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Abstract
A good virtual try-on model should introduce min-
imal redundant conditional information to avoid in-
stability and increase inference efficiency. Existing
methods rely on inpainting masks to guide the gen-
eration of the object, but the masks, generated by
unstable human parsers, often produce unreliable
results with fabric residues due to wrong segmenta-
tion. Moreover, large mask regions can lose spatial
structure and identity information, requiring extra
conditional inputs to compensate, which increases
model instability and reduces efficiency. To tackle
the problem, we present a novel Mask-Free virtual
Try-ON (MFTON) framework. Specifically, we
propose a mask-free strategy to eliminate all de-
noising conditions except for clothing and person
images, thereby directly extracting spatial struc-
ture and identity information from the person im-
age to improve efficiency and reduce instability.
Additionally, to optimize the generated clothing
regions, we propose a clothing texture-aware at-
tention mechanism to enable the model to focus
on texture generation with significant visual differ-
ences. We then introduce a geometric detail capture
loss to further enable the model to capture more
high-frequency information. Finally, we propose
an appearance consistency inference method to re-
duce the initial randomness of the sampling pro-
cess significantly. Extensive experiments on pop-
ular datasets demonstrate that our method outper-
forms state-of-the-art virtual try-on methods. Our
source code will be available at: https://github.com/
du-chenghu/MFTON.

1 Introduction
Image-based virtual try-ons (VTON) aim to transfer the tar-
get clothing from an in-shop clothing image onto the corre-
sponding clothing area on a reference person within a user’s
photo [Gou et al., 2023; Xie et al., 2023; Du et al., 2024;
Kim et al., 2024; Chen et al., 2024]. With the advancement

∗Corresponding authors.

Figure 1: Comparison of negative impacts of different inpainting
masks. (a) Box mask. (b,c) Clothing-agnostic mask. (d) Clothing-
specific mask. Our method (MFTON) does not use any mask as the
inpainting mask, achieving a more natural and realistic virtual try-on
effect. Dashed circles highlight the limitations of each method.

of generative artificial intelligence, VTON has gradually gar-
nered widespread attention from researchers and consumers
due to its significant economic and practical value. However,
enhancing the realism of the clothing and limb skin areas in
the generated results has been an ongoing issue.

Most of the previous works [Gou et al., 2023; Kim et al.,
2024; Chen et al., 2024; Wang et al., 2024; Du et al., 2025],
following the inpainting paradigm, utilized an inpainting
mask to focus the generative model on the clothing and limb
skin areas that needed to be generated (inpainting object),
thereby enhancing the realism, which has demonstrated out-
standing performance. However, obtaining a good mask that
accurately covers the inpainting object is challenging. First,
the method based on a box mask (see Fig. 1(b)) is proposed
[Chen et al., 2024], which is easy to create and widely appli-
cable to any clothing and human body, making it highly uni-
versal. However, the entire box area is not flexible enough, an
overly large box can cover identity regions mistakenly (e.g.,
face and hair), while an overly small box can leave parts of the
inpainting object uncovered, resulting in residuals of original
fabrics. Moreover, the human structure and original limb skin
information within the entire box area are missing. It forces
the model to rely on additional structure conditions as input
for supplementation, which increases the model’s instability
and reduces efficiency.

To address these issues, the method based on a clothing-
agnostic mask (see Fig. 1(c, d)) is proposed, which uses a
human parser to outline the approximate shape of the inpaint-
ing object, thereby narrowing down the mask’s contour [Gou
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et al., 2023; Kim et al., 2024] to minimize wrong segmenta-
tion. However, it merely alleviates the above issues to some
extent and still requires the introduction of additional struc-
ture conditions to supplement the precise human structural
information. In addition, since this mask also fails to capture
the shape information of the target clothing, even if the same
mask is used in (c, d), different models produce different in-
painting results due to varying interpretations of the mask.

Recently, a pioneering method [Du et al., 2025] based on
a clothing-specific mask (see Fig. 1(e)) has been proposed. It
uses a target clothing mask as the inpainting mask to spec-
ify the exact regions of the clothing and limbs to be gener-
ated, thereby eliminating the need for additional conditions.
Nonetheless, this approach cannot avoid wrong segmentation
caused by a specially trained parser, leading to mismatches
between the target clothing and the mask shape.

To address these problems, we attempt to eliminate the
negative impacts of these incorrect masks. To this end,
we present a novel Mask-Free Virtual Try-ON framework
(MFTON), which produces highly photo-realistic results
without using any inpainting masks as the input condition.
For this purpose, we transform the traditional approach of
first removing the original clothing and limb regions and then
inpainting the target clothing and limbs by the model, into an
approach that first generates a temporary try-on result (TTR)
and then adaptively eliminates the original fabric residue. On
the basis of method [Du et al., 2025], we overlay the warped
target clothing onto the original clothing region of the refer-
ence person (RP) to form TTR, which is then used to transfer
back to the RP. Thus, two scenarios may arise: If the origi-
nal clothing region is fully covered by the target clothing, the
model refines the clothing area while retaining the areas out-
side the clothing. Otherwise, if the original clothing region is
not completely covered by the target clothing, the model must
learn to eliminate the uncovered areas of the original clothing.
However, at this point, the target clothing and the original fab-
ric residue in TTR may be perceived by the model as a com-
plete single garment in the absence of additional cues, due to
the frequent occurrence of the first scenario. To address this
issue, we use RP as the denoising condition, and the complete
original clothing on RP allows the model to capture where the
residual area in TTR is located due to the residual area origi-
nating from RP. As a result, the model can rely solely on the
RP and TTR, eliminating the need for the mask and the addi-
tional structure condition, to achieve a robust VTON model.

Furthermore, the lack of region guidance in mask-free
frameworks can reduce the model’s focus on clothing areas.
To address this, we propose a clothing texture-aware attention
mechanism and a geometric detail capture loss to compel the
model to focus on clothing generation from both texture and
spatial detail perspectives. Finally, to realistically reconstruct
the details of the inpainting object, we design an appearance
consistency inference method that initiates the inference pro-
cess from a posterior Gaussian noise, significantly reducing
the initial randomness of the sampling process.

In general, the contributions of this work are as follows:
• We present a novel mask-free framework for virtual try-

on, to produce highly photo-realistic results without us-
ing any masks as the denoising condition, providing a

new perspective for mask-free virtual try-on strategy.
• We propose a clothing texture-aware attention mecha-

nism to enable the model to focus on texture generation
with significant visual differences.

• We propose a geometric detail capture loss to further en-
able the model to capture high-frequency information.

• We propose an appearance consistency inference to re-
duce the initial randomness of the sampling process.

2 Preliminary: Diffusion Models
Diffusion models [Sohl-Dickstein et al., 2015; Ho et al.,
2020; Nichol and Dhariwal, 2021], as probabilistic genera-
tive models, encompass a two-step process: diffusion and its
reverse. The diffusion phase adheres to a Markov chain de-
fined by q(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI), spanning

T iterations with a noise schedule {βt}Tt=1. This schedule in-
crementally corrupts the initial data, z0 ∼ q(z0), with Gaus-
sian noise. Each noisy latent state zt at any timestep t can be
sampled directly through a closed-form sampling function:

zt :=
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) , (1)

where t is uniformly sampled from {1, . . . , T}. The noise
level is determined by αt = 1− βt, and ᾱt =

∏t
s=1 αs. The

reverse process starts with a noisy data zT ∼ N (0, I) at step
T and gradually denoises it using known real distributions
q(zt−1|zt) for each step:

pθ (zt−1|zt) = N (zt−1;µθ (zt, t) ,Σθ (zt, t)) . (2)
To achieve this, a denoising autoencoder ϵθ(·) is trained to

remove noise ϵ from zt to reconstruct z0 by optimizing the
following objective:

min
θ

Ez0,ϵ,t ∥ϵθ (zt, t)− ϵ∥
2
2 . (3)

3 Proposed Approach: MFTON
Problem Statement. Given an arbitrary clothing image
Cun ∈ RH×W×3 and a reference person image P ∈
RH×W×3, the VTON task aims to generate a try-on result
T un ∈ RH×W×3, where the clothing worn by the person in
P is replaced with the target clothing from Cun. Here, H ,
W , and 3 represent the height, width, and number of channels
of the image, respectively.
Framework. Fig. 2 illustrates the overview of our proposed
method. It consists of three modules: a Mask-Free Strategy
used to present the mask-free pipeline, a Clothing Texture-
aware Attention Module for injecting clothing texture infor-
mation, and a Geometric Detail Capture Module for super-
vising the geometric details of clothing.
Clothing Pre-processing. To mimic the interaction be-
tween the clothing and the human body in reality, the target
clothing C needs to be non-rigidly warped to align with the
human body posture of P naturally. The off-the-shelf warp-
ing network W [He et al., 2022; Xie et al., 2023] is directly
adopted to generate the warped clothing Cw:

F = W
(
C ⊙CM ,P

)
, Cw = B

(
C ⊙CM ,F

)
, (4)

where B(·, ·) is the bi-linear interpolation based on generated
deformation field F ∈ RH×W×2. CM is shape parsing ofC.
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Figure 2: Overview architecture of our proposed MFTON, containing a diffusion-based generator ϵθ , a geometric detail capture module, and
a clothing texture-aware attention module. The system is optimized using a mean squared error loss Lmse and a gradient consistency loss
Lgcd. The encoder and decoder come from KL-regularized autoencoder, respectively.

3.1 Proposed Framework
Mask-Free Strategy. The role of the inpainting mask is to
indicate the masked human body regions (the inpainting im-
age) that need to be inpainted, but it simultaneously loses the
spatial structure and identity information of those regions.
Instead of utilizing additional human parsing to supplement
this information, we use the random try-on result T un of
P , generated by the off-the-shelf model [Kim et al., 2024],
as a prior guiding condition to replace the mask and human
parsing. This is because T un contains the complete spatial
structure and identity information. Specifically, we first over-
lay the warped clothing Cw onto the corresponding area of
T un to generate the temporary try-on result T̂ = T un+C

w.
However, T̂ is coarse, with the clothing area appearing overly
smooth and lacking natural wrinkles. Moreover, the original
clothing area still retains significant fabric residues, as shown
in Fig. 2. To eliminate these residues, we use T un as another
condition to inform the model of the locations of the resid-
ual original clothing areas in T̂ and directly inject all identity
information through the conditioning effect.

Thus, by setting the ground truths of T̂ and T un as P and
T un, respectively, the model learns to transform T̂ into a re-
sult T̃ whose appearance is infinitely close to P through the
process of adding noise to P and T un and then denoising
them with conditions T̂ and T un. The noise addition process
is represented as Eq. (5):

zp
t =

√
ᾱtz

p
0 +

√
1− ᾱtϵ, zup

t =
√
ᾱtz

up
0 +

√
1− ᾱtϵ, (5)

where, zp0, z
up
0 ∈ R(H/f)×(W/f)×4 = E(P ), E(T un), E is

the encoder of KL-regularized autoencoder with its default
latent-space downsampling factor f = 8. Then, the latent
feature zup0 , zp0 and the denoising condition are concatenated
along the channel dimension, represented as Eq. (6):

ψtotal
t =

[
[zpt , z

up
t ]S ; [E(T̂ ), E(T un)]S ; [m∅,m∅]S

]
C
,

(6)
where [, ]C and [, ]S denotes the concatenation operation
along the channel and spatial dimension, respectively. m∅
represents not inputting any mask. However, it is presented

here because there is another option: to prevent catastrophic
forgetting of pre-trained ϵθ’s weights due to changes in the
number of channels, thereby increasing the convergence bur-
den, m∅ can be set to all ones or all zeros in ϵθ. ψtotal

t is
severed as the input to train ϵθ, represented as Eq. (7):

Lmse = Ezp
0 ,z

up
0 ,ϵ,t

∥∥ϵθ (ψtotal
t , t

)
− ϵ

∥∥2
2
. (7)

Clothing Texture-aware Attention Module. Clothing im-
ages typically contain abundant global information, such as
text, shape, color, and pattern, which must be preserved. Al-
though previous methods [Yang et al., 2023; Gou et al., 2023;
Kim et al., 2024] using Language-Image Pre-Training models
[Radford et al., 2021] could easily inject the global attributes
of the inpainting object into the attention module, they were
insensitive to texture attributes with significant visual differ-
ences. To enable the model to focus on texture generation, we
design a clothing texture-aware attention module to addition-
ally inject texture information into cross-attention.

Specifically, we use an isotropic Laplacian filter to pro-
cess the target clothing C ∈ RH′×W ′×3. This filter can de-
tect texture variations comprehensively in any direction with-
out omission, thereby obtaining a texture-aware map LT ∈
RH′×W ′×3. Subsequently, we utilize a domain-specific en-
coder τθ to project C and LT into intermediate representa-
tions τθ(C) and τθ(LT ), which are then passed through lin-
ear layers and combined using a residual connection ⊕ with
a scale parameter γ, denoted as Eq. (8):

B = ϕV (τθ (C))⊕ γ · ϕA (τθ (LT )) , (8)

where ϕA is zero linear layer, a standard 1 × 1 linear layer
with both weight and bias initialized to zero. It keeps the gra-
dient of ϕA small enough in the early stage of training so that
ϕA can focus on learning to provide a high-level texture un-
derstanding compatible with the ϕV . γ balances the influence
of general and texture-specific conditions on the generation.
B is then mapped to the intermediate layers of the UNet ϵθ
via the cross-attention layer, represented as Eq. (9):

Q =W (i)
q F

(i)
in , K† =W

(i)
k B, V † =W (i)

v B, (9)
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where Q, K†, and V † are the query, key, and value matri-
ces of the attention module, respectively. W (i)

q , W (i)
k , and

W (i)
v are the projection matrices for the (i)-th scale block.

F
(i)
in is noise feature in (i)-th layer of ϵθ. The output F (i)

out
can be represented as Eq. (10):

F
(i)
out = Att

(
Q,K†,V †

)
= Softmax

(
QK†T

√
d

)
V †. (10)

Thus, Eq. (7) is transformed as Eq. (11):

Lmse = Ezp
0 ,z

up
0 ,ϵ,C,t

∥∥∥ϵθ (ψtotal
t ,B, t

)
− ϵ

∥∥∥2
2
. (11)

Geometric Detail Capture Module. Although the texture-
aware attention module can already enhance the model’s fo-
cus on texture details to faithfully reconstruct the appear-
ance of clothing, preserving complex high-frequency de-
tails in clothing images—such as text, patterns, badges, and
stripes—remains challenging, as the injected information is
global and concise. To further enable the model to capture
more high-frequency information, such as the arrangement
and layout of stripes, we design a new gradient loss func-
tion. Specifically, since the generated try-on result T̃ is rich
in noise in the early stages of training, we abandon the previ-
ously employed Laplacian filter, which uses a second-order
derivative that amplifies the impact of noise. Instead, we
adopt the Sobel operator, which has a noise suppression ef-
fect, to obtain the gradient images of the ground truth P and
T̃ . Then, we replace the vanilla L1 loss with a Log-L1 loss to
penalize abnormal gradient points more heavily [Zhao et al.,
2021], thereby guiding the model to focus on intricate local
details, formulated as Eq. (12):

Lgcd =
1

2HW

[
ln

(
H−1∑
i=0

W−1∑
j=0

∥∥∥∇xP ij −∇xT̃ ij

∥∥∥
1
+ 1

)
(12)

+ ln

(
H−1∑
i=0

W−1∑
j=0

∥∥∥∇yP ij −∇yT̃ ij

∥∥∥
1
+ 1

)]
,

where ∇ denotes the Sobel operator in x− or y− direction.

3.2 Training and Inference
Full Objective. The full objective functions to optimize ϵθ
as Eq. (13):

min
θ

Lmse + λ · Lgdc, (13)

where λ is a hyper-parameter controlling relative importance
between different losses.
Appearance Consistency Inference. During the inference
stage, previous methods [Yang et al., 2023; Gou et al., 2023;
Kim et al., 2024] initiate the inference process by sam-
pling random noise zT from a standard Gaussian distribu-
tion N (0, I). However, zT has significant initial randomness
[Wang et al., 2024], which is not conducive to realistically
reconstructing the details of the inpainting object. To address
this issue, we design an appearance consistency inference,
which initiates the inference process from a posterior Gaus-
sian noise zpT and zupT . Thus, during inference, zpt and zupt in
Eq. (5) are rewritten as zpT and zupT in Eq. (14):

zp
T =

√
ᾱTz

v
0 +

√
1− ᾱtϵ, z

up
T =

√
ᾱtz

p
0 +

√
1− ᾱT ϵ, (14)

where ϵ ∼ N (0, I), zv0 ∈ R(H/f)×(W/f)×4 = E(P agn +
Cw

un), where P agn is clothing-agnostic (inpainting) person
image [Lee et al., 2022]. By doing so, the initial randomness
of the sampling process can be significantly reduced, thereby
further enhancing the model’s performance.

4 Experiments
Datasets. Our experiments use VITON-HD [Choi et al.,
2021], VITON [Han et al., 2018], and DressCode [Morelli
et al., 2022], which are three challenging datasets in VTON.
VITON-HD is a high-resolution dataset with a resolution of
512×384. It comprises 13,679 image groups and is split into
a training set with 11,647 groups and a testing set with 2,032
groups. Each group includes a frontal-view woman image,
a top clothing image, a semantic map, and a pose heatmap.
VITON consists of 16,253 image groups with a resolution of
256 × 192. VITON is split into a training set with 14,221
groups and a testing set with 2,032 groups. DressCode is an-
other high-resolution dataset with a resolution of 512 × 384.
It comprises 15,363 image groups and is split into a training
set with 12,863 groups and a testing set with 2,500 groups.

Implementation Details. All experiments are performed
on a single NVIDIA A100 GPU through PyTorch. For the
diffusion model, we follow the configuration of [Gou et al.,
2023]. During training, the AdamW optimizer [Loshchilov
and Hutter, 2017] is employed with a learning rate of 1e−4,
and the batch size is set to 2 for training over 40 epochs. Dur-
ing inference, we adopt the PLMS sampling method, setting
the number of sampling steps to 20 for qualitative analysis.
The hyper-parameters are configured as follows: γ = 0.1 in
Eq. (8) and λ = 0.5 in Eq. (13).

Evaluation Metrics. To facilitate quantitative evaluation,
we take paired (P ,C) in the testing set as inputs, then
we employ Structure Similarity (SSIM) [Seshadrinathan and
Bovik, 2008] and Learned Perceptual Image Patch Similar-
ity (LPIPS) [Zhang et al., 2018] to evaluate the structural
and perceptual similarity between real and generated im-
ages in terms of brightness, contrast, and structure. In addi-
tion, we take unpaired (P ,Cun) in the testing set as inputs,
then we use Fréchet Inception Distance (FID) [Heusel et al.,
2017] and Kernel Inception Distance (KID) [Bińkowski et
al., 2018] to measure distribution discrepancy between real
and generated images.

Baseline Methods. To conduct qualitative experiments,
we employ 30 state-of-the-art (SOTA) methods, including
GAN-based methods: CP-VTON [Wang et al., 2018], Cloth-
flow [Han et al., 2019], CP-VTON+ [Minar et al., 2020],
SieveNet [Jandial et al., 2020], VTNFP [Yu et al., 2019],
ACGPN [Yang et al., 2020], DCTON [Ge et al., 2021a], PF-
AFN [Ge et al., 2021b], ZFlow [Chopra et al., 2021], OVNet
[Li et al., 2021], LM-VTON [Liu et al., 2021], DAFlow [Bai
et al., 2022], Style-Flow [He et al., 2022], RT-VTON [Yang
et al., 2022], Dress Code [Morelli et al., 2022], VITON-HD
[Choi et al., 2021], HR-VITON [Lee et al., 2022], CIT [Ren
et al., 2023], PL-VTON [Zhang et al., 2023], POVNet [Li et
al., 2023], GP-VTON [Xie et al., 2023], USC-PFN [Du et al.,
2024], TPD [Yang et al., 2024], and diffusion-based methods:
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Figure 3: Qualitative results with different baseline methods on the VITON-HD dataset. The baseline methods consist of GAN-based methods
and diffusion-based methods. Cyan dashed circles highlight the limitations of each method.

Train / Test Public. M-F VITON-HD DressCode Upper
Methods SSIMp ↑ LPIPSp ↓ FIDup ↓ KIDup ↓ SSIMp ↑ LPIPSp ↓ FIDup ↓ KIDup ↓
VITON-HD [Choi et al., 2021] CVPR’21 0.862 0.117 12.117 3.23 n/a n/a n/a n/a
HR-VITON [Lee et al., 2022] ECCV’22 0.878 0.105 11.265 2.73 0.936 0.065 13.82 2.71
GP-VTON [Xie et al., 2023] CVPR’23 0.884 0.081 9.701 1.26 0.769 0.270 20.11 8.17

LaDI-VTON [Morelli et al., 2023] MM’23 0.864 0.096 9.480 1.99 0.915 0.063 14.26 3.33
PbE [Yang et al., 2023] CVPR’23 0.802 0.143 11.939 3.85 0.897 0.078 15.33 4.64
DCI-VTON [Gou et al., 2023] MM’23 0.880 0.080 8.754 1.10 0.937 0.042 11.92 1.89
StableVITON [Kim et al., 2024] CVPR’24 0.864 0.084 9.465 1.40 0.911 0.050 11.27 0.72
Anydoor [Chen et al., 2024] CVPR’24 0.821 0.099 10.850 2.46 0.899 0.119 14.83 3.05
LDE-VTON [Du et al., 2025] AAAI’25 0.898 0.081 9.640 1.21 n/a n/a n/a n/a

MFTON (Ours) This Work 0.902 0.079 9.382 1.19 0.939 0.040 11.15 0.71

Table 1: Quantitative comparisons on the VITON-HD and DressCode datasets. For LPIPS, FID, and KID, the lower the better. For SSIM, the
higher the better. ”M-F” denotes whether the mask is used during inference. Bold denotes the best result. Underline denotes the second best.

LaDI-VTON [Morelli et al., 2023], PbE [Yang et al., 2023],
DCI-VTON [Gou et al., 2023], StableVITON [Kim et al.,
2024], OOTDiffusion [Xu et al., 2025], Anydoor [Chen et
al., 2024], and LDE-VTON [Du et al., 2025], as baselines for
quantitative evaluation and select several publicly available
methods for qualitative evaluation.

4.1 Comparison with SOTA Methods
We qualitatively and quantitatively compare our proposed
MFTON with several SOTA baseline methods.
Qualitative Results. The qualitative comparisons are illus-
trated in Figs. 3, 4, and 5. It can be observed that SOTA
GAN-based methods such as GP-VTON [Xie et al., 2023]
and USC-PFN [Du et al., 2024] are only capable of narrowly
fulfilling the requirements of try-on under simple poses. Nev-
ertheless, the garment regions in their results are consistently
overly smooth, lacking natural clothing wrinkles, and exhibit
severe occlusion and distortion issues in complex poses. Our
adoption of a diffusion-based generator effectively addresses
the issue of fabric wrinkles. However, diffusion-based meth-
ods tend to lose some details of the target clothing and partial

identity information to varying degrees, due to insufficient
structural supervision of the clothing and the lack of rigor-
ous body structure cues from the unreliable inpainting mask.
As shown in the 1-st row of Fig. 3, DCI-VTON [Gou et al.,
2023], AnyDoor [Chen et al., 2024], and OOTDiffusion [Xu
et al., 2025] almost lose the information of the right arm. In
the 2-nd row, the alignment of the text is not natural, and
AnyDoor suffers from text information loss. Unlike these,
our method initially eliminates the potential negative impact
of the inpainting mask by using the designed mask-free strat-
egy, thus ensuring that information such as arms and hair are
completely preserved. Furthermore, we enhance the super-
vision of clothing texture and structural information through
the proposed clothing texture-aware attention and geometric
detail capture loss Lgdc, to guarantee that the global and lo-
cal key details of the clothing, including color, texture, pat-
terns, and characters, are faithfully reconstructed. Overall,
compared to the baseline method, our approach yields more
realistic visual results, which holds significant implications
for practical applications.
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Figure 4: Qualitative results with different baseline methods on the VITON dataset. The results consist of easy samples and hard samples.
Cyan dashed circles highlight the limitations of each method.

Methods Publication Mask-Free SSIMp ↑ FIDup ↓
CP-VTON ECCV’18 0.72 24.45
VTNFP ICCV’19 0.80 n/a
Cloth-flow CVPR’19 0.84 14.43
CP-VTON+ CVPRW’20 0.75 21.04
SieveNet WACV’20 0.77 n/a
ACGPN CVPR’20 0.84 16.64
LM-VTON AAAI’21 0.85 17.18
DCTON CVPR’21 0.83 14.82
ZFlow ICCV’21 0.88 15.17
OVNet CVPR’21 0.85 15.78
PF-AFN CVPR’21 0.89 10.21
RT-VTON CVPR’22 n/a 11.66
DAFlow ECCV’22 0.88 12.05
Dress Code CVPR’22 0.89 13.71
CIT TMM’23 0.83 13.97
PL-VTON TMM’23 0.87 10.96
POVNet TPAMI’23 0.89 13.37
PbE CVPR’23 0.83 12.56
USC-PFN NeurIPS’23 0.91 10.47
TPD CVPR’24 0.89 9.58
LDE-VTON AAAI’25 0.91 9.86
MFTON This Work 0.91 9.42

Table 2: Quantitative comparisons on the VITON dataset. ”Mask-
Free” denotes whether the mask is used during inference.

Quantitative Results. Tab. 1 (note that the majority of
the methods listed in the Tab. have also utilized only SSIM
and FID metrics for comparison in their paper) and Tab. 2
present the quantitative results on the VITON-HD, VITON,
and Dresscode datasets, respectively. On the VITON dataset,
our method achieves the same SSIM as the SOTA diffusion-
based LDE-VTON [Du et al., 2025], a plateau arises because
the diffusion process inherently leads to some loss of orig-
inal information. However, our method excels in FID, out-
performing all other approaches. On the VITON-HD and
Dresscode, our method outperforms the SOTA GAN-based
methods, GP-VTON [Xie et al., 2023] and USC-PFN [Du et
al., 2024], and the SOTA diffusion-based methods, Anydoor
[Chen et al., 2024] and LDE-VTON [Du et al., 2025]. How-
ever, in terms of FID and KID metrics, our performance is
slightly inferior to DCI-VTON [Gou et al., 2023]. This is at-

Figure 5: Visualization results with different baseline methods on
the DressCode dataset. Zooming in for more details.

Different Configuration SSIMp ↑ FIDup ↓
(B) Conventional Inpainting-based LDM 0.802 11.939

+ (P) Consistency Inference 0.857 9.912
+ (M) Mask-Free Strategy 0.882 9.694

+ (G) Geometric Detail Capture 0.895 9.570
+ (T) Texture-aware Attention 0.902 9.382

Table 3: Ablation studies of the proposed different components.

tributed to the fact that DCI-VTON retains excessive identity
and fabric residues that significantly deviate from the realis-
tic effect of VTON. For instance, the 2-nd row and 6-th col-
umn of Fig. 3, completely replicates the neck area from the
original person image, which substantially reduces the FID
and KID scores. Nevertheless, our method outperforms other
methods in all four metrics.

4.2 Ablation Studies
We perform ablation experiments to verify the effectiveness
of the proposed different components.

Effectiveness of Appearance Consistency Inference. In
Fig. 6, (B) and (P) demonstrate the effectiveness of our pro-
posed clothing appearance consistency inference. When it is
removed from the baseline method (B), the clothing loses a
significant amount of detail, retaining only the global infor-
mation. Upon its reintroduction (P), a plethora of clothing
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Figure 6: Visual ablation studies of different components in our approach. Zooming in for more details.

Figure 7: Analysis of sample steps. We set the total sample steps as
20 to balance quality and speed for conventional visualization.

details are restored, a fact corroborated by the quantitative re-
sults in Tab. 3. Additionally, by substituting flat clothing for
warped clothing as input (U), it is apparent that within our
designed framework, the warped clothing serves as essential
conditional information.

Effectiveness of Mask-Free Strategy. In Fig. 6, (C) and
(M) demonstrate the effectiveness of our proposed mask-free
strategy. When the inpainting mask is reintroduced into the
input conditions (C), the generated body layout is adversely
affected by the mask, resulting in unrealistic outcomes. Tab. 3
substantiates the positive contribution of mask removal.

Effectiveness of Geometric Detail Capture. In Fig. 6, (G)
demonstrates the effectiveness of our proposed geometric de-
tail capture loss Lgdc. This loss effectively captures geomet-
ric information on the clothing, such as character and stripe
patterns, to guide the generator in faithfully reconstructing
the clothing’s signature characteristics. Tab. 3 highlights the
improvements attributed to this loss function.

Effectiveness of Clothing Texture-aware Attention. In
Fig. 6, (T) demonstrates the effectiveness of our proposed
clothing texture-aware attention. When we introduce the pro-
posed clothing texture-aware attention mechanism, the tex-
ture information of the clothing is more thoroughly comple-
mented, resulting in visual outcomes that are more authentic
and natural. This is amply demonstrated in Tab. 3.

Analysis of Sampling Steps. In addition, we analyze the
sampling steps, as detailed in Fig. 7. We set the total sam-

ple steps as 20 to balance quality and speed for conventional
visualization (not for quantitative experimental results).

5 Conclusion
In this work, we present a novel mask-free virtual try-on
framework, MFTON, which can produce photo-realistic re-
sults without using any inpainting masks and information
as the denoising condition by using the proposed mask-free
strategy. Moreover, for clothing regions, we propose a cloth-
ing texture-aware attention mechanism to enable the model
to focus on texture generation with significant visual differ-
ences. We then introduce a geometric detail capture loss to
further enable the model to capture more high-frequency in-
formation. Finally, we propose an appearance consistency
inference method to reduce the initial randomness of the sam-
pling process significantly. Extensive experiments show that
our method outperforms the existing virtual try-on methods.

Limitations. Although our mask-free method has achieved
good visualization results, however, currently available
datasets still have inevitable limitations. In the real world,
preferences for clothing among users from different regions
vary with local customs, yet the diversity of currently popu-
lar datasets is limited. Therefore, acquiring a model capable
of virtual try-ons for various styles of clothing based on such
datasets poses a significant challenge.
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