advantages over existing methods that integrate global and
local information. First, MNN eliminates the need for pa-
rameter tuning required in additive manner (2). Second, un-
der mild transformation assumptions, MNN provides exact
recovery guarantees for two typical matrix applications: Ro-
bust PCA and Matrix Completion (MC). Building on theoret-
ical tools related to nuclear norms [Candes and Recht, 2012;
Candes et al., 2011; Chen, 2015; Candes and Plan, 2010;
Negahban and Wainwright, 2012; Shahid et al., 2015], the
MNN framework leverages these tools to offer theoretical
guarantee. It incorporates various classical transformations,
such as the difference operator [Peng et al., 2022b; Wang et
al., 2023; Liu et al., 2023], the Sobel operator [Kanopoulos
et al., 1988], and the Laplacian operators [Wang, 2007], en-
abling the integration of diverse local information. In sum-
mary, the contributions of this paper are:

Modeling: We propose the MNN framework, which can
simultaneously exploit global and local information of data
by performing the NN on a transformed matrix that encodes
local correlations through a suitable transformation operator
without trade-off parameters.

Theory: Under mild conditions, we prove the exact recov-
erability theory of MNN on two types of problems: Robust
PCA and MC. Although the theoretical bounds are not im-
proved compared to NN, from the perspective of embedding
local smoothness, MNN provides a unified recoverability the-
ory framework for integrating low-rank and multi-layer local
information priors. Extensive experiments validate the effi-
cacy of the MNN framework.

Operator: Classical operators are introduced into the
MNN framework to characterize local smoothness. This pa-
per demonstrates that for low-rank image data, the difference,
Sobel, and Laplacian operators can be directly embedded into
MNN to improve model’s performance. In particular, Lapla-
cian operators can provide richer local information than the
widely used first-order differences operator.

2 Modified Nuclear Norm

In this part, we will give the forms and theoretical results
about the MNN-induced Robust PCA and MC models.

2.1 Motivations

The previous global and local information fusion model
[Wang et al., 2017; He et al., 2015; Xue et al., 2021,
He et al., 2017, Peng er al., 2022a; Peng er al., 2020] was
characterized by constructing multiple regularizers and sum-
ming them up, as follows:

> mRi(X), )
i=1
where R;(X)(i = 1,-- -, n) are regularizers, such as the nu-

clear norm (NN) and total variation (TV) regularizer in the
form (2), and 7; are trade-off parameters, manner (4) is intu-
itive and effective. However, it suffers from two key issues:
the challenge of parameter selection among multiple regular-
izers and the lack of theoretical recoverability. To address
these limitations, inspired by the norm compatibility and ex-
act recovery guarantees of the nuclear norm, we propose the
MNN defined in Eq. (3). As demonstrated in Remark 1,
Eq. (3) effectively models both global and local information,
eliminating the need for hyperparameter tuning.

Remark 1. MNN (3) can simultaneously encode global and
local information based on two aspects.

1) MNN could capture global low-rankness. We assume
that D(-) can be reformulated as a full-rank matrix-induced
linear operator, i.e., there exists a full-rank matrix A such
that

rank(AX) = min(rank(A), rank(X)) = rank(X).  (5)

Based on the above derivation, it can be inferred that the
low-rankness of D(X) stems from the low-rankness of X, i.e.,
minimizing the rank of D(X) is equivalent to minimizing the
rank of X. Hence, MNN can characterize the global low-
rankness of the data.
2) MNN could capture local information. According to
the norm compatibility theorem, we have
IPX)[lr < IPDX)]« < [[DX) ], (6)

holds for all transformation operators. Thus, it can be in-
ferred that minimizing ||D(X)||« can simultaneously mini-
mize both |D(X)||r and ||D(X)||1. If an appropriate trans-
formation operator D(-) is chosen so that D(X) can cap-
ture useful local information of data (e.g., edge structures),
then MNN can effectively utilize such local information based
on Eq. (6). For example, when D(-) is chosen as the first-
order difference operator V (), ||V(X)||r and |V (X)||1 cor-
respond to isotropic [Rudin et al., 1992] and anisotropic [He
etal., 2017] TV regularizer, respectively. Therefore, our MNN
can then characterize the local smoothness of data '.

'If D(-) is set as identity mapping, ||D(X)||« degenerates to
[IX]||«. Since [|X||r and ||X]|: cannot encode local structural in-
formation of the data, || X||. can only characterize the global low
rankness.
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Indeed, several works such as Correlated Total Variation
(CTV [Wang et al., 2023; Peng et al., 2022b; Liu et al.,
2023]) can be seen as a special case of our MNN by setting
the transformation operator as the first-order difference.

Remark 2. Unlike the first-order difference in CTV, which
only captures adjacent similarities, the proposed MNN frame-
work accommodates operators with larger receptive fields,
enabling more effective modeling of local smoothness across
broader regions. What’s more, MNN also removes the need
for tuning the parameters between multiple regularization
terms. While combining several regularizers improves in-
terpretability, it often requires careful hyperparameter tun-
ing—poor choices can yield suboptimal results.

2.2 Theoretical Guarantees

Next, we establish the exact recovery guarantees of MNN-
induced RPCA and MC models.

Models

Robust PCA [Candes er al., 2011] is a problem aiming at
accurately separating a low-rank matrix Xy € R™**"2 and
a sparse matrix Sy from the observed data matrix M =
Xo+Sp. By using MNN and ¢; norms to respectively encode
the global low-rankness and local priors of low-rank matrices,
as well as the sparsity of sparse matrices, we can derive the
following MNN-RPCA model:

win [DX)]. + A8 st M=X+8. ()

MC [Candes and Recht, 2012] is a problem aiming to accu-
rately infer the clean data X from a limited set of observed
data M (the support set denoted as €2). Using MNN, we can
obtain the following MNN-MC model:

m)én ID(X)||«, s.t. Pa(M) = Pa(X), €3]

where Pgq(-) is a mapping operator. If (i,5) € £, then
Pa(X;;) = X;; otherwise, it is set to 0.

In our MNN-based model, the single regularization term
simultaneously captures both global and local information,
which avoids the need for carefully tuning the trade-off pa-
rameter 7; required by additive model-based methods (4).

Assumptions
Before giving the theorems, we need three mild assumptions.
Assumption 1 (Incoherence Condition). For the low-rank

matrix Xo € R™*"2 with rank r, it follows the incoherence
condition with parameter [, i.e.,

max]|U%e, || < 25, max ||V7e, | < 25,
k ni k n9 ©)
UVl < /2,
nin9

where U € R™*" and V € R"2*" are obtained from the
singular vector decomposition of Xy and ey, is the unit or-
thogonal vector.

Incoherence condition is a widely used assumption for low-
rank recovery problems [Candes et al., 2011; Chen, 2015;
Candes and Romberg, 2007] to control the dispersion of the

elements of the low-rank matrix. If the data is a rank-r iden-
tity matrix, since the observed values are likely to be zero,
it is difficult to infer the non-zero elements, so we need this
condition to keep the data away from the identity matrix.

The random distribution assumption for Sy and the nor-
malization assumption of D(-) are as follows:

Assumption 2 (Random Distribution). For the sparse term
Sy, its support ) is chosen uniformly among all sets of cardi-
nality m, and the signs of supports are random, i.e.

Pl(Sohs > 00:,9) €91 = I(S0)s <0l €9)

Assumption 3 (Normalization). The Frobenius norm of the
linear transformation D(-) in Eq. (6) is one.

Assumption 3 ensures that the elements of the transformed
data D(X) remain bounded, allowing key inequalities in the
dual verification to hold. If the Frobenius norm of D(-) is not
one, normalization can be used to satisfy Assumption 3.

Main Results
Based on Assumptions 1-3, we can derive that:

Theorem 1 (MNN-RPCA Theorem). Suppose that D(Xg) €
R™>*m2 S, and D(-) obey Assumptions 1-3, respectively.
Without loss of generality, suppose ni > mno. Then, there
is a numerical constant ¢ > 0 such that with probability at
least 1 — cnflo(over the choice of support of Sg), the MNN-
RPCA model (7) with X\ = 1/(\/n1) is exact, i.e., the solution

(X, S) = (Xo, So), provided that
rank(Xo) < pynap~t(logny) ™2, and m < pgning, (11)

where p, and ps are some positive numerical constants, and
m is the number of the support set of Sg.

Theorem 2 (MNN-MC Theorem). Suppose that D(X,) €
R™*"2 and D(-) obey Assumptions 1 and 3, 2 ~ Ber(p) and
m is the number of §), where Ber(p) represents the Bernoulli
distribution with p. Without loss of generality, suppose nq >
no. Then, there exist universal constants cy,c1 > 0 such
that Xg is the unique solution to MNN-MC model (8) with
probability at least 1 — clnf3 log n4, provided that

m > courni’M log(ny). (12)

Theorems 1 and 2 establish the exact recoverable theory for
the fusion-induced model combining low-rank and general
local smoothness priors, which was unavailable in previous
studies. Proofs are provided in the supplementary materials.

2.3 Optimizations
The exact recoverable theory, as outlined in Theorems 1 and

2, asserts that the optimal solution (X, S) of the model ac-
curately reflects the true value (X, Sp). Thus, the following
corollary can be inferred with high probability.

Corollary. Suppose Xy and Sq satisfy Assumptions 1 and 2,

and transformation operator D(-) satisfy Assumption 3. De-

note the objective functions of the RPCA and MC models as
TP (X) :=[DX)[« + AM — X[,

13
TPX) = DX + pPaM =X
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respectively, where X = 1/\/n1 and p = (\/n1 + \/n2)\/po
according to [Candes and Plan, 2010], and ny,ns,0,p are
the sizes of matrix, noise standard variance, and missing ra-
tio. Then, for any X, we have:
TP (X) 2 TP (Xo), Ty (X) 2 Ty (Xo).  (14)
Then, according to Corollary 2.3, we can directly perform
a simple gradient descent on the objective function (14) to
obtain the final solution. More details can be seen in the sup-
plementary materials.

2.4 Some Suitable Transformation Operators for
MNN

In this section, we shift our attention to another important
aspect, namely, the selection of the transformation operator
D(-). The local smoothness of images is typically achieved
through convolution operators. The most common one is the
first-order difference operator V(-) =[-1,1]/[-1;1]. Based on
the first-order difference operator [Rudin ef al., 1992] and its
fast Fourier transform-based solving algorithm [Chambolle,
2004; Huang et al., 2008], various types of total variation
regularization have been developed in recent decades [Wang
et al., 2017; He et al., 2015; Peng et al., 2020]. However,
the difference operators may not be able to characterize lo-
cal information of data with multiple directions and higher-
order derivative information. Hence, we consider several
other transformations by taking advantage of multiple direc-
tions and higher-order derivatives.

Specifically, we examine four common convolution ker-
nels: the first-order central difference operator, the Sobel op-
erator, and two types of Laplacian operators. Their forms and
edge extraction effects on the "Barbara” image are shown in
Figure 2. It can be observed that compared to the central
difference operator, the latter three operators capture more
abundant local information about the image.

. 1
14 .

(b) Difference

/

(d) Laplacian-1 (e) Laplacian-2

(a) Identify () Sobel

Figure 2: Demonstrates the forms of several typical convolution ker-
nels and its edge extraction effect after acting on the image.

Next, we give an intuitive mathematical explanation of the
superior local correlation excavation abilities of the Sobel and
Laplacian operators by Remark 3.

Remark 3. For an image, it can be modeled as a bivariate
function z = f(x,y), where x,y represent the coordinates,
and z represents the grayscale value. The first-order differ-

ence of f(x,y) is:

O _ pev1,y) - fary),
Ox s)
of

aiy zf(x,y—l—l)—f(a:,y)-

The second-order difference of f(x,y) can be represented in
the x and y directions as follows:

0*f

ooz =@+ 1y) = 2f(z,9) + fx - Ly),

e (16)
g7 = f@y+ 1) - 2@y + f@y-1).

The first-order difference operator % / % corresponds to the
convolution kernel [-1,1]/[-1;1]. The Sobel operator % + %
and Laplacian operator %%c + %ﬁi have effects equivalent to
[-2,-1;-1,0] and [0,-1,0;-1,4,-1,0,-1,0], respectively. The first
derivative detects edges, while the second derivative detects
the rate of change of edges. Derivatives in multiple directions
can comprehensively characterize edge information. There-
fore, the Sobel operator and the two types of Laplacian oper-
ators provided in Figure 2 can exploit richer local priors.

xo € ]thwxnz

......

Base matrix
V € R™m2

Figure 3: The simulated data generated mechanism of joint low rank
and local smoothness data X.

3 Simulated Experiment

The numerical experiments are conducted to validate Theo-
rems 1 and 2. As described in Section 2.4, we use difference,
Sobel, and Laplacian operators in MNN, denoted as MNN-
Diff, MNN-Sobel, MNN-L1, and MNN-L2 in Figure 2. Note
that MNN-Diff reduces to the CTV regularizer. Following
Corollary 2.3, we set A = 1/y/max{ni,ny} for the TRPCA
task and = (\/n1 + \/n2),/po, o = le=* for the MC
noiseless task. Further performance gains can be achieved by
fine-tuning A\ and p. All simulations are run on a PC with an
Intel Core i5-10600KF CPU (4.10 GHz), 32 GB RAM, and a
GeForce RTX 3080 GPU.

3.1 Data Generation

We create two factor matrices U € R™*” and V € R"*"2,
yielding Xy = UV as a low-rank matrix, where n; = hw.
To introduce image-like properties, each column of U (i.e.,
U(:,4)) is reshaped into an h x w matrix, thus we can get
the tensor U € RM@X" gatisfies U = unfoldz (i) where
unfolds(-) is the unfold operator to unfold the tensor to matrix
along the third-mode. Each slice U(:, :, 7) is randomly divided
into c regions, with elements within each region being consis-
tent and drawn from N (0, 1) distribution. The elements of V
are selected from A/(0, 1) distribution. The entire generation
process is shown in Figure 3. Besides, the support set 2 is
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Figure 4: Phase transition diagrams of MNN variants for Robust PCA (top row) and MC (bottom row). Blue (0%) and yellow (100%) indicate
success ratios. From left to right: NN, MNN-Diff, MNN-Sobel, MNN-L1, MNN-L2.
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Figure 5: Objective function and relative recovery error over iter-
ations: (a) RPCA with r = 10, ps = 0.1; (b) MC with r = 10,
sampling ratio 0.2.

chosen randomly. For RPCA task, Sy is set as Sg = Pq(E)
and the observed matrix M is set as M = X, + Sg, where
E is a matrix with independent Bernoulli £1 entries. For MC
task, M is set as M = Pq(Xo).

3.2 [Experiment Settings and Result Analysis

Experiment Settings. In all experiments, we set h = w =
50, nl1 = hw = 2500, and n2 = 100. We evaluate how
the rank r, sparsity ps (RPCA), and missing ratio p (MC)
affect performance by varying ps in (0.01,0.5) (step 0.01), p
in (0.01, 0.99) (step 0.02), and 7 in (1, 50) (step 1).

Phase Transition Diagram. For each (r, p,) and (r, p),
we run 10 trials and consider recovery successful if HX —

Type

Non-convex Decomposition
Multi-regularization Fusion
Matrix-based Methods
Tensor-based Methods

Methods
KBR, LRTDTYV,
LRTYV, LRTDTYV,
NN, LRTV, CTV
TCTV,SNN,TNN, Qrank, Framelet

Table 1: Comparison of methods for fusing global and local priors.

Xollr/l1XollF < 0.05. Figure 4 shows the phase diagrams
with recovery rates. Compared to NN, MNN variants (Diff,
Sobel, L1, L2) significantly expand the recovery region by
leveraging local structures. Notably, MNN-Sobel, MNN-LI,
and MNN-L2 outperform MNN-Diff, highlighting the advan-
tage of high-order operators as noted in Remark 3.

Empirical analysis of convergence. According to Corol-
lary 2.3, the objectives of models (7) and (8) reach their min-
ima at X and Sy under Assumptions 1-3. Even when the
assumptions are only partially met, the objective values still
decrease, and NMSE sequence || X, —Xo|| /|| X0l # steadlly
declines. Figure 5 shows that under a learning rate of le™
NN and all MNN variants converge stably.

9

4 Real Application

We then assess the restoration performance on real datasets.

Datasets. We selected four commonly used low-rank im-
age datasets, which are HSI data used in [Wang et al., 2023],
MSI 2, color video sequences *, and MRI and CT images
* Among them, hyperspectral images, multispectral images,
color video sequences, and MRI and CT images contain 5, 11,
10, and 4 images, respectively. We adopt the same noise ad-
dition mechanism and sampling scheme as in the simulation
experiments section.

Zhttps://www.cs.columbia.edu/CAVE/databases/multispectral/
3http://trace.eas.asu.edu/yuv/
*https://www.cancerimagingarchive.net/
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LRTD MNN- | MNN- | MNN- | MNN-
v | €TV | TCTV | "bif | Sobel | LI L2

Hyperspectral Image Denoising: Five Datasets
PSNRT | 46.16 | 29.58 | 35.97 | 45.43 | 32.57 | 31.21 | 48.53 | 47.30 | 47.57 | 49.52 | 49.33 | 47.99
SSIM?T | 0.998 | 0.897 | 0.974 | 0.989 | 0.928 | 0.894 | 0.998 | 0.992 | 0.997 | 0.999 | 0.999 | 0.998
PSNRT [39.93 [ 23.21 | 33.31 | 40.34 | 30.26 | 29.30 | 45.69 | 43.55 | 44.99 | 47.08 | 46.70 | 45.52
SSIM?T | 0.992 | 0.608 | 0.959 | 0.980 | 0.883 | 0.845 | 0.997 | 0.988 | 0.997 | 0.999 | 0.998 | 0.997
SSIM?T | 0.690 | 0.138 | 0.519 | 0.051 | 0.644 | 0.642 | 0.962 | 0.366 | 0.781 | 0.991 | 0.910 | 0.991
Average Time/s | 8.62 | 116.8 | 58.39 | 136.4 | 33.79 | 102.9 | 96.63 | 277.1 | 77.61 | 75.04 | 74.12 | 77.69

Multispectral Image Denoising: Eleven Datasets
PSNRT [29.85(33.39 3576 | 41.70 | 33.56 | 36.32 | 40.64 | 44.64 | 40.15 | 42.14 | 42.92 | 40.74
SSIM?T | 0.968 | 0.967 | 0.965 | 0.993 | 0.957 | 0.977 | 0.995 | 0.996 | 0.995 | 0.996 | 0.996 | 0.995
03 PSNRT |24.96 | 31.14 | 34.32 | 39.14 | 31.90 | 34.48 | 38.57 | 42.95 | 38.34 | 40.47 | 41.39 | 39.43

) SSIMtT ] 0.920 | 0.945 | 0.956 | 0.988 | 0.943 | 0.965 | 0.992 | 0.995 | 0.992 | 0.994 | 0.995 | 0.993
Average Time/s | 17.01 | 294.5 | 106.8 | 275.6 | 52.91 | 220.9 | 233.5 | 513.9 | 68.62 | 70.24 | 67.24 | 67.35

RGB Video Denoising: Ten Datasets
PSNRT | 32.26 | 27.44 | 26.48 | 38.01 | 29.97 | 23.51 | 35.73 | 38.69 | 37.14 | 38.61 | 39.77 | 37.62
SSIMt | 0.958 | 0.774 | 0.827 | 0.980 | 0.892 | 0.809 | 0.976 | 0.983 | 0.980 | 0.983 | 0.984 | 0.981
03 PSNRT | 30.16 | 10.58 | 25.89 | 35.47 | 28.52 | 22.43 | 3391 | 36.63 | 34.90 | 36.57 | 37.45 | 35.84

' SSIMt ] 0.933 | 0.097 | 0.808 | 0.963 | 0.870 | 0.777 | 0.963 | 0.967 | 0.970 | 0.977 | 0.979 | 0.975
Average Time/s | 28.17 | 104.1 | 72.61 | 142.9 | 52.67 | 1199 | 129.2 | 293.1 | 157.6 | 159.8 | 157.8 | 159.9

SR | Metrics NN | SNN | KBR | TNN | LRTV

0.1

0.3

0.1

0.1

Table 2: Restoration comparison of all competing methods under different salt and pepper noise noise variance (SR). The best and second
results are highlighted in bold italics and underlined.

SR | Metrics | NN | SNN | KBR | TNN | Framlet | Qrank | CTV | TCTV NI[)I\IIECI i 1\3/1(1)\[1)1:1_ MIIjI lN ) MIIA\IZN i
Hyperspectral Image Completion: Five Datasets
PSNR?T | 21.85(20.20 | 30.28 | 27.41 | 29.26 | 28.38 | 35.29 | 29.48 | 29.29 | 36.03 | 32.04 | 32.57
SSIM?T | 0.625 | 0.428 | 0.871 | 0.771 | 0.825 | 0.803 | 0.972 | 0.862 | 0.913 | 0.981 | 0.957 | 0.961
10% PSNRT | 33.98 | 21.91 | 42.60 | 31.01 | 32.28 | 28.06 | 41.90 | 33.54 | 37.10 | 43.09 | 39.34 | 40.46

SSIMT | 0.909 | 0.528 | 0.989 | 0.876 | 0.884 | 0.861 | 0.992 | 0.935 | 0.982 | 0.995 | 0.990 | 0.992

Average Time/s | 11.30 | 35.23 | 258.6 | 143.3 | 2223 | 112.1 | 213.2 | 4745 | 41.30 | 4298 | 41.97 | 41.85

Multispectral Image Completion: Eleven Datasets
PSNRT | 16.71 | 27.56 | 26.49 | 32.58 | 31.61 | 30.23 | 35.71 | 36.12 | 30.64 | 36.98 | 36.10 | 36.05
SSIMT | 0.583 | 0.820 | 0.888 | 0.920 | 0.912 | 0.889 | 0.963 | 0.973 | 0.921 | 0.978 | 0.975 | 0.975
10% PSNR1 | 22.41 | 30.84 | 35.45 | 36.29 | 35.48 | 34.72 | 39.89 | 40.09 | 3542 | 41.11 | 40.32 | 40.05

SSIM?T | 0.793 | 0.892 | 0.980 | 0.963 | 0.958 | 0.952 | 0.983 | 0.988 | 0.971 | 0.992 | 0.991 | 0.991
Average Time/s | 15.4 | 77.73 | 431.5 | 275.4 | 512.2 | 332.1 | 303.1 | 800.6 | 31.70 | 32.36 | 31.99 | 31.49

RGB Video Completion: Ten Datasets
PSNRt | 23.01 | 17.72 | 26.90 | 28.14 | 26.53 | 25.35 | 29.43 | 28.70 | 25.76 | 29.53 | 27.95 | 28.10
SSIM?T | 0.605 | 0.484 | 0.802 | 0.801 | 0.790 | 0.751 | 0.890 | 0.856 | 0.826 | 0.909 | 0.892 | 0.894
10% PSNR?T |29.06 | 20.48 | 32.81 | 30.54 | 31.55 | 29.36 | 33.18 | 31.89 | 29.32 | 32.75 | 31.61 | 31.72

SSIM?T | 0.846 | 0.589 | 0.917 | 0.861 | 0.893 | 0.879 | 0.937 | 0.910 | 0.898 | 0.945 | 0.935 | 0.936
Average Time/s | 20.51 | 58.22 | 401.8 | 214.8 | 4494 | 168.6 | 426.2 | 685.1 | 67.44 | 68.16 | 64.92 | 64.83

MRI-CT Completion: Four Datasets
PSNR?T | 14.14 | 17.40 | 21.58 | 20.65 | 19.82 | 19.94 | 23.70 | 24.80 | 20.48 | 24.45 | 24.87 | 24.94
SSIM?T | 0.204 | 0.448 | 0.532 | 0.368 | 0.506 | 0.380 | 0.688 | 0.647 | 0.625 | 0.801 | 0.810 | 0.813
10% PSNRt | 18.36 | 19.89 | 25.68 | 22.37 | 22.71 | 23.94 | 25.48 | 26.73 | 22.75 | 26.34 | 27.04 | 26.98

SSIM?T | 0.369 | 0.535 | 0.704 | 0.457 | 0.621 | 0.699 | 0.761 | 0.721 | 0.737 | 0.858 | 0.869 | 0.870
Average Time/s | 20.07 | 69.32 | 484.0 | 316.8 | 537.8 | 235.2 | 424.7 | 1009 | 60.81 | 62.13 | 60.04 | 60.01

5%

5%

5%

5%

Table 3: Restoration comparison of all competing methods under different sampling ratio (SR). The best and second results are highlighted
in bold italics and underlined.
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Original

6.02/0.026 24.76/0.842 22.72/0.563

LRTV LRTDTV CTV

NN
rrr i

22.31/0.543

TCTV MNN-Sobel MNN-L2

Mobile 6.0 54 15.70/0.382 17.27/0.393

15.30/0.327

19.35/0.663 "~ 21.91/0.807

Figure 6: Recovered pseudo-colored images under 70% sparse noise. The PSNR and SSIM values are placed below the images, and the best
and second-best results are bolded and underlined respectively.

Nois NN KBR TNN
...- ‘ .‘ ' " | : .

Original

13.92/0.081 14.35/0.167 18.17/0.403

18.39/0.426

- mm »

MNN-Sobel

24.21/0.829 23.82/0.766

24.62/0.851

chest-pet 9.28/0.196 23.13/0.520 33.86/0.934

28.62/0.690

31.93/0.898 34.02/0.903 34.25/0.957 34.57/0.962

Figure 7: Restored pseudo-colored images under sampling rates of 0.02 (first row) for beans data (R-G-B:23-13-4) and 0.2 (second row) for

chest-pet dataset at band 80.

Comparison methods. To validate the effectiveness of
MNN in fusing global and local priors, we selected meth-
ods such as LRTV [He er al., 2015], LRTDTV [Wang et al.,
2017], CTV [Peng et al., 2022b], Qrank [], KBR [Xie et al.,
2017], TCTV [Wang et al., 2023], SNN [Liu et al., 2012],
Qrank [Kong et al., 2021], TNN [Lu et al., 2019] and Framlet
[Jiang et al., 2020]. It is worth noting that CTV can actually
be regarded as a special case of MNN since it utilizes multiple
differential operators from different methods and employs the
ADMM [Boyd et al., 2011] algorithm to solve the model. To
facilitate readers’ understanding of these comparison meth-
ods, the description of these methods are placed in Table 1.

4.1 Robust Principal Component Analysis Tasks

We evaluate denoising performance on HSI, MSI, and RGB
video data with salt-and-pepper noise levels ranging from
10% to 70%, using PSNR and SSIM as metrics. Table 2
summarizes the average results. The following observations
can be observed: 1) In most cases, the MNN-Sobel model
achieves the best performance; 2) Models such as MNN-
Sobel, MNN-L1, and MNN-L2 generally outperform MNN-
Diff, partially supporting Remark 3, which suggests that ex-
panding the receptive field of convolutional operators en-
hances performance; 3) In some scenarios, MNN-L1 and
MNN-L2 outperform MNN-Sobel, indicating that different
transformation operators are required for different types of
data and noise. If suitable transformation operators can be

adaptively selected, further improvements in restoration per-
formance are achievable.

Figure 6 shows restored pseudo-color images for two
datasets, where MNN-Sobel and MNN-L2 visibly enhance
noise reduction and color fidelity. More results are provided
in the supplementary materials.

4.2 Completion Tasks

We conduct completion experiments on four datasets using
random sampling. Table 3 reports the average restoration
metrics, leading to the same three conclusions as in the de-
noising results (Table 2 ). Notably, despite being matrix-
based, MNN consistently outperforms tensor-based methods
like TNN, TCTYV, and KBR, demonstrating its ability to ef-
fectively capture both global and local features.

Figure 7 shows visual results on two datasets, where MNN-
based models excel in structure preservation, color fidelity,
and overall restoration. Additional results are provided in the
supplementary materials.

5 Conclusion

This paper proposes a modified nuclear norm (MNN) regu-
larizer that integrates global low-rankness and local priors via
transformation operators. Under mild and general theoretical
conditions, MNN accommodates a broad range of transfor-
mations, enabling flexible and effective fusion of local and
global information within a unified framework.
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