Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Neuron Similarity-Based Neural Network Verification via Abstraction and
Refinement

Yuehao Liu', Yansong Dong?, Liang Zhao', Wensheng Wang' and Cong Tian''

1School of Computer Science and Technology, Xidian University
2Beijing Sunwise Information Technology Ltd

liuyh @stu.xidian.edu.cn, dongyansong0219@ 163.com, {Izhao, wswang } @xidian.edu.cn,
ctian @mail.xidian.edu.cn

Abstract

Deep neural networks (DNNs) have become inte-
gral to numerous safety-critical applications, ne-
cessitating rigorous verification of their trustwor-
thiness. However, the problem of verifying DNNs
has high computational complexity, and existing
techniques have limited efficiency, insufficient to
deal with large-scale network models. To address
this challenge, we propose a novel abstraction-
refinement verification method that reduces net-
work size while maintaining verification accuracy.
Specifically, the method quantifies the similarity
between neurons based on various factors such as
their interval outputs, and then merges similar neu-
rons to generate a smaller abstract network. In
addition, a counterexample-guided refinement pro-
cess is developed to mitigate the impact of po-
tential spurious counterexamples, so that verifica-
tion results from the abstract network are appli-
cable to the original network. We have imple-
mented this method as a tool named ARVerifier
and integrated it with three state-of-the-art ver-
ification tools for evaluation on ACAS Xu and
MNIST benchmarks. Experimental results demon-
strate that ARVerifier significantly reduces net-
work size and yields verification time reductions
by 11.61%, 18.70%, and 12.20% compared to
«, B-CROWN, Verinet, and Marabou, respectively.
Moreover, ARVerifier exhibits efficiency improve-
ments by 26.64% and 46.87% compared to ex-
isting abstraction-refinement methods NARv and
CEGAR-NN, respectively.

1 Introduction

Deep neural networks (DNNs) have been widely used
in safety-critical domains owing to their exceptional per-
formance, with applications spanning image recognition
[Szegedy et al., 2016], autonomous driving [Kiran ef al.,
2021], and natural language processing [Wolf, 2020]. How-
ever, the inherent lack of robustness renders DNNs suscepti-
ble to adversarial attacks, wherein minor perturbations to oth-

fCorresponding author.

erwise correct inputs can precipitate significant errors [Atha-
lye et al., 2018; Zheng-Fei et al., 2022; Yang et al., 2023].
Consequently, prior to deployment in safety-critical environ-
ments, it is imperative to ensure that neural networks have
expected output behavior, thus guaranteeing their reliability
in these applications.

Given the imperative need for reliable AI systems in
safety-critical domains, researchers have been actively ex-
ploring various approaches to enhancing the trustworthiness
of DNNs. A particularly promising direction has emerged
in the formal methods community, which develops verifica-
tion techniques [Katz et al., 2019; Henriksen and Lomuscio,
2020; Liu et al., 2021; Kouvaros and Lomuscio, 2021; Lech-
ner et al., 2022] capable of automatically proving the satisfac-
tion of specified input-output specifications for DNNs. How-
ever, DNN verification is generally NP-complete with respect
to the size of the network model [Silzer and Lange, 2022],
which is computationally intensive even for simple specifi-
cations and networks. Consequently, despite recent advance-
ments in verification techniques, the size of verifiable net-
work models remains a significant limiting factor. This com-
putational complexity necessitates the development of more
efficient verification strategies to broaden the applicability of
formal methods to larger-scale neural networks.

To address this challenge, we propose a novel abstraction-
refinement verification method for DNNs based on neuron
similarity. For efficient verification, the idea is to define simi-
larity metric between neurons and merge similar neurons into
one, so that the network IV to be verified is abstracted into a
smaller network N. If N satisfies the specified safety prop-
erty, it indicates that N also satisfies it. Conversely, if N
violates the property, the verification process yields a coun-
terexample cex and its genuineness is checked. In case cex
is a genuine counterexample, it indicates that the original net-
work NN violates the safety property; otherwise cex is a spu-
rious counterexample and the abstract network N is up to
refinement. The refinement process increases both the size
and accuracy of the abstract network to exclude the spurious
cex, followed by iterative verification. This process adopts
the counterexample guided abstraction refinement (CEGAR)
paradigm [Clarke er al., 2000], which is a promising tech-
nique for enhancing formal verification efficiency.

It is worth pointing out that the proposed method is generic
and can be integrated with existing verification methods

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

to enhance their efficiency. To evaluate the method, we
implement it as a tool named ARVerifier and integrate it
with state-of-the-art verifiers o, 3-CROWN [Xu et al., 2020;
Wang et al., 2021; Shi et al., 2023], Verinet [Henriksen
and Lomuscio, 2020], and Marabou [Katz et al., 2019].
We apply ARVerifier to verify the safety properties of the
ACAS Xu and MNIST benchmark datasets. Experimen-
tal results demonstrate that the method reduces verification
time by up to 11.61%, 18.70%, and 12.20%, respectively, for
these verifiers. Moreover, ARVerifier improves efficiency by
26.64% and 46.87%, respectively, compared to existing tools
CEGAR-NN [Elboher et al., 2020] and NARv [Liu et al.,
2024] that support structure-oriented CEGAR-based verifica-
tion. The main contributions of this paper are summarized as
follows.

* We propose an abstraction approach for DNNSs that cal-
culates neuron similarity by comprehensively consider-
ing interval, specific neuron value, weight, and layer
depth influence. The approach minimizes accuracy loss
in the network while reducing the number of identical
neurons.

We introduce a refinement approach that determines
neuron restoration priority by thoroughly considering
the values of neurons corresponding to counterexam-
ples, along with their weights and layer-depth influence.
The approach maximizes the restoration of network ac-
curacy while increasing the number of identical neurons.

We implement the proposed abstraction-refinement
method as a tool named ARVerifier, and integrate it with
three existing best-performed DNN verification engines:
«, B-CROWN, Verinet, and Marabou. Extensive evalu-
ations across multiple datasets demonstrate ARVerifier’s
advantage in verification efficiency.

2 Related Work

Formal verification of neural networks can be broadly cate-
gorized into two main approaches: complete and incomplete
methods [Liu et al., 2021]. Complete methods precisely en-
code the network, transforming the verification problem into
a global optimization task. While these methods guarantee
definitive results, they encounter significant scalability chal-
lenge when applied to larger networks. Conversely, incom-
plete verification methods provide improved scalability but
may produce spurious counterexamples, resulting in a lack of
guaranteed deterministic outcomes.

Complete methods typically employ rigorous encoding
techniques such as mixed integer linear programming (MILP)
and satisfiability modulo theory (SMT/SAT). Both MILP-
based [Lomuscio and Maganti, 2017; Tjeng et al., 2017,
Weng et al., 2018; Akintunde et al., 2018; Botoeva et al.,
2020] and SAT/SMT-based [Ehlers, 2017; Liu et al., 2021;
Katz er al., 2019; Jia et al., 2023] approaches leverage solvers
to address verification constraints. Recent studies [Henrik-
sen and Lomuscio, 2020; Henriksen and Lomuscio, 2021;
Wang et al., 2021; Hashemi et al., 2021] have introduced
symbolic propagation and input refinement techniques to de-
termine nonlinear neuron bounds within the network model.

These output bounds serve as constraints for linear program-
ming problems, effectively reducing the complexity intro-
duced by nonlinear neurons during the verification. Most
of these work focuses on deep neural networks (DNNs) with
ReLU activation functions. While these methods offer com-
pleteness, they face scalability limitations. Our work ad-
dresses this scalability challenge by reducing the network
size, thereby enhancing the applicability of these complete
DNN verification techniques to larger networks.

Incomplete verification methods [Ma et al., 2018; Pei et
al., 2017; Tian et al., 2018; Yang et al., 2022] encompass
approaches that employ heuristic search or other dynamic
analysis techniques to identify counterexamples that vio-
late safety properties. While effective in finding violations,
these methods cannot definitively prove that safety properties
hold. Another category of incomplete methods, which in-
cludes our approach, leverages abstraction techniques. Exist-
ing abstract interpretation-based methods [Gehr et al., 2018;
Mirman et al., 2018; Li et al., 2019; Yang et al., 2021] utilize
abstract domains (e.g., interval, zonotope, and polyhedra) to
approximate constraints from input to output layers, provid-
ing relatively accurate output range estimations. In contrast
to these methods, the counterexample-guided abstraction and
refinement (CEGAR) based approach employed in our work
is founded on structural properties of DNNs rather than on
computation.

Our work is closely related to CEGAR-NN [Elboher et
al., 2020] and NARv [Liu er al., 2024]. CEGAR-NN in-
troduces the structure-oriented CEGAR approach for neural
network verification, but its effectiveness is limited due to a
preprocessing step that quadruples the network size and an
abstraction process that neglects input specifications. NARv
improves upon this by only doubling the network size during
preprocessing and considering input specifications in neuron
merging. However, its neuron merging calculations remain
insufficiently comprehensive, and the dependency graphs also
constrain refinement flexibility. Unlike these works, our
method is not a simple modification or extension but intro-
duces key innovations in both abstraction and refinement pro-
cesses. While adopting the same preprocessing step as theirs,
our method considers not only neuron weights of the current
layer but also specific inputs and the DNN hierarchy during
abstraction, enabling a more comprehensive and accurate rep-
resentation of neuron similarity. Furthermore, we employ an
adversarial attack-based method for input set generation, ef-
fectively mitigating the impact of random generation on ini-
tial abstraction, which is a limitation in both previous meth-
ods. These enhancements, rooted in principled improvements
rather than incremental adjustments, collectively contribute
to improved efficiency and less accuracy loss, allowing for
more effective verification of larger neural networks.

3 Preliminary
3.1 Deep Neural Network

A deep neural network N consists of n + 1 layers: one in-
put layer, n — 1 hidden layers, and one output layer. Each
layer ¢ contains s; neurons, with v; ; denoting the value of
the j-th neuron. The output vector of the i-th layer is repre-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

sented as V; = [v;1,. .. ,vi}si]T. As the input x propagates
through the network, each layer computes a weighted sum
and applies an activation function. In this study, we focus on
the rectified linear unit (ReLU) activation function, defined as
ReLU(xz) = max(0, z). For each layer ¢ (i > 1), a weight
matrix W; € R®*%i-1 and a bias vector B; € R® are asso-
ciated. The value of the i-th layer is computed as:

Vi = ReLU (W; Vi1 + B;) (1)

This computation proceeds layer by layer until the network
output N(z) = V,, is obtained. The weight connecting neu-
rons v;—1 x and v; ; is denoted as w(v;—_1 x, v; ;). For each
neuron v; ;, we define its upper and lower bounds [Singh
et al., 2019] as ub(v; ;) and 1b(v; ;), respectively, such that
lb(”UiJ') S ’U,L'J' S ’U,b(’Ui’j).

3.2 Neural Network Verification

Given a DNN N, an input constraint P, and an output con-
straint), the verification problem ¢ = (N, P, Q) aims to
determine whether there is an input z satisfying P that leads
to an output y = N (z) satisfying @), where P defines the
input space and (@) represents the negation of the desired
safety property. This is to check whether there is a coun-
terexample that violates the safety property. Similar to ex-
isting studies [Silzer and Lange, 2022; Ruan et al., 2018;
Elboher et al., 2020], we assume the input constraint is lin-
ear, the output layer contains a single neuron y, and the output
constraint takes the form y > ¢ for a constant c. For verifi-
cation problems 1 = (N, P,@Q) and 2 = (N, P,Q), N is
an over-approximation of N if N(z) < N(z) for any z sat-
isfying P. Consequently, if 9 is SAFE (UNSAT), then ¢4
is also SAFE (UNSAT), since N(z) < ¢ = N(z) < ¢. An
input z satisfying P is a counterexample for N if N(z) > c.
However, if « is a counterexample for N but N (z) < ¢, then
x is called a spurious counterexample for N.

3.3 CEGAR-Based Neural Network Verification

Algorithm 1 specifies the general neural network verifica-
tion method based on CEGAR. Given a verification problem
(N, P, @), the algorithm returns SAFE if the safety property
is satisfied, or UNSAFE along with a counterexample cex.

To solve the verification problem (N, P,), the first step
is to construct an abstract neural network /V derived from the
original network /N with some abstraction approach. Usually,
N is simpler than IV so as to enhance verification efficiency.
Lines 2-4 verify N using the Verify function, which rep-
resents some verification method. If the result is SAFE, the
algorithm returns SAFE, indicating that NV is also safe. If
the verification result is UNSAFE, the algorithm refines N
through a loop (Lines 5-12). In each iteration, it extracts a
counterexample cex and checks if it applies to the original
network . If so, it returns UNSAFE along with the coun-
terexample. If cex is a spurious counterexample for IV, it is
used to refine N, making the abstract network approximate
the original network with cex no more a counterexample. If
no applicable counterexample for N is found by the end of
the loop, the algorithm returns SAFE, confirming that N is
safe under the given conditions.

Algorithm 1 CEGAR-Based Neural Network Verification
Algorithm
Input: (N, P, Q)
Output: SAFE / UNSAFE
1: Build an abstract DNN N from N.
2: if Verify(N, P, Q) is SAFE then
3 return SAFE
4: else -
5: while Verify(N, P, Q) is UNSAFE do
6:
7
8

Extract counterexample cex.
if cex is a counterexample for N then
return UNSAFE, cex

9: else 4
10: Refine IV using the cex.
11: end if
12: end while
13: end if

14: return SAFE

Spurious
Counterexample
Return ?

Network

- Refinement
Preprocessing

% Verification

Yes

Input Set
Generation Violation of
Input Set ?

Similarity]

Calculation Abstraction

Figure 1: Similarity-Based Neural Network Verification Process

4 Methodology

To address the limitation of existing neural network verifica-
tion techniques, we propose an abstraction-refinement verifi-
cation method for DNNs based on neuron similarity, aiming
to reduce the size of the verification network and thereby ac-
celerate the verification process. This section provides details
of the method, complementing and improving upon the key
steps in Algorithm 1.

Specifically, the process of the verification method is
shown in Figure 1. First, we preprocess the original network
to be verified by classifying its neurons and converting it into
an equivalent network to facilitate subsequent abstraction op-
erations. Then, we employ adversarial search to generate an
input set. This input set can be used to limit the number of
abstraction operations and calculate neuron similarity. After
that, by calculating the similarity between pairs of neurons of
the same type, we select the most similar neurons and merge
them into one neuron to reduce network size while minimiz-
ing accuracy loss. The neuron similarity calculation compre-
hensively considers various factors including interval similar-
ity, value similarity under the same input, and merging impact

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

on the network. This merging process continues until it vio-
lates the constraints of the adversarially generated input set,
resulting in an abstract network for verification. When a spu-
rious counterexample appears, we determine which neuron
to restore from the merged neurons by evaluating both the
neuron’s value corresponding to the counterexample’s input
and the impact of its restoration on the network. The proper
merged neuron is restored and the network is refined, until
a definitive verification result is obtained. Overall, by ef-
fectively reducing the network size through abstraction while
preserving the model’s critical behaviors and decision bound-
aries, the method can significantly enhance verification effi-
ciency, particularly for complex neural networks. The key
steps of the method are detailed as follows.

4.1 Network Preprocessing

The abstraction process aims to reduce the number of neu-
rons by merging neurons within the same layer. To make this
process feasible, we first preprocess the original network V.
Specifically, we transform N into an equivalent network N’,
where equivalence means the same output for the same input.
In N’, neurons are classified into inc (increasing effect) and
dec (decreasing effect) neurons. An inc neuron indicates that
increasing its value leads to an increase in the network’s final
output, while a dec neuron has the opposite effect. Recall that
the output layer consists of a single neuron. Neurons of the
same type can be merged, and the resulting node retains the
original classification.

The process of converting NV into an equivalent network N’
begins with designating the single output y of the last layer as
the inc type, and then proceeds layer by layer backwardly.
As illustrated in Figure 2, once all neurons in the (¢ 4+ 1)-th

layer have been classified, each neuron v; ; in the i-th layer
is split into an inc neuron Uj, - and a dec neuron ;. i both
inheriting the incoming edges of v; ;. For outgoing edges,
vj' ; retains the positive weighted edges from v; ; to the inc
neurons and the negative weighted edges to the dec neurons
of the (i + 1)-th layer, with the remaining outgoing edges set
to 0. Conversely, v; ; retains the positive weighted edges from
v;,; to the dec neurons and the negative weighted edges to the
inc neurons of the (i + 1)-th layer, with the other outgoing
edges set to 0. The specific operations are defined by the

following equations.

w (Vic1 ks 07 ;) = w (Vic1 g, 0 ;) = W (Vi1 ks Vi)

lfU} (vi,ja 'UiJrl’k;) .
sign (viy1,k) >0
0, otherwise

w (Ui,javiJrl,k)
w (U;,rjaviﬂ,k) =

ifw (’Ui,j, ’UiJr])k;) .
sign (vis1,4) < 0
0 otherwise

w (Vi 5, Vig1,k)
w (U;j, Ui+1,k) =

LYo D= 1 if v, ; is inc
g “I7 7 1 =1 otherwise
2

+ increases, it

Intuitively, when the value of the neuron v;";

(a) Original Network (b) Processing the Penultimate

Layer

(c) Processing Neuron vy 1

Figure 2: Construction of Initial Abstract Network

affects the subsequent layer in two ways: it increases the val-
ues of all connected inc neurons and decreases the values of
connected dec neurons. Both effects contribute to an increase

in the final output y, which ensures v, is an inc neuron.

@7
On the contrary, v, ; is an dec neuron whose increase always
leads to a decrease 1n the final output y.

4.2 Input Set Generation

Prior to the abstraction phase, it is crucial to control the gran-
ularity of the initial abstraction. On the one hand, an overly
aggressive abstraction with numerous abstracted neurons re-
sults in a coarse network, requiring too many refinement it-
erations to yield definitive verification results. On the other
hand, insufficient abstraction fails to effectively reduce the
network scale, potentially increasing verification time. The
traditional method [Elboher et al., 2020] for controlling ab-
straction granularity involves randomly generating an input
set X = {x1,...,2,}, in which all inputs satisfy the input
constraint P and their corresponding outputs satisfy the out-
put constraint). The abstraction process is terminated when
an input in the set no longer satisfies the corresponding prop-
erty after an iteration. However, this method’s effectiveness is
highly variable due to the random nature of the input set gen-
eration. To address this limitation, we propose to apply an
adversarial attack method, projected gradient descent (PGD)
[Madry et al., 2017], to the original network N. The input
set X is then formed using the inputs generated during the
PGD iteration process. This method yields an input set closer
to the decision boundary of the original network N, which is
more effective in controlling the abstraction granularity and
enhancing the quality of the initial abstraction. Specifically,
the PGD-based method is expressed by the following equa-
tion:
xo ~ Uniform(P)

Ti4+1 = HP (xt + - Sign(me(xta y)))
where x is the initial input sampled from the input constraint
P, x, is the input at Iteration ¢, « is the step size, and IIp de-

notes the projection onto P. The effectiveness of this method
will be demonstrated in the experimental section.

3)

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

(a) Initial Network Struc- (b) Merging Neurons v1,1
ture and v1 2

Figure 3: Illustration of Neuron Merging

4.3 Abstraction

Having obtained an equivalent neural network N’ from N,
where each neuron is classified as either inc or dec, we per-
form a merging operation to construct an over-approximated
network N'. Consider two neurons v; ; and v; in the i-th
layer, both classified as inc. Let v;_; , and v; 41 4 represent
arbitrary neurons in the preceding and subsequent layers, re-
spectively. The merging operation is specified as follows:

* delete neurons v; ; and v; ;, along with their associated
edges; and

 add a new neuron v; ,,, and assign the following values
to the associated edges.

w (Ui—Lp"Ui,m) = max(w ('Ui—l,pa Uz',j) , W (U'i—l,p; Ui,k))
W (Vi,my Vig1,q) = W (Vi 5, Vit1,q) + W (Vi ks Vig1,q)

“

Intuitively, by employing the max operation in Equa-
tion (4), the newly formed neuron v; ,, consistently produces
an output greater than or equal to that of the original neu-
rons v; ; and v; j, for any given input, as shown in Figure 3.
Oppositely, when merging dec neurons, the max operation is
replaced with the min operation.

A critical question that arises is how to select the optimal
pair of neurons for merging. Our objective is to minimize the
loss of network accuracy while reducing the network size.
For this, we introduce the concept of neuron similarity. The
similarity between two neurons, v; ; and v;j, is quantified
by three metrics: interval similarity, specific value difference,
and weight difference. The three metrics are expressed by the
following equations.

max (0, min(ub; j, ub; 1) — max(lb; ;,b; 1))

IS(vs 5, vi k) = -
(Vg vick) max(ub; ;, ub;) — min(lb; ;,1b; 1)
SVD(vi j,vi k) = Y [vij(x) = vik(2)]

zeX

WD(v;,j, vik) = Z |w (Vi1,p, Vi,j) — W (Vie1,p, Vi k)|
R ()

Interval Similarity (IS) is defined as the ratio of the in-
tersection length to the union length of two intervals, while
these intervals are calculated by [Singh er al., 2019]. The
Specific Value Difference (SVD) is derived from the input set
discussed in the previous section, calculating the difference
between the output values of the two neurons for specific in-
put values. The Weight Difference (WD) is computed as the

sum of the weight differences between all neurons in the pre-

ceding layer and the merged neuron. The comprehensive sim-

ilarity measure is expressed by the following equation.
IS(’UiJ, Ui,k) . 21

NS(v; 1,0 1) = 6
(1}2,],’[/ 7k) SVD(’UZ'J,’UZ',]C) -WD(’UL]'/UZ"]@) ()

Our approach to neuron similarity considers multiple fac-
tors. Higher similarity is attributed to neurons that exhibit
smaller differences in their values for the same input, have
more similar input edge weights, and possess larger overlap-
ping regions in their upper and lower bound intervals. Ad-
ditionally, we factor in the impact of layer depth. As errors
introduced by merging hidden layer neurons tend to be ampli-
fied through layer-by-layer propagation, the cumulative effect
of multiple neuron errors can significantly influence the out-
put of network. Considering this phenomenon, we incorpo-
rate a 2° factor, which biases the merging process to proceed
from the deeper layers towards the input. This strategy is not
only more accurate compared to the simple backward layer-
by-layer merging but can also reduce time consumption by
decreasing the number of interval calculations. Overall, this
comprehensive approach ensures a balance between abstrac-
tion efficiency and network accuracy, making it effective to
verify complex neural networks.

4.4 Refinement

As illustrated in Algorithm 1, the initial abstraction yields an
over-approximation network N’ that may produce spurious
counterexamples cex with N'(cex) > c. To address this is-
sue, we introduce a refinement process to eliminate spurious
counterexamples, which is essentially the inverse of the ab-
straction. The process transforms N’ into another approxi-
mation network N” such that N”(cex) < c. Moreover, for
any input z, the refinement ensures that N(z) < N”(x) <
N'(z), where N is the original network.

Specifically, the refinement operation involves selecting a
neuron v; ; from the abstract neuron v; ;- and reverting it to
its pre-merged state, thereby reducing the network output ac-
cording to a spurious counterexample cez. While abstraction
aims to simplify the network, refinement seeks to restore net-
work accuracy to eliminate spurious counterexamples, albeit
at the cost of increasing the neuron count. The neuron selec-
tion in the refinement process is quantified by the following
equation.

R(vis Dir) = D | (Bi-1p(cem) x (i (vi-1,, 71 1)
p

0 (011, 06)) | % D0 @1 Vi)
q

1

= w (Vi Vit1,) | X 55

)

Here, 7; ;. denotes the merged neuron, while v; ; repre-
sents a neuron in the initial network that was merged into
v, j. The equation quantifies the impact on the network out-
put when restoring v; ; from ¥; ;.. Since neurons preceding
the i-th layer remain unaffected after the restoration, the prod-

uct of the (¢ — 1)-th layer’s value in the counterexample cex:

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

together with the weight difference of incoming edges before
and after the restoration intuitively represents the impact of
separating v; ;. In addition, the weight difference of outgoing
edges before and after the restoration affects the output of the
current layer. Finally, similar to the abstraction, the refine-
ment process considers the influence of layer depth. How-
ever, to maximize the impact of restored neurons on the out-
put, we tend to prioritize the restoration of neurons in earlier
layers.

S Experimental Evaluation

The proposed method has been implemented as a tool named
ARVerifier (Abstraction and Refinement Verifier for neural
networks). The tool is generic as its backend verification
engine is flexible, allowing integration with any complete
verification tool capable of finding out counterexamples for
unsafe verification problems. To assess the performance of
ARVerifier, we integrate three state-of-the-art complete tools
as the backend verification engines: «, 3-CROWN, Verinet,
and Marabou.

5.1 Benchmarks and Experimental Configuration

The neural networks considered in the experiments are from
the fully connected benchmarks used in the international ver-
ification of neural networks competition (VNN-COMP) [Brix
et al., 2024; Brix er al., 2023], specifically the ACAS Xu and
MNIST datasets.

ACAS Xu [Julian et al., 2016] consists of 45 ReLLU-based
DNNss for airborne collision avoidance, guiding aircraft steer-
ing based on sensor data. These networks, widely used in
verification research, each have 5 inputs, 5 outputs, and 300
ReLU neurons in 6 layers. Our verification follows safety
properties from [Katz er al., 2017], testing 4 properties across
all 45 networks and 6 on a single network.

The MNIST [LeCun, 1998] dataset consists of handwritten
digits 0-9, represented as 28x28 grayscale images. We em-
ploy three fully connected DNNs: MNIST2, MNIST4, and
MNIST®6, respectively comprising 2, 4, and 6 hidden layers,
each with 256 ReLU neurons. Our verification assesses local
adversarial robustness, testing 25 images with [, perturba-
tions of 0.02 and 0.05.

Experiments are performed on a 64-bit Ubuntu 18.04
platform equipped with 64 GB of RAM and an Intel i7-
7700 quad-core processor. All verification tools are imple-
mented in Python 3.8. For the tools involving MILP solv-
ing, o, .-CROWN and Marabou use Gurobi 9.1, while Ver-
inet uses Xpress 9.0 as the backend solver. Due to its fea-
ture, «, 5-CROWN is executed with an additional NVIDIA
TITAN RTX GPU with 24 GB memory. Besides, we im-
pose a 30-minute timeout for each verification problem, while
maintaining default values for other parameters.

5.2 Performance Enhancement: ARVerifier’s
Impact on Existing Verifiers

We first evaluate ARVerifier’s efficacy in enhancing the per-
formance of existing neural network verifiers. Specifically,
three configurations of ARVerifier are implemented: ARVer-
ifierfMarabou], ARVerifier[a,, 3-CROWN], and ARVeri-
fier[Verinet], utilizing Marabou, «, 3-CROWN, and Verinet

o finished
x timeout

o finished <
x timeout -

102, y=x

10 y=x

Cesgee

ARVerifier[Random] (s)
ARVerifier[Random] (s)

10

10

oy
1072 107! 100 10t 102 103

ARVerifier[PDG] (s)

oL
1072 107! 10° 101 102 10°

ARVerifier[PDG] (s)

(a) MNIST4 § = 0.02 (b) MNIST4 § = 0.05

o finished ox
o

x timeout

,,,,, y=x

e finished o X X
x timeout
,,,,, y=x

1031

10°

ARVerifier[Random] (s)
ST
Q“\‘ (19
ARVerifier[Random] (s)

1072}

10-2+ ’
03 1072

1072 107! 10° 10t 102 1
ARVerifier[PDG] (s)

(c) MNIST6 § = 0.02

io* 10 1o 102 '10°
ARVerifier[PDG] (s)

(d) MNIST6 § = 0.05

Figure 4: Run Time Comparison (in Seconds, Log Scale) of ARVer-
ifier on MNIST Models: PGD-Generated vs. Randomly Generated
Input Sets
as the backend verifiers, respectively. These configurations
are then compared with their standalone counterparts without
ARVerifier integration. Table 1 presents the experimental out-
comes across six configurations for the ACAS Xu, MNIST2,
MNIST4, and MNIST6 models, where ver denotes the num-
ber of verifiable safety properties, ¢(s) represents the average
verification time per property in seconds. Bold data highlight
the superior results between each pair of compared configura-
tions under the same benchmark. The AL L row at the bottom
summarizes the total number of verifiable safety properties,
the cumulative verification time across all the benchmarks.

As is shown in Table 1, ARVerifier configurations generally
outperform their original counterparts, solving more prob-
lems in less time. Specifically, ARVerifier[«, 5-CROWN],
ARVerifier[Verinet], and ARVerifier[Marabou] exhibit supe-
rior efficiency in verifying relatively larger network mod-
els MNIST4 and MNIST6 compared to the standalone
a, B-CROWN, Verinet, and Marabou, respectively. However,
for smaller models, ARVerifier[«, 3-CROWN] and ARVeri-
fier[Verinet] may require additional verification time. This
is because these tools are already efficient in dealing with
smaller models and can verify their problems in a short time.
By contrast, ARVerifier’s abstraction-refinement process and
subsequent re-verification of refined networks introduce ad-
ditional time overhead, ultimately leading to longer verifica-
tion time for such cases. Another observation is that ARVer-
ifier[Marabou] exhibits consistent improvement across most
scenarios compared with the original Marabou, which also in-
dicates the effectiveness of the proposed abstraction method
in enhancing the efficiency of neural network verification.
Overall, ARVerifier[c;, 3-CROWN], ARVerifier[Verinet], and
ARVerifier[Marabou] reduce verification times by 11.61%,
18.70%, and 12.20%, respectively, compared to their origi-
nal configurations.

Furthermore, we conduct ablation studies to evaluate the
performance improvement achieved by using PGD adversar-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

ARVerifier[a, -CROWN] «, -CROWN ARVerifier|[Verinet] Verinet ARVerifier[Marabou] Marabou
Model Radius ver t(s) ver t(s) ver t(s) ver t(s) ver t(s) ver t(s)
ACAS Xu - 186 9.52 186 7.88 186 10.82 186 6.18 183 125.64 180 147.45
0.02 25 2.18 25 0.39 25 321 25 0.15 25 58.69 25 34.55
MNIST2 0.05 25 3.26 25 0.31 25 5.69 25 1.45 25 522.65 20 719.6
0.02 25 5.37 25 1.26 25 50.37 24 75.83 23 240.96 22 279.3
MNIST4 0.05 21 421.48 19 497.07 16 896.48 11 1023.63 11 1309.81 7 1434.9
0.02 25 51.75 24 77.02 23 176.31 21 290.36 16 884.26 14 996.63
MNIST6 0.05 16 838.19 12 941.30 15 845.23 10 1093.76 5 1453.85 4 1593.72
ALL 323 34826.47 316 3939943 315 51444.77 302 6327898 288 135124.54 272 153893.20

Table 1: Comparative Analysis of ARVerifier’s Enhancements over o, 3-CROWN, Verinet, and Marabou

ARVerifier NARv CEGAR-NN

Model Radius t(s) size ver t(s) size ver t(s) size
ACAS Xu 186 10.82 267 186 9.76 274 186 83.79 986
0.02 25 3.21 560 25 2.87 533 25 16.45 1834

R 0.05 25 5.69 490 25 3.46 463 25 37.62 1743
0.02 25 50.37 998 24 82.11 1132 24 100.57 2453

QST 0.05 16 896.48 987 13 1107.56 965 10 1356.45 2489
0.02 23 176.31 1484 21 350.14 1684 21 314.85 4962

MNIST6 0.05 15 845.23 1473 12 987.32 1379 10 1423.69 4627
ALL 315 51444.77 6259 306 65151.86 6430 301 96825.69 19094

Table 2: Comparison of CEGAR-based Methods on Verinet: ARVerifier, NARv, and CEGAR-NN

ial attacks for input set generation compared to random gener-
ation. We employ Verinet as the backend verifier for ARVer-
ifier, varying only the input set generation method to iso-
late its impact. To obtain more pronounced results, we per-
formed these experiments on the relatively larger MNIST4
and MNIST6 models. As illustrated in Figure 4, the major-
ity of data points and crosses are positioned above the gray
line, demonstrating that the PGD-based input set generation
method outperforms random generation across most verifica-
tion scenarios.

5.3 Comparative Analysis: ARVerifier vs
CEGAR-based Approaches

We conduct a comparative analysis of ARVerifier against ex-
isting CEGAR-based approaches NARv [Liu er al., 2024]
and CEGAR-NN [Elboher er al., 2020], all utilizing Ver-
inet as their backend verification engine. In this analysis,
a, B-CROWN is not considered because it lacks a unified
solving strategy and requires manual fine-tuning to achieve
optimal results for networks of different sizes and obtained
with different abstraction strategies. Marabou is not used
owing to its relatively slower verification speed. Table 2
presents the experimental outcomes for these three configura-
tions across the ACAS Xu, MNIST2, MNIST4, and MNIST6
models. For each configuration, ver denotes the number of
verifiable safety properties, ¢(s) represents the average veri-
fication time per property in seconds, and size indicates the
average neuron count in the network following the initial ab-
straction. Bold data highlight the best results among com-
pared configurations under the same benchmark. The ALL

row summarizes the total number of verifiable safety proper-
ties, cumulative verification time, and aggregate neuron count
after the initial abstraction across all benchmarks.

According to the results in Table 2, ARVerifier exhibits
superior performance compared to NARv and CEGAR-NN
across the key metrics: problem-solving quantity, verification
time, and abstract network size. CEGAR-NN’s poor network
size reduction stems from its preprocessing stage that quadru-
ples the network size, as well as its structure-based abstrac-
tion process that disregards input attributes. NARv matches
ARVerifier in network size reduction, its use of randomly
generated input sets for abstraction restriction leads to sub-
optimal initial abstraction, necessitating multiple refinements
and resulting in limited verification performance. Specifi-
cally, ARVerifier demonstrates improvements by 26.64% and
46.87% in verification efficiency compared to NARv and
CEGAR-NN, respectively. These results underscore the ef-
fectiveness of ARVerifier in neural network verification.

6 Conclusion

This paper proposes a generic abstraction-refinement method
for neural networks verification. Specifically, we introduce an
abstraction procedure based on neuron similarity and a corre-
sponding refinement strategy to improve the verification effi-
ciency. We implement the method in a tool and evaluate it on
two widely used benchmarks. Experimental results demon-
strate that our method can significantly enhance the scala-
bility and efficiency of state-of-the-art complete verification
tools without compromising their accuracy, particularly for
larger network models.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work is supported by National Natural Science Founda-
tion of China through grant No.62192734, 62402372.

References

[Akintunde et al., 2018] Michael Akintunde, Alessio Lo-
muscio, Lalit Maganti, and Edoardo Pirovano. Reacha-
bility analysis for neural agent-environment systems. In
Sixteenth international conference on principles of knowl-
edge representation and reasoning, 2018.

[Athalye et al., 2018] Anish Athalye, Logan Engstrom, An-
drew llyas, and Kevin Kwok. Synthesizing robust adver-
sarial examples. In International conference on machine
learning, pages 284-293. PMLR, 2018.

[Botoeva et al., 2020] Elena Botoeva, Panagiotis Kouvaros,
Jan Krongyvist, Alessio Lomuscio, and Ruth Misener. Effi-
cient verification of relu-based neural networks via depen-
dency analysis. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3291-3299, 2020.

[Brix er al., 2023] Christopher Brix, Mark Niklas Miiller,
Stanley Bak, Taylor T Johnson, and Changliu Liu. First
three years of the international verification of neural net-
works competition (vin-comp). International Journal on
Software Tools for Technology Transfer, 25(3):329-339,
2023.

[Brix et al., 2024] Christopher Brix, Stanley Bak, Taylor T
Johnson, and Haoze Wu. The fifth international verifi-
cation of neural networks competition (von-comp 2024):
Summary and results. arXiv preprint arXiv:2412.19985,
2024.

[Clarke et al., 2000] Edmund Clarke, Orma Grum-
berg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In
Computer Aided Verification: 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000.
Proceedings 12, pages 154—169. Springer, 2000.

[Ehlers, 2017] Ruediger Ehlers. Formal verification of piece-
wise linear feed-forward neural networks. In Automated
Technology for Verification and Analysis: 15th Interna-
tional Symposium, ATVA 2017, Pune, India, October 3-6,
2017, Proceedings 15, pages 269-286. Springer, 2017.

[Elboher et al., 2020] Yizhak Yisrael Elboher, Justin
Gottschlich, and Guy Katz. An abstraction-based frame-
work for neural network verification. In Computer Aided
Verification: 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part I 32, pages 43—65. Springer, 2020.

[Gehr et al., 2018] Timon Gehr, Matthew Mirman, Dana
Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin Vechev. Ai2: Safety and robustness certification
of neural networks with abstract interpretation. In 2018
IEEE symposium on security and privacy (SP), pages 3—
18. IEEE, 2018.

[Hashemi ef al., 2021] Vahid Hashemi, Panagiotis Kou-
varos, and Alessio Lomuscio. Osip: Tightened bound

propagation for the verification of relu neural networks.
In Software Engineering and Formal Methods: 19th Inter-
national Conference, SEFM 2021, Virtual Event, Decem-
ber 6-10, 2021, Proceedings 19, pages 463—480. Springer,
2021.

[Henriksen and Lomuscio, 2020] Patrick Henriksen and
Alessio Lomuscio. Efficient neural network verification
via adaptive refinement and adversarial search. In ECAI
2020, pages 2513-2520. 10S Press, 2020.

[Henriksen and Lomuscio, 2021] Patrick Henriksen and
Alessio Lomuscio. Deepsplit: An efficient splitting
method for neural network verification via indirect effect
analysis. In IJCAI, pages 2549-2555, 2021.

[ia et al., 2023] Fuqi Jia, Rui Han, Pei Huang, Minghao
Liu, Feifei Ma, and Jian Zhang. Improving bit-blasting
for nonlinear integer constraints. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 14-25, 2023.

[Julian ef al., 2016] Kyle D Julian, Jessica Lopez, Jeffrey S
Brush, Michael P Owen, and Mykel J Kochenderfer. Pol-
icy compression for aircraft collision avoidance systems.
In 2016 IEEE/AIAA 35th Digital Avionics Systems Con-
ference (DASC), pages 1-10. IEEE, 2016.

[Katz et al., 2017] Guy Katz, Clark Barrett, David L Dill,
Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In
Computer Aided Verification: 29th International Confer-
ence, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I 30, pages 97-117. Springer, 2017.

[Katz er al., 2019] Guy Katz, Derek A Huang, Duligur Ibel-
ing, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic,
et al. The marabou framework for verification and analysis
of deep neural networks. In Computer Aided Verification:
31st International Conference, CAV 2019, New York City,
NY, USA, July 15-18, 2019, Proceedings, Part I 31, pages
443-452. Springer, 2019.

[Kiran et al., 2021] B Ravi Kiran, Ibrahim Sobh, Victor Tal-
paert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for
autonomous driving: A survey. IEEE Transactions on In-
telligent Transportation Systems, 23(6):4909-4926, 2021.

[Kouvaros and Lomuscio, 2021] Panagiotis Kouvaros and
Alessio Lomuscio. Towards scalable complete verification
of relu neural networks via dependency-based branching.
In IJCAI, pages 26432650, 2021.

[Lechner e al., 2022] Mathias Lechner, Porde Zikelié, Kr-
ishnendu Chatterjee, and Thomas A Henzinger. Stability
verification in stochastic control systems via neural net-
work supermartingales. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 7326-7336, 2022.

[LeCun, 1998] Yann LeCun. The mnist database of hand-
written digits. http://yann. lecun. com/exdb/mnist/, 1998.

[Li et al., 2019] Jianlin Li, Jiangchao Liu, Pengfei Yang,
Ligian Chen, Xiaowei Huang, and Lijun Zhang. Ana-
lyzing deep neural networks with symbolic propagation:

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Towards higher precision and faster verification. In Static
Analysis: 26th International Symposium, SAS 2019, Porto,
Portugal, October 8-11, 2019, Proceedings 26, pages
296-319. Springer, 2019.

[Liu et al., 2021] Changliu Liu, Tomer Arnon, Christopher
Lazarus, Christopher Strong, Clark Barrett, Mykel J
Kochenderfer, et al. Algorithms for verifying deep neural
networks. Foundations and Trends in Optimization, 4(3-
4):244-404, 2021.

[Liu et al., 2024] Jiaxiang Liu, Yunhan Xing, Xiaomu Shi,
Fu Song, Zhiwu Xu, and Zhong Ming. Abstraction and re-
finement: Towards scalable and exact verification of neu-
ral networks. ACM Transactions on Software Engineering
and Methodology, 33(5):1-35, 2024.

[Lomuscio and Maganti, 2017] Alessio Lomuscio and Lalit
Maganti. An approach to reachability analysis for
feed-forward relu neural networks. arXiv preprint
arXiv:1706.07351, 2017.

[Ma et al., 2018] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang,
Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting
Su, Li Li, Yang Liu, et al. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings
of the 33rd ACM/IEEE international conference on auto-
mated software engineering, pages 120-131, 2018.

[Madry eral., 2017] Aleksander ~ Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[Mirman et al., 2018] Matthew Mirman, Timon Gehr, and
Martin Vechev. Differentiable abstract interpretation for
provably robust neural networks. In International Con-
ference on Machine Learning, pages 3578-3586. PMLR,
2018.

[Pei er al., 2017] Kexin Pei, Yinzhi Cao, Junfeng Yang, and
Suman Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 1-18, 2017.

[Ruan et al., 2018] Wenjie Ruan, Xiaowei Huang, and Marta
Kwiatkowska. Reachability analysis of deep neural

networks with provable guarantees. arXiv preprint
arXiv:1805.02242, 2018.

[Sélzer and Lange, 2022] Marco Silzer and Martin Lange.
Reachability in simple neural networks. Fundamenta In-
formaticae, 189(3-4):241-259, 2022.

[Shi et al., 2023] Zhouxing Shi, Qirui Jin, J Zico Kolter,
Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Formal
verification for neural networks with general nonlineari-
ties via branch-and-bound. 2023.

[Singh er al., 2019] Gagandeep Singh, Timon Gehr, Markus
Piischel, and Martin Vechev. An abstract domain for cer-
tifying neural networks. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1-30, 2019.

[Szegedy et al., 2016] Christian Szegedy, Vincent Van-
houcke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.

Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2818-2826, 2016.

[Tian et al., 2018] Yuchi Tian, Kexin Pei, Suman Jana, and
Baishakhi Ray. Deeptest: Automated testing of deep-
neural-network-driven autonomous cars. In Proceedings
of the 40th international conference on software engineer-
ing, pages 303-314, 2018.

[Tjeng er al., 2017] Vincent Tjeng, Kai Xiao, and Russ
Tedrake. Evaluating robustness of neural networks
with mixed integer programming. arXiv preprint
arXiv:1711.07356, 2017.

[Wang et al., 2021] Shigi Wang, Huan Zhang, Kaidi Xu,
Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron
split constraints for neural network robustness verifica-
tion. Advances in Neural Information Processing Systems,

34:29909-29921, 2021.

[Weng et al., 2018] Lily Weng, Huan Zhang, Hongge Chen,
Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified
robustness for relu networks. In International Conference
on Machine Learning, pages 5276-5285. PMLR, 2018.

[Wolf, 2020] Thomas Wolf. Transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2020.

[Xu et al., 2020] Kaidi Xu, Huan Zhang, Shigi Wang, Yihan
Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verifica-
tion with rapid and massively parallel incomplete verifiers.
arXiv preprint arXiv:2011.13824, 2020.

[Yang er al., 2021] Pengfei Yang, Renjue Li, Jianlin Li,
Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue,
and Lijun Zhang. Improving neural network verifica-
tion through spurious region guided refinement. In In-
ternational Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 389-408.
Springer, 2021.

[Yang et al., 2022] Xiao Yang, Yinpeng Dong, Tianyu Pang,
Hang Su, and Jun Zhu. Boosting transferability of targeted
adversarial examples via hierarchical generative networks.
In European Conference on Computer Vision, pages 725—
742. Springer, 2022.

[Yang et al., 2023] Yuting Yang, Pei Huang, Juao Cao, Feifei
Ma, Jian Zhang, and Jintao Li. Quantifying robustness to
adversarial word substitutions. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pages 95-112. Springer, 2023.

[Zheng-Fei et al., 2022] Yu Zheng-Fei, Yan Qiao, and Zhou
Yun. A survey on adversarial machine learning for cy-
berspace defense. Journal of Automation, 48(07):1625—
1649, 2022.

