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Optimized View and Geometry Distillation from Multi-view Diffuser

Youjia Zhang1 , Zikai Song1 , Junqing Yu1 , Yawei Luo2 and Wei Yang1†

1Huazhong University of Science and Technology
2Zhejiang University

{youjiazhang, weiyangcs}@hust.edu.cn

Abstract
Generating multi-view images from a single input
view using image-conditioned diffusion models is
a recent advancement and has shown considerable
potential. However, issues such as the lack of con-
sistency in synthesized views and over-smoothing
in extracted geometry persist. Previous methods
integrate multi-view consistency modules or im-
pose additional supervisory to enhance view con-
sistency while compromising on the flexibility of
camera positioning and limiting the versatility of
view synthesis. In this study, we consider the radi-
ance field optimized during geometry extraction as
a more rigid consistency prior, compared to volume
and ray aggregation used in previous works. We
further identify and rectify a critical bias in the tra-
ditional radiance field optimization process through
score distillation from a multi-view diffuser. We
introduce an Unbiased Score Distillation (USD)
that utilizes unconditioned noises from a 2D dif-
fusion model, greatly refining the radiance field fi-
delity. We leverage the rendered views from the
optimized radiance field as the basis and develop
a two-step specialization process of a 2D diffusion
model, which is adept at conducting object-specific
denoising and generating high-quality multi-view
images. Finally, we recover faithful geometry and
texture directly from the refined multi-view im-
ages. Empirical evaluations demonstrate that our
optimized geometry and view distillation technique
generates comparable results to the state-of-the-
art models trained on extensive datasets, all while
maintaining freedom in camera positioning. Source
code of our work is publicly available at: https:
//youjiazhang.github.io/USD/.

1 Introduction
Traditionally, the process of generating a three-dimensional
model from a singular image necessitates extensive and
meticulous efforts by highly skilled artists. However, re-
cent advancements in neural networks, particularly through

†Corresponding author.

the adaptation of 2D diffusion models for 3D synthesis, have
rendered the conversion of a single image into a 3D object
feasible. The early breakthrough comes from the text to 3D
domain, where DreamFusion [Poole et al., 2023] and Score
Jacobian Chaining (SJC) [Wang et al., 2023a] proposes a
Score Distilling Sampling (SDS) strategy to distill the scores
learned by 2D diffusion models from large-scale images to
optimize a Neural Radiance Field (NeRF) [Mildenhall et al.,
2020], circumventing the need for 3D data. Successive ap-
proaches further improve the quality and diversity of gener-
ated geometries from textural prompts [Wang et al., 2023b;
Lin et al., 2023; Chen et al., 2023]. Particularly, RealFu-
sion [Melas-Kyriazi et al., 2023] migrates the scheme to gen-
erate plausible 3D reconstruction matches to a single input
image via textual inversion adapted supervision.

More relevantly, 3DiM [Watson et al., 2023] and MV-
Dream [Shi et al., 2023] develop a pose-conditional image-
to-image diffusion model, which generates the novel view
at a target pose from a source view. Zero-1-to-3 [Liu et
al., 2023b] adopts a similar framework and learns control
of viewpoints through a synthetic dataset and demonstrates
zero-shot generalization to in-the-wild images. Though Zero-
1-to-3 demonstrates plausible novel views, they are not multi-
view consistent and the geometry distilled from SDS tends
to be oversmoothed. To enhance the multi-view consistency,
SyncDreamer [Liu et al., 2024] devises a volume-encoded
multi-view noise predictor to share information across differ-
ent views. Wonder3D [Long et al., 2024] predicts the multi-
view color images along with their normal maps from a cross-
domain diffusion model. Though enhancing the multi-view
consistency of image generation, these methods compromise
the flexibility of camera positioning and only allow synthesis
for a limited number of views.

In this study, we observe that the predicted uncondi-
tional noise from the multi-view diffuser, i.e., the Zero-1-to-3
model, appears to be biased. That is, even if we only add
very low-level noise to a normal image and use the uncon-
ditional noise predicted by a Zero-1-to-3 model for denois-
ing, the result still tends to deviate greatly from the origi-
nal image. We analyze and rectify the critical bias by us-
ing an unconditioned noise from a pre-trained 2D diffusion
model and greatly refining the geometry fidelity. Moreover,
previous approaches use either 3D volume [Liu et al., 2024]
or ray aggregation [Tseng et al., 2023] to share information
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Figure 1: The unconditional noise predicted by Zero-1-to-3 model
tends to be biased. As a demonstration, we use the ‘Mario’ image as
a toy example and add various levels of noise to the image (larger T
means more noise has been added). We use the predicted uncondi-
tional noise to recover the original image from noisy input and find
the results of Zero-1-to-3 deviate from the input image greatly even
for very small amount of noise. The right sub-figure shows the av-
eraged difference between the predicted noise and the added noise.

across views. We consider the radiance field as the consis-
tency prior, and encourage the generated multi-view images
to be consistent with the NeRF renderings. We develop a two-
step specialization process of a 2D diffusion model, which
is adept at conducting target-specific denoising and generat-
ing high-quality multi-view images from NeRF renderings.
We then further use the refined views to generate the geom-
etry and texture from NeuS [Wang et al., 2021], and in the
meanwhile enforce input view consistency using view score
distillation. Our approach generates comparable-quality of
multi-view images and geometry to the SOTA approaches, in-
cluding SyncDreamer and Wonder3D, without enforcing any
restriction on camera poses. Consequently, we posit that our
approach offers superior adaptability and effectiveness in ad-
dressing the challenges associated with generating consistent
and high-quality multi-view imagery and geometry, affirming
its substantial potential for widespread application in relevant
fields.

2 Related Work
2D Diffusion Models for 3D Generation. Recent ad-
vancements in 2D diffusion models [Rombach et al., 2022;
Croitoru et al., 2023] and large-scale visual language mod-
els, notably the CLIP model [Radford et al., 2021; Song et
al., 2024], have catalyzed new approaches for generating 3D
assets. Pioneering efforts such as DreamFusion [Poole et al.,
2023] and SJC [Wang et al., 2023a] have developed methods
for transforming 2D text into images, subsequently facilitat-
ing the generation of 3D shapes from text. This approach
has inspired a range of subsequent studies that adopt a shape-
by-shape optimization scheme. Additionally, the integration
of 2D diffusion models with robust vision language models,
especially CLIP [Radford et al., 2021], has emerged as a sig-
nificant exploration in the generation of 3D assets [Xu et al.,
2023b]. The typical methodology involves optimizing a 3D
representation, such as NeRF, mesh, or SDF, and then uti-
lizing neural rendering to generate 2D images from various
viewpoints. These images are processed through 2D diffusion
models or the CLIP model to calculate SDS losses, which

guide the optimization of the 3D shape. Building on the foun-
dations laid by DreamFusion and SJC, numerous works have
enhanced text-to-3D distillation methods in various aspects.
Notably, Magic3D [Lin et al., 2023] develops a two-stage
coarse-to-fine optimization framework for high-resolution 3D
content generation, and ProlificDreamer [Wang et al., 2023b]
proposes a Variational Score Distillation (VSD) for gener-
ating highly detailed geometry. However, challenges such
as low efficiency and the multi-face Janus problem, where
optimized geometry tends to produce multiple faces due to
the lack of explicit 3D supervision, remain prevalent. Fur-
thermore, some works [Radford et al., 2021] have applied
this distillation pipeline in single-view reconstruction tasks.
While these methods have achieved impressive results, they
often require extensive time for textual inversion and NeRF
optimization, without always guaranteeing satisfactory out-
comes. In contrast with the 2D diffusion to 3D extension,
which is ignorant to multi-view consistency, our method fo-
cuses on the multi-view diffuser technique, which predicts
the noises for novel views, and inherently avoids the Janus
problem.
Multi-view Diffusion Models. In light of the complexi-
ties involved in ensuring the integrity of generated 3D con-
tent, recent efforts [Watson et al., 2023; Gu et al., 2023;
Deng et al., 2023; Tseng et al., 2023; Chan et al., 2023;
Yu et al., 2023; Tang et al., 2023; Liu et al., 2023c] have
explored the feasibility of directly generating novel views
from a single image input. Notably, the Scene Represen-
tation Transformer [Sajjadi et al., 2022] extends the vision
transformer to image sets, enabling global information in-
tegration for 3D reasoning. Similarly, 3DiM [Watson et
al., 2023] develops a pose-conditional image-to-image dif-
fusion model, translating a single input view into consis-
tent and sharp completions across multiple views. A sem-
inal work in this area, Zero-1-to-3 [Liu et al., 2023b], uti-
lizes a similar network structure, trained on a large-scale
synthetic 3D dataset, demonstrating notable generalizabil-
ity. Recent advancements, such as One-2-3-45 [Xu et al.,
2023a], have leveraged the generalizable neural reconstruc-
tion method SparseNeuS [Long et al., 2022] to directly pro-
duce 3D geometry from images generated by Zero-1-to-3.
While this approach is more efficient and alleviates the Janus
(multi-head) problem, it tends to produce lower-quality re-
sults with reduced geometric detail. In a different vein, Sync-
Dreamer [Liu et al., 2024] concentrates on object reconstruc-
tion, generating images in a single reverse process and utiliz-
ing attention to synchronize states among views. This con-
trasts with Viewset Diffusion [Szymanowicz et al., 2023],
which requires predicting a radiance field. SyncDreamer
solely relies on attention for synchronization, fixing the view-
points of generated views to enhance training convergence. A
significant trend in recent research has been the design of var-
ious functional attention layers. Consistent123 [Weng et al.,
2023] employs a shared self-attention layer, where all views
query the same key and value from the input view. Consist-
Net [Yang et al., 2024] introduces two sub-modules: a view
aggregation module and a ray aggregation module, to extract
features consistent across multiple views. MVDream [Shi et
al., 2023] utilizes 3D self-attention. Wonder3D [Long et al.,
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Figure 2: The overall pipeline of our approach. We first use our Unbiased Score Distillation to extract an optimized underlying radiance field.
And then we use the NeRF as our consistency prior, i.e., the generated views should be consistent with the NeRF renderings. We propose a
two-stage specialization scheme to obtain a specified DreamBooth specifically for the target. We then denoise the NeRF renderings to obtain
high-quality views and subsequently use NeuS technique to recover the geometry. Our optimized scheme generates comparable, sometimes
better particularly for irregular camera poses, results to the SOTA works without training on large-scale data.

2024] goes a step further by not only outputting multi-view
images but also outputting the normal map for each perspec-
tive, using cross-domain attention to maintain the consistency
of the 3D structure. Both SyncDreamer and Wonder3D, re-
sulting from fixed view outputs, exhibit sensitivity to the cam-
era angle of the input image. In contrast, our method can re-
construct accurate 3D structures from inputs captured at vary-
ing camera angles. While existing approaches have focused
on developing novel modules for enforcing multi-view con-
sistency, our work demonstrates that an optimized distillation
strategy can yield views and geometries comparable to mod-
els trained on large-scale datasets. This insight may inspire
further exploration in improved strategies for geometry and
view extraction.

3 Method
Our objective is to synthesize consistent multi-view images
and high-quality geometric representations from a single in-
put image. Notable prior work, such as the Zero-1-to-3, has
demonstrated impressive results by utilizing an image and
camera pose-conditioned diffusion model. However, this ap-
proach encounters limitations, particularly in terms of gen-
erating inconsistent multi-view images and a tendency for
over-smoothing in the geometric output. The state-of-the-
art research, including SyncDreamer [Liu et al., 2024] and
Wonder3D [Long et al., 2024], addresses these challenges by
incorporating additional modules for consistency or employ-
ing normal supervision. However, this often compromises
the flexibility of positioning the target camera at will. Con-
trastingly, our work adopts a distinct methodology, showcas-
ing that comparable quality in views and geometry can be
achieved through a meticulously crafted distillation strategy.
Central to our approach is the insight that the unconditional
noise predictions from Zero-1-to-3 are inherently biased. We
propose the utilization of unconditional noise from the Sta-
ble Diffusion [Takagi and Nishimoto, 2023] model to rectify
this issue, as elaborated in Sec. 3.1. Our method, termed
Unbiased Score Distillation (USD), significantly enhances

the quality of the radiance field relative to previously used
SDS/SJC methods. Furthermore, we employ the optimized
NeRF [Mildenhall et al., 2020] as a consistency prior, in con-
trast to previous implicit constraints such as 3D volume or
ray aggregation. We ensure that the generated views and ge-
ometry align coherently with the distilled NeRF to achieve
consistency. We posit that specializing a diffusion model to
denoise the target object is crucial. To this end, we implement
the DreamBooth [Ruiz et al., 2023] technique and engage in
a two-stage fine-tuning process, detailed in Sec. 3.2. The first
stage involves using multi-view images from Zero-1-to-3 as
positive samples, contrasting them with text-prompt gener-
ated images as negative samples for image style learning. In
the subsequent stage, the input image serves as the positive
sample, with all Zero-1-to-3 generated images as negatives,
focusing on learning finer details. Subsequently, we introduce
a low level of noise into the NeRF renderings and employ the
fine-tuned diffusion model for denoising. The final step in-
volves applying the NeuS technique for mesh reconstruction,
while in the meanwhile using View Score Distillation to en-
sure input view consistency. Fig. 2 illustrates the complete
pipeline of our methodology.

3.1 Unbiased Score Distillation
In this section, we highlight the significant bias in Zero-1-
to-3’s unconditional noise due to insufficient unconditional
training and object-level dataset bias, affecting geometry
quality in SDS-based distillation, both theoretically and em-
pirically. We then propose a rectification method.
Bias in Unconditional Noise. As a multi-view diffuser, Zero-
1-to-3 predicts noises of a target image latent z given two con-
ditions: the input image cI and relative camera pose cP , i.e.,
it learns the probability distribution P (z|cI , cP ) for image la-
tent z. We apply Bayes’ Rule to decompose the conditional
probability:

P (z|cI , cP ) =
P (z, cI , cP )

P (cI , cP )
=

P (cI |cP , z)P (cP |z)P (z)

P (cI , cP )
(1)
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Figure 3: The qualitative comparisons with baseline models on multi-view color images. Our approach generates consistent multi-view
images while preserving the image details.

Diffusion models estimate the score [Hyvärinen and Dayan,
2005] of the data distribution, i.e., the derivative of the log
probability, giving us the following expression:

∇zlog(P (z|cI , cP )) =∇zlog(P (cI |cP , z))+
∇zlog(P (cP |z))+
∇zlog(P (z))

(2)

This leads to the score estimate with classifier-free guidance
(CFG [Ho and Salimans, 2022]):

ϵCFG
ϕ (zt, cI , cP ) = α1[ϵϕ(zt, cI , cP )− ϵϕ(zt, cP ,∅)]+

α2[ϵϕ(zt, cP ,∅)− ϵϕ(zt,∅,∅)]+

ϵϕ(zt,∅,∅)
(3)

where ϵϕ is a neural network for predicting noises given con-
ditions, α1 and α2 are guidance scales that enable separately
trading off the strength of conditions cI and cP separately. To
ensure accurate prediction of ϵϕ(zt, cP ,∅) and ϵϕ(zt,∅,∅),
one needs to randomly drop cI and cP during training ϵϕ.
However, we observed that Zero-1-to-3 did not truly follow
this procedure to supervise unconditional noise. As shown
in Fig. 4, Zero-1-to-3 only randomly dropped image condi-
tions cI while keeping cP untouched. During inference, it
replaces the tensor after fully connected (FC) layer f(·) with
zeros (not exactly equal to setting both cI and cP to zeros as
f(0) ̸= 0), leads to a bias. Moreover, the dataset used for
fine-tuning is majorly object-centric, which may also intro-
duce additional domain bias. Fully addressing this bias prob-
lem requires re-training the multi-view diffuser on a broader
and more balanced dataset, which requires tremendous effort.
Here we propose an effortless fix in the following.
Rectification. To alleviate the inaccurate unconditional
noise problem, we first set α1 = α2 = ω to elimi-
nate ϵϕ(zt, cP ,∅). We then and yield a special case of
ϵCFG
ϕ (zt, cI , cP ) as:

ϵCFG
ϕ (zt, cI , cP ) = ω[ϵϕ(zt, cI , cP )− ϵϕ(zt,∅,∅)]+

ϵϕ(zt,∅,∅)
(4)

To demonstrate our setting of α1 and α2 is valid, we pro-
vide an empirical validation can be found in the Appendix E.
Further, we consider ϵϕ(zt,∅,∅) predicts noises from only
the noisy latent and is equivalent to the unconditional noise
ϵψ (zt,∅) of Stable Diffusion (SD) as it uses the same vari-
ational autoencoders (VAE [Kingma and Welling, 2013]) as
Zero-1-to-3. As such, the bias has been well rectified. To
verify the effect of our rectification, Tab. 1 shows the de-
noising effect using various unconditional noise settings: (1)
use SD unconditional noise ϵψ (zt,∅). (2) use Zero-1-to-3
noise ϵϕ (zt, f(0, cP )) with f(0, cP ) as a condition (same to
the training process as in Fig 4). (3) use Zero-1-to-3 noise
ϵϕ (zt, 0) with 0 as a condition (referring to the inference pro-
cess, as shown in Fig 4). The SD noise generates the best re-
sult, and setting (2) is slightly better than (3) as it follows the
training set up. More details can be found in the Appendix A.
Unbiased Score Distillation. One major application of a
multi-view diffuser is to distill 3D content, represented as
NeRF paramater θ, using the SDS loss for optimization:

∇θLSDS = Et,cP ,ϵ
[
w(t)

(
ϵCFG
ϕ (zt, cI , cP )− ϵ

) ∂zt
∂θ

]
(5)

where w(t) is a weighting function, ϵ is standard Gaussian
noise, and zt refers to the noisy latent as zt =

√
αtz +√

1− αtϵ, with αt being the noise scheduler. We rewrite the
noise difference in Formula 5 by adding an additional weight-
ing factor λ to [ϵψ (zt,∅)− ϵ]:

ϵCFG
ϕ (zt, cI , cP )− ϵ = ω [ϵϕ (zt, cI , cP )− ϵψ (zt,∅)] +

λ [ϵψ (zt,∅)− ϵ]
(6)

where setting λ = 1 we get Formula 5. Inspired by DDS
[Hertz et al., 2023] and CSD [Yu et al., 2024], we observed
that setting λ = 0 can significantly improve the details of
the 3D details generated using SDS. Further details and an
in-depth analysis are provided in the Appendix D. We obtain
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Figure 4: Training and inference process of Zero-1-to-3. Training for predicting unconditional noise involves setting the cI conditions to 0 at
regular intervals.

Noise level T=50 T=100 T=200 T=300
Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
ϵψ(zt,∅) 40.26 0.992 0.008 36.94 0.988 0.014 33.99 0.981 0.023 31.98 0.974 0.027
ϵϕ(zt, f(0, cP )) 36.17 0.981 0.015 34.85 0.979 0.024 33.07 0.975 0.031 30.44 0.969 0.046
ϵϕ(zt, 0) 36.13 0.979 0.015 34.70 0.970 0.026 32.76 0.973 0.033 29.94 0.963 0.055

Table 1: Quantitative evaluation of different unconditional noises. We randomly samples 1,000 different images from the GSO dataset,
RTMV, and Objaverse, add a certain level of noise w.r.t. T, where larger T means more noise is added, and compare the denoising effect
under different conditions of Stable Diffusion and Zero-1-to-3. The top three for each metric are highlighted in red , orange, and yellow
respectively.

our Unbiased Score Distillation (USD) as:

∇θLUSD = Et,cP ,ϵ
[
w(t) [ω (ϵϕ (zt, cI , cP )− ϵψ (zt,∅))]

∂zt
∂θ

]
(7)

Our USD generates much better and consistent 3D than the
SDS/SJC method used in Zero-1-to-3, the results can be
found in the Appendix E.

3.2 Consistent View and Geometry Distillation
Although USD can be used to optimize NeRF for view syn-
thesis, the resulting images still tend to be blurry, and directly
extracting geometry from the NeRF density field introduces
noise into the mesh. Since our ultimate goal is to extract high-
quality geometry and consistent multi-views, we propose to
utilize the generated NeRF as the view consistency prior, i.e.,
the final high-quality view images should be consistent with
the NeRF rendering. Thus, our problem transformed into a
denoising problem.
Two-Stage Specified Diffusion. We leverage the recent
advance in diffusion model specialization, i.e., the Dream-
Booth [Ruiz et al., 2023], to fine-tune a 2D diffusion model
for the specific target in the input image. We observe that
the novel view images generated by Zero-1-to-3, though not
multi-view consistent, tend to have the same style as the input
image. We design a two-stage tuning method to gradually let
the diffusion model learn the object details. In the first stage,
we use the multi-view images generated by Zero-1-to-3 as
positive samples, contrasting them with text-prompt gener-
ated images as negative samples for learning the visual style
of the target. In the subsequent stage, the input image serves
as the positive sample, with all Zero-1-to-3 generated images
as negatives, focusing on learning finer details. During opti-
mization, we use a unique identifier [V] to capture the visual
style of the target. In the second stage, we set only the in-

put image as the positive sample and the images generated by
Zero-1-to-3 as negative ones, and use the additional identifier
[S] to capture the identity of the specific target.
Geometry and Texture Distillation with Input View Su-
pervision. With the specialization diffusion model, we add a
small noise, Stable Diffusion scheduler t = 200, to the NeRF
render images and conduct the denoising process. Then, we
use the NeuS technique to reconstruct the geometry from the
high-quality and clear images (i.e., 100 input images).

We observe that the input view is rarely used for optimiza-
tion of the geometry and texture in multi-view diffusers, de-
spite the fact that the input image is most faithful to the tar-
get object. To exploit the input view information, we fur-
ther develop a reference view score distillation during the
NeuS reconstruction process. Specifically, we consider the
image render from NeuS at the input image viewpoint as
zt

∗ = R(Θ, p∗), where R is the rendering function from
NeuS model defined by Θ, p∗ is the camera pose of the input
image, can be set to a particular relative pose. We define the
following reference view distillation loss as:

LRV = Et,ϵ
[
w(t)||ϵψ (zt

∗,∅)− ϵψ (yt,∅) ||22
]

(8)
where yt is input view image. We add this reference view
distillation loss LRV to original photometric loss with opti-
mized images for optimizing the NeuS parameter Θ. This
scheme is a better supervision strategy than directly applying
MSE loss on the input view. The reason for this is that, com-
pared to computing MSE loss directly at the pixel-level, our
patch-aware noise(latent)-level approach places greater em-
phasis on the perceptual quality of the image.

4 Experiments
We conduct extensive experiments, both qualitatively and
quantitatively, to demonstrate the effectiveness of our
method.
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Figure 5: Qualitative comparisons of our method with baseline approaches, namely Wonder3D, SyncDreamer, and One-2-3-45, on the GSO
dataset, focusing on the quality of the reconstructed textured meshes.

4.1 Implementation Details
Optimizing the Pipeline. We use exactly the same set of
hyperparameters for all experiments and do not perform any
per-object hyperparameter optimization. We use the implicit-
volume implementation in threestudio [Guo et al., 2023]
as our 3D representation (NeRF), which includes a multi-
resolution hash-grid and a MLP to predict density and RGB.
The NeRF is optimized for 10,000 steps with an Adam op-
timizer at a learning rate of 0.01, weight decay of 0.05, and
betas of (0.9, 0.95). For USD, the maximum and minimum
time steps are decreased from 0.98 to 0.5 and 0.02, respec-
tively, over the first 5,000 steps. We adopt the Stable Dif-
fusion [Takagi and Nishimoto, 2023] model of V2.1. The
classifier-free guidance (CFG) scale of the USD is set to 7.5
following [Wang et al., 2023b]. The DreamBooth backbone
is implemented using Stable Diffusion V2.1. In the first stage,
we use Stable Diffusion to generate 200 images as negative
samples. Additionally, we utilize 6 positive sample images
with 360◦ surrounding camera poses (at 60◦ intervals) for
training. The USD (NeRF) process takes about 1.5 hours on a
NVIDIA Tesla V100 (32GB) GPU. To achieve reduced run-
ning time, we provide additional discussions and experimen-
tal results in the Appendix C. For DreamBooth fine-tuning,
we train the model around for 600 steps with a learning-rate
as 2e-6, weight decay as 0.01 and a batch size of 2. More de-
tails on the experimental setup are provided in the Appendix
B.
Camera Setting. Since the reference image is unposed, we
assume its camera parameters [Liu, 2023] are as follows. We
set the field of view (FOV) of the camera is 40◦, and the ra-
dial distance is 1.5 meters. Note this camera setting works
for images subject to the front-view assumption. For images
taken deviating from the front view, a manual change of polar
angle or a camera estimation is required.

4.2 Evaluation Protocol
Evaluation Datasets. Following prior research [Liu et al.,
2023b; Liu et al., 2024; Long et al., 2024], we adopt the

Method Chamfer Dist.↓ Volume IoU↑
Realfusion [Melas-Kyriazi et al., 2023] 0.0819 0.2741
Magic123 [Qian et al., 2024] 0.0516 0.4528
One-2-3-45 [Liu et al., 2023a] 0.0629 0.4086
Point-E [Nichol et al., 2022] 0.0426 0.2875
Shap-E [Jun and Nichol, 2023] 0.0436 0.3584
Zero-1-to-3 [Liu et al., 2023b] 0.0339 0.5035
SyncDreamer [Liu et al., 2024] (NeuS) 0.0261 0.5421
Wonder3D [Long et al., 2024] (iNGP+NeuS) 0.0199 0.6244
Ours (NeuS) 0.0240 0.5688
Ours (iNGP+NeuS) 0.0177 0.6330

Table 2: Quantitative comparison with baseline methods. We report
Chamfer Distance and Volume IoU on the GSO dataset. The origi-
nal implementation of SyncDreamer uses vanilla NeuS for extract-
ing 3D meshes, while Wonder3D uses Instant NGP (iNGP) adapted
NeuS. We report results using both techniques for better demonstra-
tion.

Method PSNR↑ SSIM↑ LPIPS↓
Realfusion [Melas-Kyriazi et al., 2023] 15.26 0.722 0.283
Zero-1-to-3 [Liu et al., 2023b] 18.93 0.779 0.166
SyncDreamer [Liu et al., 2024] 20.05 0.798 0.146
Wonder3D [Long et al., 2024] 26.07 0.924 0.065
Ours 25.38 0.927 0.049

Table 3: The quantitative comparison in novel view synthesis. We
report PSNR, SSIM, LPIPS on the GSO dataset.

Google Scanned Object dataset [Downs et al., 2022] for our
evaluation, which includes a wide variety of common every-
day objects. Our evaluation dataset matches that of Sync-
Dreamer [Liu et al., 2024], consisting of 30 objects that span
from everyday items to animals. For each object in the eval-
uation set, we render an image with a size of 256 × 256 and
use it as the input. Additionally, to assess the generalization
ability of our model, we include images with diverse styles
collected from the website in Zero-1-to-3, SyncDreamer and
Wonder3D.
Metrics. To evaluate the quality of single view reconstruc-
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Method Chamfer Dist.↓ Volume IoU↑
w/o USD 0.0253 0.5515
w/o DB[1st+2nd] 0.0217 0.6023
w/o DB[2nd] 0.0190 0.6216
w/o LRV 0.0185 0.6229

Ours 0.0177 0.6330

Table 4: Quantitative results of ablation studies. We report Chamfer
Distance and Volume IoU on the GSO dataset.

tion, we used two commonly used metrics: the chamfer dis-
tance (CD) between the ground truth shape and the recon-
structed shape, and the volume IoU. Due to different methods
using different normative systems, before calculating these
two metrics, we first align the generated shapes with the ba-
sic fact shapes. Moreover, we adopt the metrics PSNR, SSIM
and LPIPS for evaluating the generated color images.

4.3 Ablation Study
We validate our design choices by ablating 4 major model
variants, that are without Unbiased Score Distillation, without
reference view distillation loss, without the two-stage Dream-
Booth (DB). As shown in Fig. 6, the 3D models generated
without USD exhibit biased texture colors, and their shapes
are not smooth. Not using reference view supervision will
result in the inability to recover the same texture details as
the input image, and not using DB will result in blurring of
texture details. We also conducted a quantitative analysis on
the GSO dataset, presented in Tab. 4. The results demonstrate
that USD is crucial for geometric accuracy, and all our sub-
modules collectively enhance overall performance.

4.4 Different Viewing Angle Comparisons
We found that SyncDreamer [Liu et al., 2024] and Won-
der3D [Long et al., 2024] are very sensitive to viewing an-
gles. If a relatively high viewing angle is input, SyncDreamer
and Wonder3D will predict incorrect multi-view images. The
results can be found in the Appendix E.

4.5 Single View Reconstruction
We evaluate the quality of the reconstructed geometry of
different methods. The quantitative results are summarized
in Tab. 2, and the qualitative comparisons are presented in
Fig. 5. The quality of Wonder3D shape reconstruction de-
pends on the perspective of the input view, such as ‘Train’
shown in Fig. 5, where Wonder3D generated incorrect predic-
tion results. The shape generated by SyncDreamer undergoes
deformation due to the camera pose in the input view. One-2-
3-45 [Liu et al., 2023a] attempts to reconstruct meshes from
the multiview-inconsistent outputs of Zero-1-to-3 [Liu et al.,
2023b]. While it can capture coarse geometries, it loses im-
portant details in the process. In contrast, our method can
achieve good reconstruction quality and texture in terms of
geometric structure and texture. In the paper, all the surface
extraction demonstrated by our method is built on the Instant
NGP (iNGP) [Müller et al., 2022] based SDF reconstruction
method [Guo, 2022], and we use Blender Cycles [Commu-
nity, 2018] to render the results.

w/o
USD

Input 
Images

w/o 
DB[1st+2nd]

w/o
DB[2nd] Oursw/o

ℒ𝑅𝑉

Figure 6: Ablation study on the effect of each components, including
the USD (Sec. 3.1), the reference view score distillation (Sec. 3.2),
the DreamBooth (Sec. 3.2) refinement of our method.

4.6 Novel View Synthesis
We evaluate the quality of novel view synthesis for differ-
ent methods. The quantitative results are presented in Tab. 3,
and the qualitative results can be found in Fig. 3. Zero-
1-to-3 produces visually reasonable images, but they lack
multi-view consistency since it operates on each view inde-
pendently (we don’t show the results of Zero-1-to-3). Al-
though SyncDreamer introduces a volume attention scheme
to enhance the consistency of multi-view images, their model
is sensitive to the elevation degrees of the input images and
tends to produce unreasonable results. Wonder3D ensures 3D
consistency by generating normal maps, but may result in in-
correct results for some input viewpoints.

4.7 Text-to-Image-to-3D
As a case study, we combine text-to-image models, i.e., the
Stable Diffusion or Imagen [Saharia et al., 2022] to gener-
ate 3D models from text. We show some examples in the
Appendix E. Compared to DreamFusion [Poole et al., 2023],
ProlificDreamer [Wang et al., 2023b] and MVDream [Shi et
al., 2023], our method shows no multi-face Janus problem
and conforms to the text faithfully.

5 Conclusions
In this work, we introduce an optimized approach for distill-
ing geometry and views from a multi-view diffuser, with a
specific focus on the Zero-1-to-3 model. We observed that
the direct application of the SDS/SJC technique to Zero-1-to-
3 is often suboptimal, primarily due to bias issues inherent
in unconditional noise. To address this, we propose an Unbi-
ased Score Distillation (USD) strategy by leveraging uncon-
ditioned noises from a 2D diffusion model to effectively en-
hance the optimized radiance field. Moreover, we developed
a two-stage DreamBooth refinement process to improve the
rendering of views. This process ensures consistency across
multiple perspectives while simultaneously enhancing image
quality. While we have identified and addressed the bias is-
sue in the Zero-1-to-3 model, the underlying causes remain to
be fully understood. Future research will delve into the theo-
retical aspects of this bias problem. Additionally, we aim to
explore the potential applications of USD in other fields, such
as image translation and view synthesis.
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