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Abstract

Graph domain adaptation is a key subfield of graph
transfer learning that aims to bridge domain gaps
by transferring knowledge from a label-rich source
graph to an unlabeled target graph. However, most
existing methods assume balanced labels in the
source graph, which often fails in practice and leads
to biased knowledge transfer. To address this, in
this paper, we propose a prototype-anchored learn-
ing and alignment framework for class-imbalanced
graph domain adaptation. Specifically, we incor-
porate pointwise node mutual information into the
graph encoder to capture high-order topological
proximity and learn generalized node representa-
tions. Leveraging this, we then introduce cate-
gorical prototypes with adversarial proto-instances
for prototype-anchored learning and recalibration
to represent the source graph under an imbalanced
class distribution. Finally, we introduce a weighted
prototype contrastive adaptation strategy that aligns
target pseudo-labels with source prototypes to han-
dle class imbalance during adaptation. Extensive
experiments show that our PALA outperforms the
state-of-the-art methods. Our code is available at
https://github.com/maxin88scu/PALA.

1 Introduction

Graphs serve as an effective tool for representing intricate
relationships across diverse domains. As a critical task in
graphs [Kipf and Welling, 2017; Ju et al., 2024a], node classi-
fication aims to predict the labels of individual nodes, playing
a key role in areas such as community detection and molec-
ular property prediction. Despite its importance, node clas-
sification heavily depends on labeled data, which is often
scarce and costly. Graph transfer learning [Yuan ef al., 2023;
Qiao et al., 2023; Li et al., 2025], which leverages learned
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Figure 1: An illustration of the class-imbalanced domain adaptation
on graphs. This task aims to enable a labeled yet class-imbalanced
source graph to generalize effectively to an unlabeled target graph.

knowledge from a labeled source domain graph an unlabeled
target domain graph, has become a promising solution.

In recent years, many efforts have been made for graph
transfer learning. One typical type of method is the graph
domain adaptation (GDA) for node classification, where the
primary task is to estimate the label distribution of the tar-
get domain graph based on the labeled source graph [Cai et
al., 2024]. Thanks to the expressive modeling capabilities
of graph neural networks (GNNs) [Ju et al., 2024b; Luo et
al., 2023; Wang et al., 2024], the recent focus has shifted
toward aligning distributions of the source and target domain
graphs within the representation space learned by GNNs [Luo
et al., 2024a; Liu et al., 2024a]. Distance-based methods
explicitly minimize the distance between two domains via
the proposed domain discrepancy metrics [Liu et al., 2024b;
Wu et al., 2023]. In contrast, adversarial methods use a dis-
criminator to distinguish between domains and learn invariant
features [Luo et al., 2024b; Dai et al., 2022].

Despite the notable performance made by these methods,
they often assume a balanced label distribution in the source
graph. We argue that this assumption often fails in many
real-world scenarios [Ju er al., 2024c], where a large por-
tion of classes has few labeled nodes (tail classes), while
a small number of classes have a disproportionately large
share of labeled nodes (head classes) [Huang et al., 2016;
Ju et al., 2025], resulting in highly imbalanced class distri-
butions. For example, in a large-scale citation network, the
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number of papers on artificial intelligence greatly exceeds
those on cryptography [Li ef al., 2023]. As a result, the model
trained on an imbalanced source graph would be severely bi-
ased and subsequently impact the graph domain adaptation
process. Therefore, as shown in Figure 1, in this paper, we
focus on a more practical scenario, which is referred to as
class-imbalanced graph domain adaptation on graphs.

However, developing such an effective class-imbalanced
domain adaptation framework is challenging due to the fol-
lowing two key obstacles: (i) How to effectively mitigate
the impact of class imbalance to extract meaningful knowl-
edge from the source graph? The imbalance often causes the
model to focus primarily on the majority class, resulting in
degraded performance on tail classes. And this ultimately
leads to biased learning and poor generalization. (ii) How to
overcome domain shifts across graphs to make accurate and
domain-invariant predictions on the target graph? Existing
works typically emphasize aligning the overall distributions
between the source and target domain graphs, but they often
overlook the fact that the class-level distributions may not be
well-aligned, especially for the skewed tail classes.

To handle these challenges, our motivation is to investi-
gate categorical prototypes, where each category has a single
prototype to capture the semantic information of the source
graph for adaptation. Toward this end, we propose a novel
Prototype-Anchored Learning and Alignment method (term
as PALA) for class-imbalanced graph domain adaptation,
which leverages the categorical prototype instead source fea-
tures to avoid the aforementioned problem. Specifically, we
incorporate pointwise node mutual information into the graph
encoder, allowing the model to explore high-order topologi-
cal proximity and learn more generalized node representa-
tions. Based on this, we then introduce a set of categorical
prototypes with corresponding adversarial proto-instances for
prototype-anchored learning and recalibration to mitigate the
class imbalance. Finally, we introduce a prototype-anchored
contrastive adaptation strategy for class-imbalanced GDA,
which generates pseudo-labels for the target domain graph
and aligns them with the corresponding source prototypes to
mitigate the class-imbalance issue during adaptation. To sum-
marize, we make the following contributions:

e New Perspective: We focus on the class-imbalance issue
in the source graph for graph domain adaptation tasks.
To the best of our knowledge, this is the first work aimed
at solving class-imbalanced graph domain adaptation.

* Novel Methodology: We propose a prototype-anchored
learning and recalibration strategy to eliminate the pro-
totype bias in the source graph and employ a novel con-
trastive prototype for alignment.

» Extensive Experiments: We conduct extensive experi-
ments on various public datasets to evaluate our PALA.
The results further show the superiority of our method
in handling class-imbalanced graph domain adaptation.

2 Notations & Problem Definition

Source & Target Domain Graph. Let the source domain
graph denoted as G° = {V* €%, X° Y *}, where V° and £*

represent the labeled nodes and edge set. The node feature
matrix is given by X € RIV'IX¥ where each row z, € RY
corresponds to the F'-dimensional feature vector of a node v.
The graph structure is captured by the adjacency matrix A® €
RV IXIV*I \where A3 = Lif there exists edge (v;,v;) € £7,
otherwise, Afj = 0. In the source domain graph, each node
is assigned a corresponding label. The labels are imbalanced,
and the label matrix is denoted as Y'* € RIV'IXC where C is
the number of node classes. Similarly, we represent the rarget
domain graph as Gt = {V', &', X'}, where V' is the set of
unlabeled nodes and £ is the edge set.

Class-imbalanced Graph Domain Adaptation. Given a
labeled source graph G* = {V* % X Y*} and an unla-
beled target graph G* = {V' &' X'}, let N, denote the
number of nodes in G*® that belong to the c-th class, satis-
fying Ny > Ny > --- > N¢. The source graph is class-
imbalanced and quantified by the imbalance factor (IF) de-
fined as N1 /N¢. The goal of class-imbalanced graph domain
adaptation is to mitigate the effects of this imbalance and gen-
erate accurate predictions for the unlabeled nodes in gt

3 Proposed Method

As shown in Figure 2, our proposed PALA consists of three
modules: (1) Graph Consistency Encoder, designed to cap-
ture high-order structural information of the graph for learn-
ing more generalized node representations; (2) Prototype-
Anchored Learning and Recalibration, which generates cat-
egorical prototypes by reducing contrastive negative pair re-
dundancy, mining distinguishable positive pairs, and recali-
brating prototypes to eliminate bias; (3) Contrastive Proto-
type Adaptation, which aligns pseudo-labeled target features
with source prototypes to facilitate graph domain adaptation.

3.1 Graph Consistency Encoder

To effectively capture the high-order structural dependencies
in the graph, we consider the global consistency relationships
between nodes and calculate positive pointwise mutual infor-
mation (PPMI) [Zhuang and Ma, 2018] to learn an informa-
tive representation of the node. Specifically, for a given graph
G*, % € {s,t}, we employ random walk on A* to sample a
set of paths and calculate the frequency matrix F* between
nodes to count their co-occurrence. Then, the PPMI between
nodes can be computed as:

P Fi; P — 2 Fij P > Fij
1) T x0T r T * 007 T * 7
Zi,j Fy Zi,j F; Zi,j Fy )
§ P
P}, = max{log(: 0,0},
i J

where IP;; represent the probabilities that v; in the v;’s con-

text with a predefined window. P;; captures the high-order
topological proximity between nodes. A higher value of P}
indicates that the two nodes have a higher co-occurrence fre-
quency compared to when they are independent. Then, we
can reformulate P* as the new adjacency matrix and the
global consistency knowledge can be extracted as:

z0 = o(D* i p*D* 2 "W 0), )
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Figure 2: Illustration of the proposed framework PALA, which contains three modules: (1) Graph Consistency Encoder: GCN encoder
with P* x € {s,t} to capture generalized information of G* and G*. (2) Prototype-anchored Recalibration & Learning: With categorical
prototypes, we maintain a sample queue, construct adversarial proto-instances, and recalibrate the prototype to eliminate bias. (3) Contrastive
Prototype Adaptation: We generate pseudo-labels for the target domain and employ weighted contrastive alignment for adaptation.

where P* = P + I, D = > 13;; and W*( is the filter
weight of [-th layer. By stacking L layers, the global consis-
tency knowledge can be extracted as Z* = ZiL) € R4,

3.2 Prototype-anchored Recalibration & Learning

Since the categorical prototypes have a generalization abil-
ity for class-imbalanced data where each class corresponds to
only one prototype, we leverage the categorical prototype to
extract unbiased knowledge from the source domain graph.

Prototype-anchored Construction. To generate the proto-
type, we randomly initialize a set of parameters P = {p. €
R%1 < ¢ < C} and learn them in a contrastive manner.
Given that head classes disproportionately dominate nega-
tive pairs in conventional contrastive methods, hindering tail
class learning, we address this by reducing redundant nega-
tive pairs and identifying meaningful positive pairs. In prac-
tice, we maintain an instance queue that contains misclassi-
fied instance Q for prototype learning. For each node v; in
G*%, Q is divided into 9t = {v;|lv; € Q,y; = v;} and
Q™ = {vj|v; € Q,y; # y;}. Similarly, we also divide pro-
totype set into P+ = {pf|c = y;} and P~ = {p_ |c # y:}.
Then, we synthesize the adversarial proto-instances to rec-
tify the decision boundaries of tail classes during prototype
learning. For the negative proto-instances, we rank the dis-
tance between node v; and nodes in Q~ in ascending order
and construct the adversarial negative proto-instance set Q. :

Q, ={yjlv; € @7, d(z], 27) <d(z},27)},  (3)
where d(-, -) denote the distance between nodes based on their
representation in Z*, z3 is embedding of the ~-th node in
Q™. For harder negative instances under imbalance class dis-
tribution, we randomly perturb each element in Q_ with the

positive prototype p7, defined as:
Al (l—ej)zj—kejpj
K (1 = ¢j)z5 + ¢ |2

where ¢; denotes the interpolation coefficient. Similarly, for
the positive proto-instances, we select all the samples in Q"
and combine them with incorrectly assigned prototype p_ .

[v; € QW}, @)

Prototype Recalibration. To further alleviate prototype bias
during the learning process, where proto-instances tend to fa-
vor head classes and undermine performance on tail classes,
we propose a prototype recalibration strategy, evaluating the
importance of each categorical prototype and emphasizing
the contribution of the tail class. Given the similarity be-
tween the node feature and prototype, we introduce a rectified
sigmoid function for prototype recalibration. The calibration
factor for each prototype can be defined as:

1 1
We = — _ .
Ne 1<i<N, 1+ exp(—(2f)" - pc)

(&)

To ensure stability, we progressively updated the calibration
factor via the exponential moving average (EMA):

@czﬁ'@c+(1—ﬂ)'wc, 6)

where (5 denotes the smoothing coefficient. A larger recali-
bration factor indicates a higher representativeness of the pro-
totype in guiding the model’s learning process. Eventually,
we impose all prototypes by the recalibration factor:

P = {log(@.) + pclp. € P}. (7)
Prototype-anchored Learning. Inspired by the success of
supervised contrastive learning (SCL) in delivering stable

performance [Graf et al., 2021]. To address class imbalance
more effectively, we extend SCL by incorporating prototypes
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and both positive and negative adversarial proto-instances
into the training process. The prototype-anchored learning
loss in the source domain graph can be formulated as:

‘vb‘

.Cp:Z log [1—0—( Z exp(( —|—Z exp(( ~pc))
i=1 v €HT PEP™ ®)
(5 e 2003 exte" )]
1@-67{* pC€P+
where 7* = Q* U Q% * € {+,—}.

3.3 Contrastive Prototype Adaptation

Given the prototype set of the source domain graph, directly
aligning to the target domain graph is nontrivial due to the
lack of target annotations. In this part, we generate pseudo-
labels for the target domain and introduce the weighted con-
trastive prototype alignment for adaptation.

Target Pseudo-Labeling. Given the unlabeled target domain
graph G?, we aim to conduct domain alignment based on
the generated prototype in source domain graph G°. Since
the target node annotations are unavailable, we apply a self-
supervised labeling strategy to generate the target pseudo la-
bels. Specifically, based on the encoded target domain graph
embedding Z;, we predict the probability g% = g(z!) for

each class k£ with an MLP-based classifier g(-). Then, we
attain the centroid for each class in G' as:
(V| ~k
Z 3 q
= 2= ©)

Vil k
Zl tl yz
These centroids provide a robust and reliable representation
of the category distributions within the target domain [Liang

et al., 2020; Qiu et al., 2021], and we obtain the pseudo label
via the nearest centroid as:

yi = arg, max ¢(z{, pr), (10

where ¢(-, -) denote the cosine similarity. Note that we can
compute the new target centroid based on the new pseudo
labels for the iteration process.

Weighted Contrastive Alignment. Based on the generated
pseudo labels of the target domain graph, we align them to
the source prototype P. Since the target pseudo labels may
be noisy, we assume more reliable samples are generally
closer to the class centroid [Chen er al., 2019] and employ
a weighted contrastive alignment for adaptation. The confi-
dence of node v; in G can be compute as:

re— GXP(¢(Z27H§1)/T) (11)
2 K Y
> k1 exp((2], pr)/7)

where 7 denotes the temperature parameter. We take each
node v; in G* as an anchor, and the prototype adaptation can
be conducted via the weighted contrastive alignment:

L:align = Z —r; log (ZEXP((Zf)thj/T) ) ’

v; EVy c=1 eXp((Zi) : pC/T)
(12)

Algorithm 1 The overall training process of PALA
Input: Labeled source graph G° = {V* €%, X*, Y *°} with C im-
balanced classes, unlabeled target graph G* = {V*, &' X'},
Output: Parameters of graph consistency encoder, prototype set.
1: Consider global consistency relationships and calculate PPMI
between nodes P*, *{s,t} for G° and G* ; // Eg. 1
2: while not convergence do
3:  Encode high-order structure information of the graph based
on P*toget Z*,x € {s,t}; // Eq. 2
/+ Prototype Recalibration & Learning =/

4:  Construct adversarial proto-instances ny, * € {+,—} to
rectify the boundaries of tail classes in G® ; // Egs. 3-4
5:  Initialize categorical prototypes P and recalibrate them to get

P to alleviate prototype bias ; // Egs. 5-7

6:  Prototype-anchored learning with Q% and P; // Eqg. 8
/+ Contrastive Prototype Adaptation */
7:  Attain class centroid {pr},k € {1,...,C} and pseudo la-
bels for the target graph G* ; // Eg. 10

8:  Weighted prototype contrastive alignment based on P from
source and target pseudo labels ; // Egs. 11-12
9:  Early learning regularization for class-imbalanced con-
trastive alignment process ; // Egs. 13-14

10: end while
11: Obtain graph consistency encoder, prototype set for adaptation.

where p denotes the prototype with the same class to v;,
where the label are attained from target pseudo-labeling.

Adaptation Regularization. Since learning from class-
imbalanced data always first memorizes the unbiased samples
and then the biased knowledge [Arpit ef al., 2017], we further
regularize the adaptation process by leveraging the early pre-
dictions of each sample. Formally, we maintain a memory
bank H = {hy,...,hy,} to record the prediction of node v;
and update the bank via EMA:

hi = Bh; + (1= B)hi, (13)
where h; ;, is the alignment probability of C' prototypes com-
puted as in Eq. 12. We further regularize the model via an
early learning loss [Liu e al., 2020]:

Ly =log(1 = (i) hi). (14)

This regularization ensures that the current prediction aligns
closely with the average prediction.

3.4 Overall Optimization

For the class-imbalance of nodes in the source domain graph,
we apply the logit compensation to eliminate the bias and
learn the rectification of the consistency knowledge [Menon
et al., 2021], denoted as:

exp(py (%) + dc)

C b
2o exp(pe(z]) +60)
where ¢(-) represents the classification function output the
logit of labels, A, is the importance weight of class y; and
d. is the compensation value of class c. In our paper, we set

Ae = 1 and . = log N, as in the work [Menon et al., 2021].
Finally, the overall objective of our framework is defined as:

L= ‘Clc + ‘Cp + £align + ‘Cel’r’- (16)
The detailed algorithm framework is provided in Algorithm 1.

L = —Aclog

5)
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Methods IF (p) A=C A=D C=A C=D D=A D=C
P Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

10 | 6601s115 60901014 6121i05 53201071 582511022 56521287 6339:052 58381127 55471030 52801085 61681038 58351065

GCN 20 | 62284117 55484170 60755009 5160145 51071055 43784151 59.00s0ss 48224157 50931970 45124441 54021027 46.1840.5

50 53.0743.39 42414332 562640921 43.35:353 44381112 32204251 53.064055 37.094118 41.864131 31.1ly150 42281398 32.054330

10 | 66481072 58374074 61581075 51444102 55104047 515441412 60.871100 52991134 56.184031 53111050 61.641023 58221053

GAT 20 | 61631531 50541572 6104115 50001145 47.181101 37304161 55951126 43.32i917 4918450 42201578 53051305 452910

50 | 53214762 42.074764 53.671a00 40.364533 41.021099 26414118 49761063 32294105 40144546 28.894185 45381790 34771531

10 | 62.124069 55.0340.814 60911079 54391145 54354175 49214131 60141100 54511016 52594067 49431242 59891142 54.68100s

GIN 20 | 60.0341.03 50984094 59124105 48274092 50381075 42801388  55.871047 46421471 47794149 41.024077 53474049 44831061

50 | 54.39., 6 44284160 54431100 41901000 41261037 2945105 47051060 31571113 43384105 344lisos 48.59i015 39221520

10 | 51274186 392940435 53.6943.02 40874556 49.691493 39.081751 574lisis 45544435 52734300 47.071786 56.374140 45044346

GDA-SpecRe 20 49.6841140 36441170 51341370 35821300 48111407 38204683 51.641196 35151349 43841379 31.891370 44531648 31214650

PeCRCE 50 | 4980548 36091745 ATd41iss 2936ic40 47644407 3387i7o0 5263125 3846:ces 4195154 28284707 45631522 3081isss

10 | 6123100935 54721023 59.004064 46.61:116 51291051 41701077 61.074032  50.09:068 59.541083 5541i17s 60324150 60.111230

A2GNN 20 | 35954090 25281145 49.064105 35004111 46092019 33401089 5691x021 42060055 A.3ls0r0 3lddiise 41005070 31444100

50 | 3248116 17614175 35221012 15.00s02s 40261005 24091007 50332010 31.03017 31274022 14291048 27.79:035 1319107

10 | 70495005 64531155 66431110 5840.500 6325:111 624lisse 67471057 63871125 58951001 58341107 65501055 63.52:0.5

GraphENS 20 68.1241.96  57.594113 64411070 53.094111 59.611130 51964131 65584102 57314339 54724046 49544180 611141049 52474199

50 | 62741081 51764079 61.0l4166 477444104 54094151 45514174 60401090 47.8lio09  50.671043 42.184044 56264085 47811943

10 | 72362000 6727505 6712500 61525105 64495041 63401151 70105085 66205102 59175008 55362120 66651050 63162077

TAM 20 | 68905149 6001155 66015009 56885183 61362070 57641210 O8.11tos0 6257i10s 53814105 469241 g 612319 532854

50 | 64931374 557744714 616340099 50231145 58951164 50991006 64.661119 54711203 53.391161 44.931014 57881167 47524202

10 | 73204073 70431114 61794000 56.0911.47 66.074126 66241131 63.05400935 56691461 63.284055 64.060051 7Tl.1liges  69.0340.64

GraphSHA 20 | 71001158 64.331056 57.954255 47371316 62871171 604lingr 62724373 5391ig00 57561171 53224420 66931140 62.0311s2

P 50 | 64971050 53.99:n40 65961141 S40Tirger 56551275 4919158 56104525 44724620 50084005 41725540 57895150 50.521p0

10 | 77401078 67734230 73.594029 66.701057 69.761032 70301073 73.501117 66.671066 67.691094 67.801133 77.09i092 74401308

PALA (Ours) 20 76181195 6691.590 72131194 60591302 6445.555 53.681085 713041927 5838i184 63731150 62901161 70121545 66.2610 56

50 76821026 63791032 72631079 59.45.071 61.58.511 50.664276 6642155 56141195 59791165 53.001280 67741076 58.22.032

Table 1: The domain adaptation performance of all methods under different imbalance factors (p). A=-C indicates that A is the source graph
and C is the target graph. Micro and Macro represent micro average score(%) and macro average score(%), respectively.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct extensive experiments on three real-
world graph datasets: ACMV9 (A), Citationvl (C) and
DBLPv7 (D) from ArnetMiner [Tang et al, 2008], con-
structed from distinct datasets over different periods: ACM
(post-2010), Microsoft Academic Graph (pre-2008), and
DBLP (2004-2008), leading to varied domain distributions.
In each graph, nodes represent papers, with edges indicat-
ing undirected citation relationships. In order to simulate the
real-world imbalance scenario more effectively, we adopt the
same approach as [Park et al., 2021] to handle the source
domain data. Specifically, we iteratively process the classes
with fewer nodes in the source domain to meet the imbalance
factor (IF), defined as p = N1 /N¢, where Ny > Ny > -+ >
N¢, and N, represents the number of nodes belonging to the
c-th class in the source graph.

Baselines. For our class-imbalanced graph domain adapta-
tion, we select three classical GNN models: GCN [Kipf and
Welling, 20171, GAT [Veli¢kovié et al., 2018] and GIN [Xu
et al., 2018] as basic baselines. Additionally, we choose two
models specifically designed for domain adaptation tasks:
GDA-SpecReg [You et al., 2023] and A2GNN [Liu er al.,
2024al, and three models known for handling imbalanced
data effectively: GraphENS [Park et al., 2021], TAM [Song
et al., 2022] and GraphSHA [Li et al., 2023].

Implementation Details. For the datasets mentioned above,
we sequentially select one as the source domain and the other
two as target domains for experiments. The imbalance factor
p for the source domain is set to 10/20/50, covering scenarios
from slightly imbalanced to severely imbalanced, to simulate

real-world data imbalance scenarios. For our PALA, we use
GCN [Kipf and Welling, 2017] as the backbone encoder, with
the feature dimension of 512. We set our hyperparameters vy
as 5, B as 0.9, and € as 0.2, which are discussed in detail
in Section 4.4, and the number of training epochs is set to
200. For a fair comparison, we use the same encoder to the
baselines and tuned them to optimal performance. We evalu-
ate model performance based on two F1 scores on the target
domain: macro average and micro average. We record the
average of five training runs for performance evaluation.

4.2 Performance Comparison

Table 1 presents the performance of different approaches on
three datasets. In the domain adaptation across all six data
pairs, our PALA highlights the best-performing results. As
the imbalance factor increases—i.e., the head-class nodes
grow and the tail-class nodes decrease—the performance of
all methods declines. This is expected, as the abundance of
head-class nodes leads the model to focus more on them, ne-
glecting the tail-class nodes. Classic GNNs lack the capabil-
ity to handle domain adaptation and imbalanced data, result-
ing in subpar performance, especially with high imbalance
facotrs. Interestingly, some baseline models designed for do-
main adaptation perform worse than classical GNNs. In con-
trast, models designed to handle imbalanced data generally
perform better. This suggests that addressing data imbalance
in the source domain outweighs domain discrepancy. Our
method PALA performs the best in domain adaptation across
most data pairs, maintaining robust performance as imbal-
ance factors increase. When using DBLPv7 as the source do-
main, its smaller number of nodes typically results in worse
performance compared to ACMv9 or Citationvl. However,
our method effectively alleviates this issue, enhancing robust-
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Figure 3: The results of ablation study (p = 20, Micro score (%)).
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Figure 4: The results of sensitivity analysis of v and 5. Micro Std
in (b) represents the standard deviation of the micro average scores.

ness and generalization in data-scarce environments.

4.3 Ablation Study

In this subsection, we design an ablation study to verify the
contribution of each component in our method. We sequen-
tially remove four losses while keeping the other losses un-
changed and conduct experiments in an environment with
p = 20. The results are shown in Figure 3. It can be observed
that removing the logit compensation loss (w/o £;.) signifi-
cantly drops performance, as the model loses valuable label
information from the source domain. Similarly, removing the
prototype-anchored learning loss (w/o £,,) can address data
imbalance and promote generalization, but it leads to a signif-
icant performance drop and worsens as the imbalance factor
increases. Additionally, removing the weighted contrastive
alignment loss (W/0 L,1i4n), which aligns the feature spaces
between the source and target domains, causes some degra-
dation, but the impact is smaller than removing the source
domain contrastive learning loss. This indicates that data im-
balance in the source domain has a greater effect than domain
shift. Finally, removing the early learning loss (w/o L) re-
sults in a smaller performance drop compared to other losses,
but increases the variance in the domain adaptation process
across most data pairs. This suggests that the early learning
loss helps mitigate the noise impact and enhances robustness.

4.4 Sensitivity Analysis

Here, we conduct a sensitivity analysis on three key hyperpa-
rameters at p = 20 to verify their impact on performance.
Effect of . We test v in {2, 5, 10}. The results are shown in
Figure 4a. It is observed that both too small and too large ~
values harm performance—small values of « limit the posi-
tive and negative samples, reducing the model’s ability to cap-
ture key features, while larger values of v amplify data imbal-
ance by favoring head-class samples over tail-class samples.
Also, larger ~ values also increase computational cost.

A=C A=D C=A
€ Micro Macro Micro Macro Micro Macro
0.2 | 76184108 66911099 72131194 60591502 64451555 53.68410 55
04 | 75204180 63.1642051 72.024107 60914174 62761397 51.864333
0.8 | 73.324901 61934090 71944915 59714090 63981080 53.5640.7s
Table 2: The results of sensitivity analysis of e.
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Figure 5: Accuracy and cross-entropy (CE) loss for the head and
tail classes. The horizontal axis represents the normalized value for
each method, i.e., the percentage of each method’s value relative to
the total values of the three methods.

Effect of 5. We select 8 from {0.1,0.5,0.9} and conduct
experiments. The results are shown in Figure 4b. As 3 in-
creases, the model’s performance becomes more stable, and
the standard deviation decreases accordingly. S controls the
update speed of the memory bank when calculating L;,.. As
B increases, the memory bank updates more slowly, encour-
aging the model to achieve greater stability in performance.

Effect of . We test e values of {0.2,0.4,0.8} and Table 2
shows the impact of different € values. As e increases, the
model’s performance declines because € affects the linear in-
terpolation of positive and negative samples in contrastive
learning on the source domain. As e increases, the prototype’s
weight increases, while the queue O weight decreases, since
Q is composed of misclassified samples, which are more
likely to lead to errors. Prioritizing Q can improve the model
more quickly. When ¢ is large, the model ignores misclassi-
fied points, thereby limiting the improvement in performance.

4.5 The Ability to Alleviate Imbalance Problem

To evaluate the effectiveness of our PALA in alleviating data
imbalance, we record and analyze the accuracy and cross-
entropy loss for head and tail classes across different data
pairs with p = 20. Specifically, we normalize the accuracy
and cross-entropy loss for each method to provide a clearer
visualization. The results are shown in Figure 5. For the head
class, the accuracy and corresponding cross-entropy loss ra-
tios are similar across all three methods, indicating that their
performance is comparable when data is sufficient. However,
for the tail class, the performance of the other two methods
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(b) Our proposed PALA

Figure 6: Visualization of node embeddings learned by GDA-
SpecReg and PALA via t-SNE. From left to right is balanced source
graph, imbalanced source graph, and target graph, respectively.

significantly declines, highlighting their inadequate domain
adaptation ability when handling data imbalance. Notably,
GraphENS consistently outperforms GDA-SpecReg, likely
due to its inherent capability to handle imbalanced data. In
contrast, our method demonstrates stable performance for
both head and tail classes, indicating its effectiveness in miti-
gating data imbalance and its strong generalization capability.

4.6 Visualization

To evaluate the domain adaptation ability of our PALA, we
compare it with the competitive baseline GDA-SpecReg via
visualization. With p = 20, we reduce node features encoded
by the encoder to 2D using t-SNE, as shown in Figure 6. For
each method, we present results for three scenarios: balanced
source graph, imbalanced source graph, and target graph. In
GDA-SpecReg, class boundaries in both source domains are
unclear, and the target visualization differs significantly, sug-
gesting poor transfer of domain-invariant features. In con-
trast, our PALA shows clear class boundaries, even though
the imbalanced source differs slightly from the balanced one.
The visualization of the target domain is similar to that of
the balanced source domain, with clearer class boundaries,
demonstrating that our method, by learning from the imbal-
anced source domain data, captures domain-invariant inter-
class features and performs well in inter-class classification.

5 Related Work

5.1 Unsupervised Domain Adaption

Unsupervised Domain Adaption (UDA) aims at transferring
knowledge from a labeled source domain to an unlabeled tar-
get domain, requiring domain adaptation methods to learn
domain-invariant representations [Wang and Deng, 2018].
While successful in computer vision [Tzeng et al., 20171,
existing methods for i.i.d. data (e.g., image) are unsuitable
for non-i.i.d. graph data. Recently, approaches for graph
domain adaptation include adversarial learning and meth-
ods that minimize domain discrepancy based on a certain
metric (e.g., MMD [Gretton et al., 2012], subtree discrep-
ancy [Wu er al., 2023]. For the first group, InGAGN [Qu et

al., 2021] balances class distribution by generating synthetic
minority nodes and leveraging a GCN discriminator to ad-
dress imbalanced graph classification. For the second group,
GDASpecReg [You et al., 2023] facilitates GNNs in captur-
ing more cross-domain representations via spectral regular-
ization. Similarly, A2GNN [Liu et al., 2024a] adjusts prop-
agation layers based on GNN Lipschitz bounds to enhance
the ability of GNNs for cross-domain transfer. However,
our proposed PALA further considers a more practical sce-
nario—when the source graph is imbalanced—and proposes
a novel prototype-anchored learning to eliminate prototype
bias in the source graph, utilizing the learned prototypes for
class-imbalanced graph domain adaptation.

5.2 Class-Imbalanced Learning on Graphs.

This line of work aims to address performance degrada-
tion caused by imbalanced data, primarily through three ap-
proaches: (i) Modifying the loss function to focus on un-
derrepresented class [Cui et al., 2019; Tan et al., 2020;
Menon et al., 2021; Mao et al., 2025], recent method like
AutoLINC [Guo et al., 2024] introduces an automated frame-
work for optimizing loss functions to address class imbalance
based on node distributions and graph topology. (ii) Post-hoc
correction to adjust logits for tail class [Kang et al., 2020;
Hong et al., 2021; Yi et al., 2023]. (iii) Re-sampling to
augment or generate tail class data [Wang et al, 2021;
Park et al., 2021; Zhao et al., 2021; Mao et al., 2023;
Huang er al., 2023], among them, GraphSHA [Li er al., 2023]
enlarges decision boundaries for tail class by synthesizing
harder samples. Additionally, BAT [Liu et al., 2024c] mit-
igates bias in class-imbalanced node classification using a
topological augmentation without rebalancing classes, while
ImGCL [Zeng er al., 2023] balances representations in graph
contrastive learning with progressively balanced sampling
and node centrality methods. However, distribution shifts
in graphs are common in real-world scenarios, and address-
ing the class-imbalanced graph domain adaptation problem
is a more challenging task. To this end, our proposed PALA
learns recalibrated prototypes for each class to alleviate class
imbalance bias, using the learned prototypes to guide pseudo-
label assignment to target graph nodes and perform domain
adaptation through weighted contrastive alignment.

6 Conclusion

In this paper, we highlight the class-imbalanced nature of
the graph and propose a prototype-anchored learning and
alignment framework termed PALA for the class-imbalanced
graph domain adaption. Specifically, based on the encoded
high-order structure information, we generate a set of cate-
gorical prototypes with corresponding proto-instances for re-
calibration and learning under imbalanced class distribution.
Then, during the adaption phase, we introduce a robust con-
trastive prototype adaption strategy based on the generated
pseudo label in the target graph domain. Experiments verify
the effectiveness and superiority of our proposed PALA. In
the future, we aim to integrate large language models into our
prototype-anchored framework to further improve its adapt-
ability and scalability, especially in handling more diverse
and complex class-imbalanced graph data.
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