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Abstract
Deep neural networks are vulnerable to adversarial
attacks and adversarial training has been proposed
to defend against such attacks by adaptively gen-
erating attacks, i.e., adversarial examples, during
training. However, adversarial training is signif-
icantly slower than traditional training due to the
search for worst attacks for each minibatch. To
speed up adversarial training, existing work has
considered a subset of a minibatch for generating
attacks and reduced the steps in the search for at-
tacks. We propose a novel adversarial training
acceleration method, called AttackRider, by ex-
ploring under-utilized GPU hardware to reduce the
number of calls to attack generation without in-
creasing the time of each call. We characterize the
extent of under-utilization of GPU for given GPU
and model size, hence the potential for speedup,
and present the application scenarios where this op-
portunity exists. The results on various machine
learning tasks and datasets show that AttackRider
can speed up state-of-the-art adversarial training al-
gorithms with comparable robust accuracy. The
source code of AttackRider is available at https:
//github.com/zxzhan/AttackRider.

1 Introduction
Deep neural networks (DNN) are vulnerable to attacks from
adversarial examples [Goodfellow et al., 2015], i.e., exam-
ples that are perturbed in an imperceptible way to fool the
DNN model to cause catastrophic consequences [Eykholt
et al., 2018]. To deal with the security threat of such at-
tacks, adversarial training (AT) has been proposed to train
a robust DNN model [Akhtar et al., 2021]. The idea is to
generate adversarial examples based on natural examples in
each minibatch X , by calling the attack generation func-
tion Atk(X,K), and use the generated adversarial exam-
ples for model training. The worst-case adversarial exam-
ples are found by performing K steps of gradient descent, as
in PGDAT [Madry et al., 2018] and TRADES [Zhang et al.,
2019b].

Previous Work. Compared to natural training, AT requires
significantly longer training time because the attack func-

tion Atk(X,K) performs K steps of gradient descent where
K = 10 is a common setting [Hua et al., 2021]. For ex-
ample, on the CIFAR-10 dataset [Krizhevsky et al., 2009],
training a WideResNet-34-10 [Zagoruyko and Komodakis,
2016] model with PGDAT took 45.22 hours but natural train-
ing only took 3.88 hours [Zhang et al., 2019a]. Even with
K = 1 as in FastAT [Wong et al., 2020], it still needs to call
Atk(X,K) once for each minibatch and a small K may af-
fect model robustness negatively. Advanced AT accelerators
have been proposed to reduce the time of Atk(X,K). These
methods can be grouped into reducing the attack step K and
reducing the data X .

Reducing the attack step K. The single attack-step AT ap-
proach reduces the attack step from K = 10 to K = 1 [Wong
et al., 2020; Andriushchenko and Flammarion, 2020; de Jorge
et al., 2022; Tong et al., 2024]. FastAT [Wong et al., 2020]
adopts the 1-step FGSM attack [Goodfellow et al., 2015]
combined with random initialization to reduce adversarial ex-
ample generation cost but suffers from Catastrophic Overfit-
ting (CO) [Wong et al., 2020]. GradAlign [Andriushchenko
and Flammarion, 2020] uses a regularization term to avoid
CO but increases the time cost of FastAT by 3×. To address
CO and maintain the same level of speedup as FastAT, N-
FGSM [de Jorge et al., 2022] introduces a more noisy random
initialization and recently TDAT [Tong et al., 2024] proposes
a taxonomy-driven training method. However, these methods
either decrease model robustness compared with multi attack-
step AT or require extensive hyperparameter search. In addi-
tion, as pointed out by [Dolatabadi et al., 2022], these meth-
ods adopt ℓ∞-bounded FGSM attack, which does not gener-
alize to ℓ2-bounded robustness that are commonly considered
for tabular data [Ballet et al., 2019].

Reducing the data X . Another approach reduces the num-
ber of natural examples X for attack generation [Hua et al.,
2021; Jung et al., 2023; Dolatabadi et al., 2022; Li et al.,
2023b]. BulletTrain [Hua et al., 2021] and DBAC [Jung et
al., 2023] only generate adversarial examples for a subset
of the examples from each minibatch and update the model
with a mixed minibatch of the generated adversarial exam-
ples and original natural examples. BulletTrain selects this
subset as influential examples (called boundary examples)
whereas DBAC randomly samples the subset and gradually
increases the subset fraction. [Dolatabadi et al., 2022] and
[Li et al., 2023b] determine a subset of training examples for
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each epoch and train the model using normal AT with the
reduced subset. [Li et al., 2023b] combined their proposed
method with BulletTrain to obtain more time reduction but
the trained model’s performance drops significantly.

The above data reduction approach relies on the assump-
tion that the runtime of Atk(X,K) can be reduced by reduc-
ing the data X . Our analysis in Sec. 2 shows that this is not
the case if GPU is under-utilized for Atk(X,K) where some
fixed “overhead time” dominates the runtime of Atk(X,K)
until X reaches a certain size. In this case, reducing the data
X cannot help reduce the runtime of the attack function. This
overhead time comes from kernel launch overhead, memory
allocation overhead, synchronization overhead, etc [Cook,
2012]. DBAC [Jung et al., 2023] noticed this issue and pro-
posed to read X from multiple minibatches to reduce AT
time. However, their work leaves some important questions
unanswered: they did not characterize when GPU is under-
utilized and how many minibatches should be read to avoid
the under-utilization; they did not analyze the application sce-
narios for which their method is able to provide a speedup;
their experiments were limited to only one dataset and one
model setting.

Our Contributions. To accelerate AT, instead of reduc-
ing the data X of Atk(X,K), we propose the opposite, i.e.,
process more data X by each Atk(X,K) within the attack
function’s overhead time. Our contributions are as follows.

• Contribution 1, Sec. 2. We show that GPU is under-
utilized for the attack function Atk(X,K) when its run-
time is dominated by a fixed overhead time, until a cer-
tain maximum size |X| called overhead throughput. The
overhead throughput, which depends on the GPU and
ML model, is measured in the number of minibatches
and is used to quantify the potential for speedup of
AT through better utilizing an under-utilized GPU. We
present an algorithm for finding the overhead throughout
for given GPU and ML model and discuss the applica-
tion scenarios where a large overhead throughput exists.

• Contribution 2, Sec. 3. We propose a novel AT ac-
celerator, called AttackRider, that leverages overhead
throughput so that Atk(X,K) can generate adversarial
examples for multiple minibatches X within the same
runtime as for a single minibatch, i.e., the overhead time.
In other words, all but one minibatches in X take a
free ride in their attack generation, thus, the name “At-
tackRider”. Updating the model using all of the mini-
batches X at once leads to an increased training batch
size, which fails to preserve the model performance pro-
vided by the original batch size. We provide our solu-
tions to this problem. AttackRider is a general AT accel-
eration strategy that can be applied to an existing base
AT to provide an additional speedup while preserving
the robustness provided by the existing base AT.

• Contribution 3, Sec. 4. Extensive experimental re-
sults show that AttackRider effectively accelerates var-
ious state-of-the-art AT in the targeted application sce-
narios. For example, applying AttackRider to Bullet-
Train on CIFAR-10 with RN model yields a speedup of
3.45 and applying AttackRider to BulletTrain on Jannis

Small/
Powerful

Large/
Powerful

Small/
Weak

Large/
Weak

0.125 1.0 3.0 6.0 𝑂∗

Overhead 
throughput

Figure 1: The runtime of Atk(X,K) vs |X|
m

for four model/GPU
setups, where K = 10 and batch size m = 128. The blue cross
marks the overhead throughput O∗, i.e., the largest |X|

m
such that

the runtime of Atk(X,K) is dominated by the fixed overhead time.
The lower part shows the overhead throughput for these model/GPU
setups.
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Figure 2: Upper: O∗ vs model size based on four RTX 6000 GPUs.
Lower: O∗ vs GPU setup based on different models. The bracket
(d) behind each model name means the input size is d× d× 3. O∗

is based on batch size m = 128. 1 × 4090 means one RTX 4090
GPU and 4× 6000 means four RTX 6000 GPUs.

with FT-T model yields a speedup of 3.77, while achiev-
ing comparable robustness to BulletTrain.

2 Overhead Throughput
To quantify the potential of speedup of our approach, we first
introduce the notion of overhead throughput for the attack
function on given GPU and ML model. We then discuss how
to find the overhead throughput and discuss the application
scenarios that warrant a suitable overhead throughput for pro-
viding a large speedup.

To motivate, consider four model/GPU setups where model
can be either Large or Small and GPU can be either Powerful
or Weak:

• Large model: WideResNet-34-10 with 46M parameters
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and input size 32× 32× 3 [Zagoruyko and Komodakis,
2016]

• Small model: ResNet-18 with 11M parameters and input
size 32× 32× 3 [He et al., 2016].

• Powerful GPU: Four NVIDIA RTX 6000 Ada GPUs.
• Weak GPU: A single NVIDIA RTX 4090 GPU.

The model size captures the amount of work involved in
model forward and backward propagation. For CNNs, the
model size is estimated by the product of the number of model
parameters and the input size, because the convolutional fil-
ters must traverse the entire input. For Transformers and
MLPs, the model size is estimated by the number of model
parameters.

Fig. 1 plots the runtime of the attack function Atk(X,K)

vs the data size |X|
m with K = 10 and batch size m = 128

for the above four model/GPU setups. As |X|
m increases ini-

tially, the runtime has little change because the GPU is under-
utilized for the small sized X and the runtime is dominated by
an fixed overhead time associated with each Atk(X,K) call.
This overhead time includes kernel launch overhead, memory
allocation overhead, synchronization overhead, etc [Cook,
2012]. After |X|

m reaches a certain size, marked by a blue
cross, the runtime increases proportionally with |X|

m .
Overhead Throughput. In this paper, overhead through-

put, denoted by O∗, refers to the maximum |X|
m for the batch

size m such that the runtime of Atk(X,K) is dominated by
the overhead time. O∗, which depends on the model/GPU
setup, measures the maximum amount of data X that allows
Atk(X,K) to run within the overhead time. A larger over-
head throughput means that the GPU can process more data
X within its fixed overhead time, thus, O∗ measures quanti-
tatively how powerful a GPU is relative to the model (or how
small a model is relative to the GPU). We say that Atk(X,K)

is overhead dominated if |X|
m ≤ O∗, or is computation domi-

nated if |X|
m > O∗. Importantly, increasing or decreasing the

data X for overhead dominated Atk(X,K) does not signifi-
cantly affect its runtime.

Returning to Fig. 1, Small/Powerful has the largest
overhead throughput O∗ = 6.0, followed by 3.0
for Large/Powerful, 1.0 for Small/Weak, and 0.125 for
Large/Weak. This makes sense because a powerful GPU re-
quires a longer initialization time and a smaller model re-
quires less time for model forward and backward propaga-
tion. Fig. 2 shows the values of O∗ for more model/GPU
setups. Based on Fig. 1 and 2 and the above discussion, we
summarize the following observations about O∗.

Observations. (O1) Atk(X,K) can run with O∗ mini-
batches of data X within the overhead time, which provides
the speedup of O∗ for attack generation compared to one
minibatch at a time. For example, in Upper of Fig. 2, the
models numbered 1 to 7 have O∗ ≥ 2, so Atk(X,K) can run
within the overhead time for X of at least two minibatches of
data. (O2) Each of the following leads to a larger O∗: a pow-
erful GPU, a small model, and a small batch size m. (O3) O∗

is independent of the distribution of training data because the
work involved in K rounds of model forward and backward

propagation depends only on the model size. (O4) Fig. 1 sug-
gests a practical algorithm for finding the overhead through-
put O∗ for a given model/GPU setup and the batch size m:
plot the runtime vs |X|

m by running Atk(X,K) with dummy
examples X with |X|

m increasing at some interval size, and
O∗ is the |X|

m value when the runtime starts to increase faster.
Note that the choice of this value is not necessarily unique
because it depends on the interpretation of “starts to increase
faster”.

Targeted Applications. According to observations O1 and
O2 above, a large O∗ exists when GPU is powerful relative
to the model size and when the batch size m is small. Several
application scenarios meet these conditions. The first sce-
nario is on-device model deployment where the model size
is constrained by the limited memory and battery of mobile
devices, e.g., MobileNets [Howard, 2017], but the model can
be trained on powerful GPUs available at a cloud. Second,
an organization (such as cloud computing) often invests in
powerful GPUs to deal with various ML tasks from small
models to large ones, and running powerful GPUs on small
models leads to under-utilization of GPU, thus, a large O∗.
Note that “powerful” GPUs and “small” models are relative:
a large model in an usual sense can be a “small” model to very
powerful GPUs. Third, according to [Gorishniy et al., 2021;
Asuncion et al., 2007], a small model with <1M parameters
is sufficient for tabular data. While the acceleration of AT is
motivated for expensive training, it is also important for time
sensitive applications (like streaming data) where the model
must be updated frequently in real time.

Our work does not intend to target at these applications:
large vision or language models that are pre-trained once;
large models that have a small O∗, thus, computation dom-
inated Atk(X,K), like those below the dotted line in Fig. 2;
data are ample and a large batch size m is preferred, leading
to a small O∗. For example, by utilizing a large amount of
generated images, the models in RobustBench [Croce et al.,
2021] afford to use large batch size and large model size, at
the expense of runtime. For tabular data, however, generated
data tend to have a poor quality [Borisov et al., 2022].

3 Proposed Approach
By the notion of overhead throughput, if |X|

m ≤ O∗,
Atk(X,K) incurs only the overhead time, where m is the
batch size. For a large O∗, we can read X from b mini-
batches X1, · · · , Xb such that |X1|+···+|Xb|

m ≤ O∗, and run
Atk(X1 ∪ · · · ∪ Xb,K) within the overhead time. In other
words, we pack b minibatches into one attack function call
without significantly increasing runtime. The number of
minibatches packed, b, can be further increased when the base
AT, such as BulletTrain [Hua et al., 2021], considers only a
subset of influential examples from each minibatch for attack
generation. Below, we present this approach, called Attack-
Rider, followed by discussion and analysis of its speedup.

3.1 AttackRider-e
Alg. 1 presents AttackRider-e parameterized by the packing
size e with e ≤ O∗, where the condition e ≤ O∗ ensures that
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Algorithm 1 AttackRider-e
Input: Training dataset D; Base AT BaseAT =
{GetFB(·), Atk2(·), Upd(·)}; Packing size e
Output: Robust model fθ

1: Initialize f with random parameters fθ ← θ
2: repeat

// Attack Generation:
3: FB ← GetFB(·)
4: b← ⌈e/FB⌉
5: Read b minibatches X from D
6: X̄ ← Atk2(X,FB , fθ)

// Model Update:
7: X̄ ← Shuffle(X̄)
8: {X̄i, |i = 1, · · · , b} ← Divide(X̄)
9: {Xi, |i = 1, · · · , b, examples in X correspond to X̄i}

10: for i = 1, · · · , b do
11: θ ← Upd(X̄i, Xi, fθ)
12: until training converged
13: return fθ

the attack function Atk is run within the overhead time. We
will discuss the choice of e shortly. To present AttackRider
as a general acceleration approach that can be applied to an
existing base AT that generates adversarial examples for one
minibatch at a time, AttackRider has two inputs, the training
dataset D as usual and a base AT denoted by BaseAT cap-
tured by three functions {GetFB(·), Atk2(·), Upd(·)}: the
function for determining the percentage of examples in a
minibatch for attack generation, the attack generation func-
tion, and the model update function, respectively. Examples
of existing base ATs include BulletTrain, DBAC, PGDAT,
TRADES, N-FGSM, or TDAT. Alg. 1 has two main steps,
Attack Generation and Model Update, in each iteration.

Attack Generation. First, AttackRider calls GetFB(·) to
obtain the fraction of examples, FB ≤ 1, for attack gen-
eration (line 3), reads b minibatches X (lines 4, 5), calls
Atk2(X,FB , fθ) to generate adversarial examples for XB

representing FB percentage of influential examples from X

(i.e., |XB |
|X| = FB) through running Atk(XB ,K), and returns

X̄ that contains the adversarial examples and the natural ex-
amples from X − XB . Note that |X| = b ×m, where m is
the batch size of the base AT, and

b = ⌈e/FB⌉. (1)

We have

|XB |
m

=
b×m× FB

m
= ⌈e/FB⌉ × FB . (2)

The choice of ceiling for computing b could lead to |XB |
m

slightly larger than e, thus, slightly larger than O∗ if e = O∗.
For simplicity, however, we continue to say that the condi-
tion e ≤ O∗ ensures that Atk(XB ,K) is overhead dominated
and incurs only the overhead time. By considering only in-
fluential examples XB with FB < 1, we have b > e and
can pack more minibatches even for a small e. For exam-
ple, the typical fraction of boundary examples in BulletTrain

is about FB = 30%. With e = 1 and e = 2, we can pack
b = ⌈1/0.3⌉ = 4 and b = ⌈2/0.3⌉ = 7 minibatches into one
call of Atk, respectively.

GetFB(·) and Atk2(·) should be instantiated for the in-
dividual base AT. For GetFB(·), BulletTrain computes FB

as the fraction of boundary examples based on the current
classifier fθ; DBAC [Jung et al., 2023] computes FB us-
ing an attack ratio scheduling; PGDAT, TRADES, N-FGSM
and TDAT have FB = 100%. For Atk2(X,FB , fθ), Bullet-
Train runs Atk(XB ,K) for boundary examples XB such that
|XB |
|X| = FB (and optional Atk(XR,KR) for robust exam-

ples XR with KR ≪ K, which has a much smaller runtime
than Atk(XB ,K)); DBAC runs Atk(XB ,K) for randomly
selected examples XB from X with |XB |

|X| = FB ; For PGDAT,
TRADES, N-FGSM and TDAT, FB = 100% and Atk2(·) is
simply Atk(XB ,K) with XB = X .

Model Update. A straightforward model update is up-
dating the model in one step using all b × m examples in
X̄ . This essentially changes the original batch size m of
the base AT to b × m, which would lead to a less fre-
quent model update and poor generalization [Smith, 2018;
Keskar et al., 2017]. To stick to the original batch size m of
the base AT, we randomly shuffle the examples in X̄ (line 7)
and divide evenly X̄ into b minibatches (line 8). The shuffling
redistributes the adversarial examples evenly among the mini-
batches, allowing the model to generalize well [Neyshabur et
al., 2017]. Upd(X̄i, Xi, fθ) adopts the base AT’s loss and
updates the model parameters θ, where Xi contains the natu-
ral examples corresponding to the examples in X̄i. For exam-
ple, BulletTrain and DBAC can adopt PGDAT’s loss on X̄i or
TRADES’s combined losses on X̄i and Xi, N-FGSM adopts
PGDAT’s loss, and TDAT has its own weighted loss similar
to TRADES’s loss.

3.2 Choosing e

A remaining question is how to choose the packing size
e for AttackRider-e, where e ≤ O∗. A larger e leads
to a larger number b (Eq. (1)) of minibatches packed into
one overhead dominated attack function call, thus, more
time reduction. On the other hand, a larger b causes out-
dated adversarial examples because the adversarial examples
in X̄ are generated based on the same model parameters
θt (line 6) and are used to update the model parameters b
times, i.e., θt+1, θt+2, · · · , θt+b (line 10, 11). These adver-
sarial examples are outdated to different extents for updating
θt+2, · · · , θt+b. However, model robustness can still be pre-
served with moderately outdated adversarial examples. This
has to do with the adversarial example transferability [Wu et
al., 2018] and training example diversity [Gong et al., 2019].
This transferability means that adversarial examples gener-
ated based on a substitute model can attack a similar target
model [Wu et al., 2018], and in our context, it takes the form
that outdated adversarial examples remain adversarial to sub-
sequent updated models. Moreover, the model robustness
could benefit from a more diverse set of training adversarial
examples that have different extents of outdatedness. Our ex-
periments show that small values e ∈ {1, 2} often achieve a
good balance between speedup and accuracy for BulletTrain
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as the base AT, and e = O∗ often achieves a good balance be-
tween speedup and accuracy for other base ATs. More details
are found in Sec. 3.3 and Sec. 4.1.

3.3 Analysis of Speedup
We analyze the speedup provided by AttackRider-e relative to
the base AT, defined as the ratio of the runtime of the base AT
over the runtime of AttackRider-e applied to the base AT. We
consider a single iteration of AttackRider-e for processing b
minibatches. AttackRider-e needs to run Atk(XB ,K) once
for b minibatches XB and Atk(XB ,K) is overhead domi-
nated. The base AT needs to run Atk(Xm,K) b times, each
time on one minibatch Xm. With O∗ ≥ 1, which holds in
most cases, Atk(Xm,K) is overhead dominated. Therefore,
the runtimes of both Atk(XB ,K) and Atk(Xm,K) are dom-
inated by the fixed overhead time of attack function, denoted
by TAtk. Let TUpd denote the model update time for one
minibatch. Then the speedup of AttackRider-e in one itera-
tion is equal to

rSpd =
bTAtk + bTUpd

TAtk + bTUpd
=

bTAtk/TUpd + b

TAtk/TUpd + b
(3)

=
⌈e/FB⌉ × σ + ⌈e/FB⌉

σ + ⌈e/FB⌉
.

where σ = TAtk/TUpd. rSpd can be extended to multiple
iterations of AttackRider by replacing FB with its average
value across the iterations in Eq. (3).

For a fixed e, a larger σ and a smaller FB lead to a larger
rSpd. σ and FB are base AT specific, as follows. To estimate
σ, we approximate TAtk/TUpd by the number of gradient
descent steps performed during attack generation and model
update. For PGDAT and TRADES, σ is K/1 and K/2, re-
spectively, where K = 10 is the common setting, and FB =
100%; for BulletTrain with PGDAT’s loss and TRADES’s
loss, denoted as BulletPGDAT and BulletTRADES, σ is the same
as for PGDAT and TRADES, and FB ∈ [20%, 40%] [Hua et
al., 2021]; for DBAC with N = 1 (i.e., reading one mini-
batch per attack generation call), σ is the same as for PGDAT
and FB ∈ [50%, 100%] [Jung et al., 2023]; for N-FGSM and
TDAT, σ is 1

1 and 1
2 , respectively, and FB = 100%.

With the above settings, BulletPGDAT permitting the largest
rSpd and TDAT permitting the smallest rSpd. For exam-
ple, with σ = K/1 and FB ≈ 40%, BulletPGDAT permits
rSpd = ⌈e/0.4⌉×K+⌈e/0.4⌉

K+⌈e/0.4⌉ , which is 3.67 for K = 10 and
e = 2; even the smallest rSpd for TDAT is 1.5e

e+0.5 , which is
at least 1 (because e ≥ 1 commonly holds). The empirical
studies in Sec. 4.1 suggest a small e value for BulletPGDAT
and BulletTRADES, to avoid excessive outdateness of adversar-
ial examples, and e = O∗ for other base ATs to have a large
speedup.

4 Experiments
We conduct extensive experiments to study the speedup pro-
vided by AttackRider for the targeted application scenarios
discussed in Sec. 2. All experiments are conducted on a
server with four NVIDIA RTX 6000 Ada GPUs and five

GPU 4 × RTX 6000

Dataset Image Tabluar
CIFAR-10 CIFAR-100 TinyImageNet Jannis CoverType

Model RN RN RN FT-T FT-T
Input Size 32× 32× 3 32× 32× 3 64× 64× 3 59 59
Model Size 34× 109 34× 109 137× 109 9× 105 9× 105

# Class 10 100 200 4 7
# Train 50,000 50,000 100,000 53,588 371,847
# Test 10,000 10,000 10,000 16,749 116,203
m 128 128 128 512 1024
O∗ 6.0 6.0 2.0 6.0 3.0

Table 1: Summary of GPU, datasets and models. # Train and # Test
is the number of samples in training and test set, m is the training
batch size of the base AT algorithm and O∗ is the overhead through-
put for the model/GPU setup.

datasets from image and tabular domains. Table 1 summa-
rizes the GPUs, datasets, model information, batch size, and
O∗. We adopt ResNet-18 (RN) [He et al., 2016] for the image
datasets and FT-Transformer (FT-T) [Gorishniy et al., 2021]
for the tabular datasets. With our GPU server, these models
represent varied extent of under-utilization of GPU indicated
by the different O∗ values. The source code of AttackRider
is available at at https://github.com/zxzhan/AttackRider.

Base ATs for AttackRider. We consider the seven base
ATs discussed in Sec. 3.3 to which AttackRider is applied:
the multi attack-step BulletPGDAT, BulletTRADES, DBAC, PG-
DAT, TRADES, with the attack step K = 10 following [Hua
et al., 2021], and the single attack-step N-FGSM and TDAT.
Since N-FGSM and TDAT are shown to outperform previ-
ous algorithms [Tong et al., 2024], we do not include older
methods such as [Shafahi et al., 2019; Wong et al., 2020;
Zhang et al., 2019a; Zheng et al., 2020; Ye et al., 2021].
DBAC can generate attacks for N ≥ 1 minibatches at a
time. DBACN=1 serves as a base AT for AttackRider and
DBACN=5 serves as a baseline to compare with AttackRider,
where N = 5 was suggested in [Jung et al., 2023].

Evaluation Metrics. For each base AT, we evaluate
speedup, clean accuracy (denoted by Clean), and robust ac-
curacy before and after applying AttackRider to the base AT.
We define the speedup Spd of AT algorithm A′ relative to AT
algorithm A as the ratio t/t′ where t and t′ are the wall-clock
training times of A and A′. In particular, we are interested
in the case that A and A′ are before and after applying At-
tackRider to a base AT, respectively. Note that Spd is the ac-
tual speedup, which is different from the estimated speedup
rSpd in Sec. 3.3. The robust accuracy is measured by PGD20

and AutoAttack (AA) for image datasets and by PGD20 and
PGD100 for tabular datasets (AutoAttack is not applicable to
tabular data).

All models on the image datasets are trained with an SGD
optimizer for 120 epochs following [Li et al., 2023a], and all
models on the tabular datasets are trained with an AdamW
optimizer for 100 epochs following [Gorishniy et al., 2021].
We evaluate the model that has the best test PGD20 robust
accuracy within the specified number of epochs. For hyper-
parameter and base AT specific settings, we mostly follow the
original papers of each base AT. The interested reader please
refer to the separate Appendix file for more details.

Sec. 4.1 investigates and suggests the choice of e for
AttackRider-e. Sec. 4.2 presents the main results on the effec-
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Clean PGD20 AA rSpd Spd b̄ Time
BulletPGDAT 86.56 49.28 45.58 – 1.00 1.0 173
+ AR-1 86.32 49.20 45.21 2.54 1.96 3.0 88
+ AR-2 86.48 49.15 45.01 3.81 2.98 5.3 58
+ AR-3 86.72 48.25 44.86 4.75 3.60 7.6 48
+ AR-4 86.65 48.15 44.60 5.39 3.93 9.6 44
+ AR-5 86.50 47.35 44.31 5.91 4.32 11.6 40
+ AR-6 (O∗) 86.48 47.90 44.08 6.34 4.55 13.6 38
BulletTRADES 82.79 52.38 48.82 – 1.00 1.0 213
+ AR-1 82.54 52.18 48.55 2.74 2.52 4.2 85
+ AR-2 82.63 52.20 48.50 3.73 3.45 8.2 62
+ AR-3 81.93 52.00 47.96 4.19 3.80 11.6 56
+ AR-4 81.62 51.65 47.39 4.52 4.02 15.3 53
+ AR-5 81.69 52.00 47.33 4.73 4.18 18.7 51
+ AR-6 (O∗) 81.63 51.14 47.27 4.90 4.26 22.3 50
DBACN=1 85.33 49.64 46.32 – 1.00 1.0 167
+ AR-1 85.32 49.54 46.62 1.76 1.44 1.9 116
+ AR-2 85.83 48.79 45.89 2.67 2.45 3.2 68
+ AR-3 85.16 49.02 45.78 3.43 2.99 4.5 56
+ AR-4 84.98 49.56 46.37 4.07 3.52 5.9 48
+ AR-5 84.78 49.36 46.10 4.61 3.80 7.2 44
+ AR-6 (O∗) 85.36 49.05 46.15 5.08 4.08 8.6 41
DBACN=5 85.37 49.27 46.36 – 3.31 5.0 51
PGDAT 84.76 49.95 46.72 – 1.00 1.0 162
+ AR-1 84.76 49.95 46.72 1.00 1.00 1.0 162
+ AR-2 84.16 50.12 46.75 1.83 1.77 2.0 92
+ AR-3 83.92 50.54 46.93 2.54 2.33 3.0 70
+ AR-4 84.01 50.13 46.80 3.14 2.80 4.0 58
+ AR-5 83.89 50.10 46.95 3.67 3.15 5.0 52
+ AR-6 (O∗) 83.99 50.07 46.77 4.13 3.42 6.0 47
TRADES 81.14 52.53 48.72 – 1.00 1.0 185
+ AR-1 81.14 52.53 48.72 1.00 1.00 1.0 185
+ AR-2 82.47 53.19 49.77 1.71 1.59 2.0 116
+ AR-3 82.05 52.79 49.21 2.25 2.08 3.0 89
+ AR-4 81.99 52.55 49.17 2.67 2.42 4.0 77
+ AR-5 82.15 52.57 49.18 3.00 2.70 5.0 69
+ AR-6 (O∗) 82.59 52.26 48.82 3.27 2.86 6.0 65
N-FGSM 83.59 46.53 43.60 – 1.00 1.0 36
+ AR-1 83.59 46.53 43.60 1.00 1.00 1.0 36
+ AR-2 83.04 46.41 43.96 1.33 1.22 2.0 29
+ AR-3 83.28 46.16 43.63 1.50 1.35 3.0 27
+ AR-4 83.12 46.87 43.85 1.60 1.41 4.0 26
+ AR-5 82.53 46.25 43.87 1.67 1.47 5.0 24
+ AR-6 (O∗) 83.67 45.65 43.29 1.71 1.50 6.0 24
TDAT 83.17 53.76 46.81 – 1.00 1.0 58
+ AR-1 83.17 53.76 46.81 1.00 1.00 1.0 58
+ AR-2 83.06 53.46 46.87 1.20 1.22 2.0 48
+ AR-3 84.03 53.92 47.04 1.29 1.29 3.0 45
+ AR-4 82.70 53.40 46.49 1.33 1.33 4.0 44
+ AR-5 81.30 52.97 46.24 1.36 1.35 5.0 43
+ AR-6 (O∗) 83.41 53.05 46.51 1.38 1.40 6.0 42

Table 2: The sensitivity of e for AttackRider-e on CIFAR-10 with
RN model. Each color corresponds to a base AT: the first row repre-
sents the base AT and the rows for “+ AR-e” represent AttackRider-
e applied to the base AT. For each base AT, Spd is the wall-clock
speedup of the same colored algorithms relative to the base AT, and
rSpd is the estimated speedup as defined in Sec. 3.3 (note that
rSpd is defined only for AttackRider-e). b̄ is the average number
of packed minibatches per iteration. Time is the training time in
minutes.

tiveness of AttackRider-e in terms of our evaluation metrics.
Sec. 4.3 studies the effectiveness of the Shuffle and Divide
functions of AttackRider-e.

4.1 Sensitivity of Packing Size e

To provide the guideline for choosing e of AttackRider-e, we
first study the sensitivity of e using CIFAR-10 dataset on the
RN model. The results are reported in Table 2. Each base AT
is color coded and represented by the first row in that color,

followed by the “+ AR-e” rows that represent AttackRider-e
applied to the base AT. We also include DBACN=5 for com-
parison with AttackRider. Spd and rSpd are relative to each
individual base AT (i.e., the first row of each color), therefore,
are not comparable across different base ATs.

In general, a larger e provides more Spd but also more
drop in accuracies. The accuracy drop is due to the ad-
versarial example outdatedness discussed in Sec. 3.2. With
BulletTrain (BulletPGDAT and BulletTRADES) as the base AT,
a small e ∈ {1, 2}, indicated in boldface, is able to pro-
vide a good trade-off between speedup and accuracies com-
pared to the base AT. For example, applying AR-2 provides
Spd of 2.98 and 3.45 relative to the base AT BullletPGDAT
and BullletTRADES while keeping the change of PGD20 and
AA within 1%. This is because BulletTrain considers about
FB ∈ [20%, 40%] boundary examples for attack generation,
allowing AttackRider-e to pack more minibatches in each at-
tack generation even for a small e, as seen from b̄ much larger
than e.

DBACN=1 generates attacks for about FB ∈ [50%, 100%]
examples in a minibatch, and PGDAT, TRADES, N-FGSM
and TDAT generate attacks for all examples, i.e., FB =
100%. In these cases, AttackRider-e packs fewer minibatches
for each attack generation, leading to a smaller Spd. In ad-
dition, the single attack-step N-FGSM and TDAT have a less
expensive attack function, which further limits the time re-
duction of AttackRider. For these base ATs, a large e = 6
(i.e., O∗), marked in boldface, is needed to provide a speedup.

We did not consider AttackRider-e with e > O∗ be-
cause such an AttackRider-e becomes computation domi-
nated, thus, does not provide further speedup compared to
AttackRider-O∗. Finally, rSpd is generally larger than Spd
because we estimate the ratio TAtk/TUpd by K/1 (or K/2)
in Eq. (3) for a K-attack step AT, but the actual wall-clock
ratio should be (K + c1)/(1+ c2) (or (K + c1)/(2+ c2)) for
some fixed costs c1 and c2. For single-attack step N-FGSM
and TDAT, the extent of overestimation is less so that rSpd
is closer to Spd.

In summary, we recommend e ∈ {1, 2} when applying
AttackRider-e to BulletTrain and recommend e = O∗ when
applying AttackRider-e to DBACN=1, PGDAT, TRADES, N-
FGSM, and TDAT.

4.2 Main Results
We now evaluate AttackRider-e using all datasets. Following
the study in Sec. 4.1, we consider e ∈ {1, 2} for applying
AttackRider-e to BulletTrain and consider e = O∗ for ap-
plying AttackRider-e to the other base ATs, i.e., DBACN=1,
PGDAT, TRADES, N-FGSM and TDAT.

Image Datasets (Table 3). The results on CIFAR-10 have
been reported and analyzed in Sec. 4.1. Here, we report the
results on CIFAR-100 and TinyImageNet in Table 3. For the
base AT BulletTrain, applying AR-2 provides a good trade-
off between speedup and accuracies, and for the other base
ATs, applying AR-O∗, where O∗ = 6 on CIFAR-100 and
O∗ = 2 on TinyImageNet, provides a good trade-off between
speedup Spd and accuracies. For most base ATs, Spd is more
than 3, and for the single attack-step N-FGSM and TDAT,
Spd is around 1.5.
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Clean PGD20 AA rSpd Spd b̄ Time

CIFAR-100

BulletPGDAT 63.34 24.90 22.22 – 1.00 1.0 206
+ AR-1 63.42 24.75 21.90 2.51 2.05 3.0 101
+ AR-2 63.85 24.42 21.73 3.82 3.50 5.3 59
BulletTRADES 58.64 29.61 24.74 – 1.00 1.0 246
+ AR-1 58.67 29.58 24.72 2.96 2.80 4.9 88
+ AR-2 58.21 29.32 24.21 3.92 3.63 9.4 68
DBACN=1 59.35 27.89 24.26 – 1.00 1.0 167
+ AR-6 (O∗) 58.91 27.06 23.43 5.09 3.71 8.6 45
DBACN=5 59.43 27.55 23.98 – 3.27 5.0 51
PGDAT 57.28 28.54 24.62 – 1.00 1.0 166
+ AR-6 (O∗) 57.32 27.84 23.92 4.13 3.48 6.0 48
TRADES 58.10 29.59 25.13 – 1.00 1.0 193
+ AR-6 (O∗) 58.23 29.55 24.52 3.27 2.99 6.0 65
N-FGSM 55.15 26.86 23.15 – 1.00 1.0 38
+ AR-6 (O∗) 56.69 26.44 22.81 1.71 1.57 6.0 24
TDAT 58.39 31.31 24.26 – 1.00 1.0 60
+ AR-6 (O∗) 57.51 30.89 23.82 1.38 1.45 6.0 41
BulletPGDAT 49.81 15.10 12.52 – 1.00 1.0 431
+ AR-1 50.18 14.52 12.10 2.73 2.44 3.3 177
+ AR-2 (O∗) 50.34 14.49 12.03 4.16 2.82 6.1 153
BulletTRADES 45.40 18.22 13.98 – 1.00 1.0 521
+ AR-1 45.43 18.20 13.60 2.88 2.96 4.6 176
+ AR-2 (O∗) 45.61 18.09 13.47 3.87 3.45 9.1 151
DBACN=1 47.23 19.10 15.28 – 1.00 1.0 349

Tiny + AR-2 (O∗) 47.65 18.49 15.11 2.67 1.79 3.2 195
ImageNet DBACN=5 47.06 18.32 14.39 – 1.78 5.0 196

PGDAT 45.52 19.83 16.15 – 1.00 1.0 340
+ AR-2 (O∗) 45.40 19.75 15.90 1.83 1.49 2.0 228
TRADES 43.26 19.45 14.52 – 1.00 1.0 417
+ AR-2 (O∗) 42.95 19.32 14.34 1.71 1.53 2.0 272
N-FGSM 46.50 18.57 15.17 – 1.00 1.0 81
+ AR-2 (O∗) 46.40 18.46 15.07 1.33 1.46 2.0 56
TDAT 42.89 22.61 15.26 – 1.00 1.0 135
+ AR-2 (O∗) 44.19 22.77 15.33 1.20 1.23 2.0 110

Table 3: Main results on image datasets, CIFAR-100 and TinyIma-
geNet, with RN model.

Clean PGD20 PGD100 rSpd Spd b̄ Time

Jannis

BulletPGDAT 65.87 54.76 54.78 – 1.00 1.0 42
+ AR-1 65.13 55.15 55.14 2.55 2.56 3.0 16
+ AR-2 65.55 54.36 54.41 3.91 3.77 5.5 11
DBACN=1 65.37 54.92 54.92 – 1.00 1.0 30
+ AR-6 (O∗) 64.20 54.39 54.40 4.97 3.20 8.2 9
DBACN=5 64.77 54.79 54.80 – 2.61 5.0 11
PGDAT 64.80 55.14 55.14 – 1.00 1.0 29
+ AR-6 (O∗) 63.61 55.06 55.02 4.13 2.56 6.0 11
BulletPGDAT 88.56 74.20 73.82 – 1.00 1.0 151
+ AR-1 88.87 73.91 73.63 3.19 3.22 4.1 47
+ AR-2 88.55 73.99 73.73 4.67 3.79 7.4 40

Cover DBACN=1 86.06 75.35 75.11 – 1.00 1.0 122
Type + AR-3 (O∗) 86.21 75.46 75.25 3.34 2.25 4.4 54

DBACN=5 85.89 75.18 75.01 – 2.17 5.0 56
PGDAT 85.55 75.53 75.33 – 1.00 1.0 120
+ AR-3 (O∗) 85.22 75.40 75.21 2.54 1.77 3.0 68

Table 4: Main results on tabular datasets with FT-T model.

Second, on CIAFR-10 and CIFAR-100 that have the larger
O∗ = 6, applying AR-O∗ to DBACN=1 achieves more
speedup than DBACN=5. On TinyImageNet that has the
smaller O∗ = 2, applying AR-O∗ to DBACN=1 achieves a
similar speedup but better accuracy compared to DBACN=5.

Third, in the case of O∗ > 1 as in our experiments, re-
ducing the data X (by considering a subset of minibatch)
for attack generation Atk(X,K) fails to reduce time. This
is demonstrated by the observation that PGDAT incurs less
time than BulletPGDAT and DBACN=1, TRADES incurs less
time than BulletTRADES. As matter of fact, the opposite is true
when O∗ > 1, that is, packing more data X , up to O∗ mini-
batches, in the attack generation, can reduce time. This is
exactly the approach of AttackRider.

Tabular Datasets (Table 4). ℓ2-bounded robustness was

Clean PGD20 AA Time
BulletPGDAT + AR-2 86.48 49.15 45.01 58
w/o Shuffle 84.52 48.90 43.23 59
w/o Divide 83.97 44.80 41.03 43
BulletTRADES + AR-2 82.63 52.20 48.50 62
w/o Shuffle 76.45 47.65 43.52 65
w/o Divide 77.14 47.55 42.64 47
DBACN=1 + AR-6 85.36 49.05 46.15 41
w/o Shuffle 85.37 48.91 46.04 41
w/o Divide 81.78 44.44 41.50 26
PGDAT + AR-6 83.99 50.07 46.77 47
w/o Shuffle 83.27 49.65 46.54 47
w/o Divide 82.43 45.70 42.58 32
TRADES + AR-6 82.59 52.26 48.82 65
w/o Shuffle 81.65 52.23 48.46 65
w/o Divide 78.98 49.28 45.49 38
N-FGSM + AR-6 83.67 45.65 43.29 24
w/o Shuffle 83.14 45.89 43.31 25
w/o Divide 81.37 40.78 38.54 14
TDAT + AR-6 83.41 53.05 46.51 42
w/o Shuffle 83.08 53.73 46.89 42
w/o Divide 78.44 48.81 42.31 14

Table 5: Effectiveness of Shuffle and Divide functions in Attack-
Rider on CIFAR-10 with RN model.

suggested for tabular datasets [Ballet et al., 2019], making N-
FGSM and TDAT that adopt the ℓ∞-bounded FGSM attack
inapplicable [Dolatabadi et al., 2022]. In addition, we ob-
served that TRADES performs worse than PGDAT on tabu-
lar data. Therefore, we consider only applying AttackRider-e
to BulletPGDAT, DBACN=1 and PGDAT in Table 4. Simi-
lar to those in Table 3, AttackRider-e can effectively provide
speedups while obtaining comparable accuracy with these
base ATs.

4.3 Ablation Studies
AttackRider-e employs the Shuffle and Divide functions to
eliminate the bias of a minibatch for updating the model at
the original batch size. To study the contribution of these
functions, we examine the options of turning off these func-
tions. “w/o Shuffle” denotes no Shuffling function performed
and “w/o Divide” denotes no Divide function performed (i.e.,
updating the model once using the data consisting of multi-
ple minibatches). Table 5 compares AttackRider with these
options. In general, there is a significant drop in clean accu-
racy and robust accuracy for “w/o Shuffle” and “w/o Divide”.
These findings showcase the importance of the Shuffle and
Divide functions in AttackRider-e.

5 Conclusion
We proposed AttackRider to speed up adversarial training
(AT) by exploiting GPUs that are under-utilized for attack
generation for a small minibatch. To better utilize the GPU,
we introduced the notion of overhead throughput to quantify
the extent of GPU under-utilization and to guide us to pack
multiple minibatches into a single attack generation call with-
out increasing the time of each call. To our knowledge, this
is the first work that formally quantifies the extent of GPU
under-utilization for AT speedup. We presented application
scenarios that warrant a large overhead throughput for achiev-
ing a speedup. Evaluation using various under-utilization of
GPU settings and datasets supports our claims.
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