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Abstract

Spatio-temporal trajectories are crucial for data
mining tasks, requiring versatile learning meth-
ods that can accurately extract movement pat-
terns and travel purposes. While large language
models (LLMs) have shown remarkable versatility
through training on extensive datasets, and trajec-
tories share similarities with natural language, stan-
dard LLMs cannot directly handle spatio-temporal
features or extract trajectory-specific information.
We propose TrajCogn, a model that effectively
adapts LLMs for trajectory learning. TrajCogn in-
corporates a novel trajectory semantic embedder to
process spatio-temporal features and extract move-
ment patterns and travel purposes, along with a tra-
jectory prompt that integrates this information into
LLMs for various downstream tasks. Experiments
on three real-world datasets and four representative
tasks demonstrate TrajCogn’s effectiveness.

1 Introduction

A spatio-temporal (ST)
of timestamped locations,
((I1,t1), (Iayt2), . .y (In, tn)). Tt tracks the movements
of an individual or object in a geographical space. With
the widespread use of mobile phones, car navigation sys-
tems, location-based services, and online map services, ST
trajectories are being recorded and collected from various
sources [Zheng et al.2008]. They enable a wide range of
spatio-temporal data mining tasks and applications, including
trajectory prediction [Feng et al.2018, Kong and Wu2018],
POI recommendation [Chen et al.2022a, Chen et al.2025],
travel time estimation [Wang et al.2018, Shen et al.2025],
trajectory similarity measurement [Yao et al.2019, Fang et
al.2022a, Li et al.2018a, Yang et al.2021a], and trajectory-
user linking [Zhou et al.2018, Miao et al.2020].

trajectory is a sequence
represented as T =
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Figure 1: A trajectory of commuting to work.

To enhance the use of ST trajectories in tasks and applica-
tions, it is essential to develop a trajectory learning method
that 1) effectively captures the information embedded in the
trajectory, specifically, movement patterns that describe how
the individual or object moves from one location to another
and travel purposes that indicate the underlying reason or mo-
tivation for the movement; and 2) accurately performs a va-
riety of downstream tasks, reducing the need for designing
a separate method for each task and application. methods
primarily use self-supervised learning [Dai and Le2015, De-
vlin et al.2019] to map trajectories into embedding vec-
tors, training models from scratch [Yang et al.2023, Fu and
Lee2020, Jiang et al.2023]. However, these models face lim-
itations due to the complexity of trajectory information and
constraints in model capacity, as well as the size and quality
of available datasets.

On the other hand, versatile models have been highly
successful in the domain of natural language processing
(NLP), showcasing promising results on various downstream
tasks [Radford et al.2019,Devlin et al.2019,Raffel et al.2020,
Du et al.2022]. These models, often referred to as large lan-
guage models (LLMs), benefit mainly from their large capac-
ity, abundant large-scale corpus datasets, and well-thought-
out prompt engineering [Brown et al.2020]. Given the simi-
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larities between trajectories and sentences in NLP, LLMs hold
promise for enhancing trajectory learning models. Trajectory
points share spatio-temporal correlations akin to word con-
texts, with movement patterns and travel purposes resembling
word and sentence semantics. However, adapting LLMs for
trajectory modeling presents challenges.

First, LLMs are incapable of processing the raw fea-
tures in trajectories. LLMs are designed for discrete word
sequences, but trajectories involve continuous and discrete
spatio-temporal data like GPS coordinates and timestamps,
which are difficult for LLMs to process. Second, LLMs are
unable to extract the movement patterns and travel pur-
poses directly from trajectories. For example, a moving
object might go straight, accelerate, or turn, as shown in Fig-
ure 1. These movement patterns can be derived from changes
in coordinates, timestamps, and velocities, while travel pur-
poses are linked to the trajectory’s origin and destination. The
example trajectory which starts near residential buildings and
ends near an office building suggests commuting. LLMs,
however, focus on word semantics and are not equipped to
interpret these spatio-temporal patterns or purposes.

To address these challenges and effectively leverage LLMs
to construct a versatile trajectory learning model, we propose
a novel approach named Trajectory Cognition (TrajCogn).
TrajCogn employs a trajectory prompt to integrate movement
patterns and travel purposes, and uses task-p-tuning to adapt
to various tasks and make accurate predictions. It includes
a trajectory semantic embedder to enable LLMs to process
spatio-temporal features and extract movement patterns and
travel purposes. Additionally, a cross-reconstruction pretext
task based on self-supervised learning is implemented to en-
hance TrajCogn’s ability to learn from trajectory data. Our
contributions are summarized as follows:

* We introduce TrajCogn, a model that migrates LLMs to
cognize movement patterns and travel purposes from tra-
jectories, accurately performing different downstream tasks
despite small dataset limitations.

* We develop a novel trajectory prompt to integrate move-
ment patterns and travel semantics into LLMs, enhancing
adaptability to various tasks.

* We propose a trajectory semantic embedder to process
spatio-temporal features, allowing LLMs to extract move-
ment patterns and travel semantics explainably.

* We conduct extensive experiments on three real-world tra-
jectory datasets, and the results demonstrate TrajCogn’s
versatility and strong performance across different tasks.

2 Related Works

Trajectory Learning Models aim to extract information
from trajectories and perform various related tasks. Com-
pared to task-specific prediction models [Feng et al.2018,
Yao et al.2019, Fang et al.2022a, Wang et al.2018, Chen et
al.2022b, Li et al.2018b], which are end-to-end trained for
one specific task, trajectory learning models are versatile and
useful in modern intelligent transportation applications that
usually involve multiple tasks.

Most existing efforts adhere to the self-supervised learn-
ing approach. Earlier research commonly used RNNs to re-
construct discrete locations [Li ef al.2018a, Liu et al.2020, Fu
and Lee2020] or continuous movement features [Yao et
al.2017] of trajectories based on auto-encoding [Hinton and
Salakhutdinov2006] and variational auto-encoders [Kingma
and Welling2014]. Additionally, methods like CTLE [Lin
et al.2021] and Toast [Chen et al.2021], based on trans-
formers [Vaswani et al.2017] and Masked Language Model
(MLM) tasks [Devlin et al.2019], treat trajectory points as
tokens in a sentence. Furthermore, contrastive learning meth-
ods such as PIM [Yang et al.2021b], TrajCL [Chang et
al.2023], and MMTEC [Lin er al.2023] implicitly model
the travel purpose of a trajectory. More recently, meth-
ods combining multiple approaches have been developed.
START [Jiang et al.2023] leverages both MLM tasks and
SimCLR [Chen et al.2020], while LightPath [Yang et
al.2023] incorporates a reconstruction task and a contrastive-
style rational reasoning task.

Since these methods are self-supervised and trained from
scratch, their performance heavily relies on the size and qual-
ity of the training datasets, which often have limitations. De-
spite the achievements of existing methods, further efforts
are needed to enhance the performance of trajectory learning
models.

Cross-domain Application of LLMs. The versatility and
superior performance of large language models (LLMs) in
the NLP domain have led to efforts to adopt LLMs in other
fields to enhance performance. GPT4TS [Zhou et al.2023]
uses LLMs by freezing the self-attention feed-forward lay-
ers. Time-LLM [Jin et al.2023] introduces a reprogram-
ming framework. LM4VisualEncoding [Pang et al.2023]
incorporates a frozen transformer block from an LLM as
a general-purpose visual encoder layer. UrbanGPT [Li et
al.2024a] employs spatio-temporal encoding combined with
LLM instruction-tuning for generalized zero-shot prediction.
FlashST [Li et al.2024b] introduces an innovative prompt-
tuning framework designed to adapt pre-trained models for
spatio-temporal prediction tasks.

Although these studies provide valuable insights, their
methods cannot be directly applied to trajectory learning.
Trajectory data has unique spatio-temporal features that re-
quire tailored approaches and considerations.

3 Preliminaries

3.1 Definition

Definition 1 (Road Network). A road network is represented
as a directed graph G = (V, E). V is a set of |V| vertices, and
each vertex v; € V represents an intersection between road
segments or the end of a segment. & is a set of |E| segments,
where each segment s; € & represents a road segment linking
two vertices.

Definition 2 (Trajectory). A trajectory T is a se-
quence of timestamped locations, represented as T =
((l1,t1), (Iayt2), -, (Ln, tn)). Here, each location l; is rep-
resented by its latitude and longitude coordinates, i.e., l; =
(I 1'"8). The timestamp t; indicates when l; is visited. To
simplify, we denote the i-th trajectory point (1;,t;) as ;.
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Figure 2: Overall framework of TrajCogn.

Definition 3 (Point of Interest, POI). A POI is a particular
location that individuals may find valuable or intriguing. It is
denoted as p = (I, n, a), where l represents its coordinates, n
indicates its name, and a refers to its address.

3.2 Problem Statement

Trajectory Learning. The objective is to develop a trajectory
learning model fg with a set of learnable parameters ©. This
model takes a trajectory 7 as input and extracts information
from it. Subsequently, this model can adapt to various down-
stream tasks by accurately predicting the required outputs y
for the task at hand, denoted as § = fo(7). For example, in
travel time estimation, y and ¢ represent the ground truth and
the estimated travel time, respectively.

3.3 Pre-trained Language Model

In this work, a Large Language Model (LLM) refers to a
Transformer-based language model pre-trained on corpus
datasets. It consists of four essential functions. Formally,

LLM = LMHead o TransBlk c WTE o Tok(-), (1)

where o represents the composition of functions. Specifically,
a LLM consists of a tokenizer (Tok) to break down text into
discrete tokens, a word token embedding layer (WTE) that
converts the tokens into numerical vectors to capture their lin-
guistic features, a transformer block (TransBlk) that further
processes the vectors to capture their contextual relationships,
and a prediction head (LMHead) that is respondible for mak-
ing specific predictions, such as generating the next word in
a sequence. In a LLM, the dimension of the word token em-
bedding is denoted as d.

4 Methodology

4.1 Overview

Figure 2 shows the overall framework of TrajCogn. It is im-
plemented in the following four steps:

1. Trajectory and POI Feature Extraction: Given a tra-
jectory T, we perform map-matching and calculate high-
order features such as velocity, acceleration, and direction
to expand its features, denoted as 7. We also extract the
address and name features of POIs near the trajectory’s
origin and destination.

2. Trajectory Prompt Construction: We integrate the ex-
tracted features into one sequence, called the trajec-
tory prompt. This prompt also includes a task-p-tuning
mechanism-based suffix to enable adaptation to various
tasks.

3. Trajectory Prompt Embedding: We map the trajectory
prompt into a sequence of d-dimensional embeddings with
a trajectory semantic embedder. This embedder is de-
signed to enable LLMs to process spatio-temporal features
and effectively extract movement patterns and travel pur-
poses with explainability.

4. Model Training and Task Adaptation: We process the
embedding sequence with a LLM Encoder for Trajectory
(LET). The last point of the output sequence of LET is
used for performing downstream tasks. The learnable pa-
rameters in the model are refined by integrating a cross-
reconstruction pretext task and further optimized with a
dedicated objective function for each specific downstream
task.

The following sections provide a detailed explanation of
the steps in TrajCogn.

4.2 Trajectory Prompt

As illustrated in Figure 1, movement patterns in a trajectory
can be represented by positions on the road network and vari-
ations in spatio-temporal features. Travel purposes can be
inferred from the functionalities of locations near the OD
points, and the address and name features of a POI indicate
its functionalities.
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Figure 3: Movement pattern semantic projection.

To incorporate the movement patterns and travel purposes
of a trajectory, we first extract spatio-temporal and POI fea-
tures from the trajectory, as shown in Figure 2(a). To integrate
these features into LLMs, we introduce a Trajectory Prompt,
as illustrated in Figure 2(b). This prompt fuses natural lan-
guage and the extracted features into a sequence. Further-
more, to adapt the model to different downstream tasks, we
introduce a task-p-tuning mechanism, which provides a spe-
cific suffix for each task.

Trajectory and POI Feature Extraction
Given a trajectory 7 = ((l1,t1), (I2,t2), ..., (In, t,)) and a
road network G, we apply the Leuven Map Matching (LMM)
algorithm to map each trajectory point 7; onto the road net-
work, denoted as LMM(7;,G) = (I;, 84, t;), where s; is the
road segment containing [;. We then calculate the velocity
v;, acceleration a;, and direction 6; of each point based on
differences between consecutive points. The trajectory point
7. = (li, 8i, i, vi, a4, 0;) is formed with these spatio-temporal
features, setting the velocity and acceleration of the last point
T, to 0. The final trajectory 7 = (71, 72, ..., Tp) is obtained.
For POI feature extraction, we first identify the origin [y
and destination /,, of the trajectory 7. Using the Ball Tree
algorithm, we retrieve the closest Npor POIs to [y, denoted

as Pp = {pgl), L. . pgNPOI)}, ordered by distance from the
origin. The same process is applied to retrieve POIs around
l,,, denoted as Pp. For each POI p € Pp UPp, we extract its
address p.a and name p.n features, both represented as word
lists.

Trajectory Prompt Construction

The trajectory prompt is made up of four parts. First, the
(Head Part) introduces the context by stating ”The trajectory
happened on {day-in-week} at {hour} o’clock.” Second, the
(POI Part) provides details about the POIs near the origin and

destination, saying {po 7p0)’___7p(()Np01)}’

ends near: {pd ,pgz), . 7p((iNPOI)}.” Third, the (Trajectory
Part) includes the extracted features of the trajectory points,
described as “passes through {71, T2, ..., Tn}.”

Finally, the (Suffix Prompt) is constructed using the task-
p-tuning mechanism, which combines hard and soft compo-
nents [Han er al.2022]. The hard component contains task-
specific words, while the soft component is a task-specific
token represented as [Token]. For example, for travel time

'starts near:

Words
straight, turn, u-turn, brake, acceler-
ate, decelerate, stop, overtake, zigzag,
swerve, detour, slide, cruise, glide, cau-
tious, reckless, leisurely
steady, smooth, rough, constant, dy-
namic, fast, slow, rapid, rushed, erratic,
agile, stationary, sluggish

Categories

Driving Behaviors

Traveling Dynamics

Table 1: Words describing movement patterns.

estimation (TTE), the suffix prompt would read “the rotal
travel time is [TTEToken].” For destination prediction (DP), it
would be “the destination is [DPToken].” For trajectory clas-
sification, it would be “the user connected to this trajectory
is [TCToken].”

4.3 Trajectory Semantic Embedder

In order to equip LLMs with the ability to process the spatio-
temporal features in the trajectory prompt, we propose the
Trajectory Semantic Embedder, demonstrated in Figure 2(c).

Spatio-temporal Feature Embedding

The spatio-temporal features in the trajectory prompt are em-
bedded into a d-dimensional space. For discrete road seg-
ments s;, an index-fetching embedding module E¢ € RI€I*4
is used. Timestamps ¢; are embedded using modules Eg4,, €
R7™*? and E) € R?>**? for day-in-week and hour features,
respectively. Continuous features of trajectory points are em-
bedded using a one-dimensional convolution, inspired by pre-
vious studies [Wang et al.2018, Liang et al.2022], to model
movement patterns. The continuous embedding vector of 7;
is obtained as follows:

Conle(

Econ() L JZJFL J) (2)

k  denotes the kernel size, T =
, Vi, @i, 05, t;) presents the continuous features.

Finally, the embedding vector e; of the ¢-th trajectory point
7; 1s derived as follows:

€; = Econ(i) + Ef(Si) + Edw(ti) + Eh(ti) 3)

Movement Pattern Semantic Projection

To improve the model’s understanding and interpretability of
movement patterns, each embedding vector e; is projected
onto a semantic-rich textual space, as shown in Figure 3.
This space is defined by a set of descriptive words M and
a set of vitual words A. The descriptive words are listed in
Table 1 and the virtual words are initialized randomly and
trained end-to-end. These words form anchor words, whose
embeddings are concatenated into E,;,. Using multi-head at-
tention [Vaswani et al.2017], where e; serves as the query
and FE,, acts as both the key and value, e; is projected onto
this space, resulting in z;. The final embedding vector z; is
obtained by adding a residual connection through a two-layer
MLP:

where
lat jlat
(li ) lz

The sequence of these embeddings for the trajectory is de-
noted as Z7 = (z1,22,...,2n).
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POI Feature Embedding

The travel purpose is inferred by analyzing the functionalities
of POIs near the origin and destination points. To model these
functionalities, we derive embeddings for POIs based on their
address and name features. For the closest POIs to the origin
or destination, pg,l) or p((il), embeddings are obtained by con-
catenating their address and name:

Ero(p) = WTE o Tok(p.al|p.n), S)

where || denotes list concatenation. For other POIs, only the
name is used for embedding: Et(p) = WTE o Tok(p.n).

Sequence of Trajectory Prompt Embeddings

After obtaining embeddings of spatio-temporal and POI fea-
tures, the remaining textual components in the trajectory
prompt are embedded using WTE o Tok. Then, we concate-
nate the embeddings into a sequence in the same order as their
raw features appear in the prompt. For example, the embed-
dings of the trajectory part are obtained as follows:

Z; = E1.x("passes through”)|| Z 1 6)

The embeddings of the (Head Part), (POI Part), and
(Suffix Prompt) are denoted as Z, Z,, and Z, respec-
tively. Finally, the sequence of trajectory prompt embeddings
is gathered as follows:

Z:ZhHZpHZt”Zs (7

4.4 LLM Encoder for Trajectory

We use the transformer block TransBlk from an LLM as
the backbone for the proposed LLM Encoder for Trajectory
(LET). To better adapt the pre-trained TransBlk to trajectory
learning, we employ the Low Rank Adaptation (LoRA) algo-
rithm [Hu ef al.2022], adding extra parameters to TransBlk.

Construction of LET

As illustrated in Figure 2(d), all parameters in the TransBlk
are kept fixed, while we introduce a new learnable parameter
matrix in every self-attention block by applying LoRA algo-
rithm. The proposed LET can be expressed as follows:

LET = LoRA(TransBlk) 8)

LET takes the embedding sequence Z from Equation 7
as input, and outputs a sequence of hidden vectors H =
LET(Z), H € RE*4, where L represents the length of Z.

Adaptation to Downstream Tasks

LET adapts to different downstream tasks using the task-p-
tuning mechanism described in Section 4.2. Specifically, the
hidden vector corresponding to the task-specific token, i.e.,
the L-th hidden vector hy,gc € R? in H, can be utilized to
perform downstream tasks.

In this study, we present Travel Time Estimation (TTE),
Destination Prediction (DP), Similar Trajectory Search
(STS) and Trajectory Classification (TC) tasks for evalua-
tion, as shown in Figure 2(e).

The TTE task aims to estimate travel time using spatial
features and departure time, excluding time-related features.
A two-layer MLP is used to predict travel time: §rrg =
MLP7rE (Ptask)-

N

I LLM Encoder for Trajectory(Frozen TransBlk + Lol{'A) 1 83 Ima Ihsa |ﬂ3|ﬂ'3|93

[y [} [ 4 4 [y 1 gradieit
] [ A el = 1= =
(IO O O eEE | [EllEeslas]s)
1 t I R I

I Trajectory Semantic Embedder H MLP Predictor I

3 + [N :
(Head Part ] [ POIPart | passes through @-@~Q~0~0 7

Figure 4: Reconstruction of trajectory points in cross-reconstruction
pretext task.

The DP task aims to predict the destination road segment,
excluding the last 5 trajectory points and nearby POIs to pre-
vent data leakage. A two-layer MLP predicts the segment:
gpp = argmax,(p), p = Softmax(MLP (hask)).

The STS task aims to find the most similar trajectory us-
ing cosine similarity on hy,g. We construct ground truth by
selecting 1,000 test trajectories, using odd-numbered points
as queries 79 and even-numbered points as targets 7°. We
exclude the 10 closest trajectories and randomly select 5,000
others as negatives. Distances are calculated by downsam-
pling to a uniform length and using mean square error, as
per [Fang et al.2022b].

The TC task aims to classify trajectories by driver, us-
ing a two-layer MLP to predict the driver: ¢yrc =
argmax;(p), p = Softmax(MLP (htask))

4.5 Model Training

We propose a cross-reconstruction pretext task to train the
learnable parameters in the model, helping it adapt to trajec-
tories. Before performing a specific task, the model can be
further fine-tuned with supervision for that task.

Cross-reconstrution Pretext Task
The proposed pretext task involves reconstructing each tra-
jectory point given (Head Part) and (POI Part), and recon-
structing each POI given (Head Part) and (Trajectory Part).
As shown in Figure 4, for trajectory points, LET pro-
cesses embeddings up to the ¢ — 1 step as Hyyj;—1 =
LET(Zy||Z,||Z+,:i-1), and predicting features with a two-
layer MLP. The loss L,j combines the cross-entropy loss of
the predicted segments and the MSE loss of the predicted
continuous features. For POIs, LET processes embeddings
similarly as Hpop;—1 = LET(Z||Z¢||Zp,.i—1), predicting
features with the LLM’s LMHead. The loss Lpoy is the cross-
entropy of predicted features. The total pretext loss is

Epre = Etraj + EPOI- 9
Teacher-forcing is used to enhance training efficiency.

Task-specific Fine-tuning

When performing a specific task, the proposed model can be
fine-tuned with the task’s supervision to further improve pre-
diction accuracy.

For the TTE task, the loss function is defined with mean
square error (MSE) loss. For the DP and TC task, the loss
function is defined with the cross-entropy loss. The STS task
does not require fine-tuning, using the hidden state h g from
the pretext task directly.
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Bold denotes the best result, and underline denotes the second-best result. T means higher is better, and | means lower is better.

Task | Travel Time Estimation | Destination Prediction | Similar Trajectory Search
Datasets | Methods | RMSE (sec) | MAE (sec) | MAPE (%) | | ACC@1 (%)t ACC@5(%)* Recall (%) | MeanRank |  ACC@I(%)1 ACC@5(%)1
Traj2vec 130.872 £2.013  59.993 +2.225 14.870 = 0.698 | 43.074 £1.255 73.899 + 1.568 14.760 +0.345 | 3.371 +£0.156  83.325 £0.754 89.375 + 0.459
T2vec 128.508 +2.600  60.520 +2.575 15224 +0.446 | 47.739 £ 0.239 73.509 +0.147 16.638 +0.108 | 3.345 4+ 0.380 81.450 £0.778 93.700 + 1.838
TremBR 125.535+2.849 57.965 +2.588 13.964 - 0.860 | 48.987 £0.377 72.082+0.280 17.010 +0.495 | 4.659 +1.010 83.980 +1.145 89.880 + 0.303
CTLE 132.636 +£3.973  57.481 + 1.144 13.153 £ 0.750 | 51.004 £ 0.683  79.434 + 0.641 21.467 +0.704 | 9.429 4+ 1.587 53.767 £ 7.414  69.200 + 4.508
Chengdu Toast 128.793 £2.566  60.997 + 3.537 14.883 + 0.576 | 50.897 £0.495 79.664 +0.498 21.068 +0.383 | 5944 4+ 1.130  53.640 +2.244  71.600 + 2.819
TrajCL 120.211 +1.040  59.816 & 1.841 14.741 £ 0.443 | 50.847 +0.249 79.693 + 0.577 21.572 +£0.324 | 1.198 £0.219  95.125 +5.022 98.875 + 1.350
START 122205 +3.181  55.922 +2.397 12717 +0.788 | 52.775 £ 0.311 80.423 +0.409 23.316 +0.310 | 1.089 4 0.041  96.933 +2.060 99.900 + 0.100
LightPath 119.23 £2.367 55.614 &+ 1.518 12.760 + 0.854 | 49.154 4+ 0.234  78.587 + 0.583  20.660 + 0.273 | 27.266 4+ 3.544  74.267 +4.765 86.100 £ 3.874
TrajCogn (ours) | 115.079 + 1.608 51.973 + 1.922 11.635 + 0.587 | 59.594 + 0.867 86.740 + 0.294 30.184 + 0.875 | 1.068 + 0.044  99.240 + 0.152  99.940 + 0.060

Task | Trajectory Classification | Destination Prediction | Similar Trajectory Search
Datasets ‘ Methods ‘ ACC@1 (%) 1T ACC@5 (%) 1 Recall (%) 1 ‘ ACC@1 (%) 1T ACC@S5 (%) 1 Recall (%) 1 ‘ Mean Rank | ACC@I1 (%) 1 ACC@5 (%) T
Traj2vec 51.469 £+ 1.221 95464 £0.135 45225+ 2.185 | 19.403 £0.754 42.086 +0.735 4.832 +0.578 | 2.365 £0.304 90.320 £ 1.492 93.838 £ 0.960
T2vec 50.880 £ 1.964 96.248 + 0.044 49.191 £ 1.933 | 20.168 + 0.246  43.230 £ 0.881 5.324 +0.483 | 1.683 £0.108 91.640 £0.913 95.133 £ 0.404
Trembr 55.300 £0.960 95.581 £0.113 50.321 £ 1.703 | 20.472 +£0.762 43.974 +0.153 5.626 £ 0.392 | 2.051 £0.317 89.908 £+ 1.016 93.504 + 0.537
CTLE 85.162 £ 4.111 97.426 £ 0.361 66.663 £ 3.049 | 18.775 £ 0.917 40.718 £ 1.093  2.796 £ 0.655 | 5.589 +0.621 64.675 £ 4.565 82.750 + 4.778
Porto Toast 51.102 £4.921 82.088 £5.294 27.604 +4.898 | 18.731 +£0.353 39.673 +0.688 2.412 +0.273 | 6.013 £1.097 61.533 +3.886 80.367 + 2.602
TrajCL 88.012 £2.085 96.308 +0.342  76.217 4 2.541 | 20.601 +0.121  45.876 +0.204 4.590 £0.200 | 1.196 £ 0.0462 93.500 + 0.765 98.933 + 0.408
START 89.464 +3.085 97.122 £0.612 73913 £3.183 | 21.377 £0.129 46.777 £0.158 5.750 £ 0.030 | 1.127 £0.016  96.500 & 0.141  99.300 + 0.212
LightPath 88.294 +0.398 93.272 £0.033  86.241 + 0.671 | 22.092 +0.102 47.131 £0.092 5.728 £0.491 | 5.678 £0.309  83.067 +2.594 90.578 + 1.034
TrajCogn (Ours) | 92.021 + 1.145 97.443 + 0.302 87.101 + 2.325 | 22.609 + 0.524 48.827 + 0.364 6.459 + 0.092 | 1.034 £ 0.007 99.600 + 0.216 99.900 + 0.083

Table 2: Overall performance of methods on Chengdu and Porto.

Task | Travel Time Estimation | Destination Prediction | Similar Trajectory Search
Methods ‘ RMSE (sec) | MAE (sec) | MAPE (%) | ‘ ACC@l1 (%)1 ACC@5 (%) 1 Recall (%) 1 ‘ MeanRank | ACC@1 (%) 1T ACC@S5 (%) 1
w/o PT 120.737 £ 0.634 54951 +£2.632 12.087 £ 0.980 | 57.455 £0.723 85.331 £0.161 28.390 + 1.512 | 3.914 £0.033  88.000 & 0.566  94.600 + 0.707
w/o POL 116.132 £2.131 52941 £4.453 12.080 £0.924 | 58.711 £0.215 86.128 £ 0.118 29.372 £ 0.666 | 1.092 = 0.065 98.200 £ 2.115 99.325 £ 0.754
w/o Conv 117.038 £2.237 53402 £3.175 11.836 +1.175 | 59.078 £ 1.054 86.200 + 0.673  29.521 4+ 1.477 | 1.137 £0.050 96.733 £ 1.823  98.700 £ 0.781
w/o PSP 115.454 £5.551  53.003 £2.363 12.265 £ 0.856 | 58.797 £ 0.698 86.166 + 0.460 29.503 £+ 0.779 | 1.256 + 0.256 96.667 + 2.214  98.367 + 1.037
w/o M 115.233 £ 0.509 52.790 £3.297 11.891 £0.794 | 58.930 £0.220 86.668 + 0.324  29.626 £ 0.287 | 1.069 & 0.022  98.525 £ 0.551  99.350 £ 0.100
TrajCogn (full) | 115.079 + 1.608 51.973 + 1.922 11.635 + 0.587 | 59.594 + 0.867 86.740 + 0.294  30.184 + 0.875 | 1.068 + 0.044  99.240 + 0.152  99.940 + 0.060

Table 3: Performance of variants of TrajCogn.

5 Experiments

5.1 Datasets

In our experiments, we use three real-world datasets called
Chengdu, Xi’an and Porto. Chengdu and Xi’an datasets were
released by Didi! and consist of GPS trajectories recorded by
taxis in Chengdu and Xi’an, China. Porto is an open-source
dataset released for a Kaggle competition®. Trajectories with
fewer than 6 points were excluded. Road networks from
OpenStreetMap® were used for map-matching. An overview
of the dataset statistics is shown in Appendix A.

5.2 Comparison Methods

We compare the proposed method with several state-of-the-
art trajectory learning methods. Traj2vec [Yao er al.2017]
calculates features with sliding windows and trains with an
auto-regressive pretext task. T2vec [Li et al.2018a] pre-
trains the model using a denoising auto-encoder to recon-
struct trajecotories. TremBR [Fu and Lee2020] constructs an
RNN-based seq2seq model for recovering road segments and
times. CTLE [Lin et al.2021] utilizes a bi-directional Trans-
former with MLM tasks for location and hour predictions.
Toast [Chen ef al.2021] employs a context-aware node2vec
model with MLM and sequence discrimination tasks. Tra-
JCL [Chang er al.2023] introduces a dual-feature, attention-
based encoder trained with InfoNCE loss. START [Jiang ez

"https://gaia.didichuxing.com/

2https://www.kaggle.com/c/pkdd-15-predict-taxi-service-
trajectory-i

3https://www.openstreetmap.org/

al.2023] incorporates a time-aware encoder and GAT, trained
with MLM and SimCLR-based contrastive tasks. Light-
Path [Yang er al.2023] uses a sparse path encoder with path
reconstruction and cross-view contrastive tasks.

5.3 Settings

For each dataset, we divide the trajectories into training, val-
idation, and testing sets in an 8:1:1 ratio, ordered by depar-
ture time. Pre-training for the cross-reconstruction task and
embedding methods lasts 20 epochs, with early stopping for
downstream predictors based on validation performance.

All models are implemented using PyTorch [Paszke et
al.2019]. We choose GPT2 [Radford et al.2019] as the foun-
dation LLM to develop our model and obtain addresses and
names of POIs using Amap APIs*. Our source codes are
available at https://github.com/Zerul19/TrajCogn. Key hyper-
parameters for TrajCogn are Ny = 15, K = 5, r = §, and
Npor = 3, optimized based on Acc@1 and Recall for des-
tination prediction on Chengdu’s validation set. The Adam
optimizer is used with a learning rate of le-4 for our method
and 0.001 for others. Experiments run on Ubuntu 22.04 with
Intel(R) CPUs and nVidia(R) TITAN RTX GPUs, repeated 5
times to report mean and deviation of metrics.

5.4 Performance Comparison

Overall Performance
Table 2 present a comprehensive comparison of the per-
formance of all task-adaptable trajectory learning methods

*https://Ibs.amap.com/
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Figure 5: Scalability of fine-tuning on Chengdu.

across four tasks and two datasets. The TTE task was ex-
cluded for Porto due to potential data leakage from equal-
interval sampling, and trajectory classification was limited to
Porto due to insufficient trajectories per driver in Chengdu.
Our proposed method consistently outperforms the others and
performs well across tasks, providing evidence that it is an
advanced task-adaptable trajectory learning method.

Methods like Traj2vec, T2vec, and TremBR use RNN-
based frameworks but lack crucial spatio-temporal features,
leading to poor downstream performance. CTLE and Toast
use bi-directional Transformers with MLM tasks [Devlin et
al.2019] but miss essential continuous features and travel
purposes, affecting their STS task performance. TrajCL,
START, and LightPath use contrastive learning, aiding STS
performance, but overlook POI functionalities and struggle
with movement pattern extraction, resulting in unsatisfactory
TTE and DP results. Our method utilizes LLMs for adapt-
able trajectory learning, effectively extracting movement pat-
terns and incorporating POI functionalities and travel pur-
poses through a trajectory prompt. These strengths lead to
superior performance across tasks.

Scalability

To compare the scalability of the proposed model against
START, one of the state-of-the-art models, we refine our
model using varying proportions of the training data: 100%,
60%, and 20% for the destination prediction task on the
Chengdu dataset. We use the START model as a reference
point with an identical learning rate of 5 x 10~* for compar-
ison. The results are presented in Figure 5. It can be seen
that our model demonstrates faster progress and achieves su-
perior performance with less data compared to START. This
shows that our model can be adapted to downstream tasks
with lightweight finetuning.

5.5 Model Analysis

Effectiveness of Components

To evaluate components implemented in TrajCogn, we com-
pared the performance of the complete model with the fol-
lowing variants. w/o PT excludes the cross-reconstruction
pretext task, training directly on downstream tasks. w/o POl
removes the (POI Part) from the trajectory prompt. w/o Conv
replaces the convolution operator in the trajectory semantic
embedder with a fully connected layer. w/o PSP excludes
the pattern semantic projector, using only the trajectory point
embedding e;; and w/o M omits the movement pattern vo-
cabulary, relying solely on virtual anchor words.
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Figure 6: Attention maps in the pattern semantic projection.

We measured the performance of these variants on the
Chengdu dataset, and the results are presented in Table 3.
w/o PT shows performance degradation, proving the contri-
bution of the cross-reconstruction pretext task to TrajCogn.
The worse performance witnessed by w/o POI demonstrates
the effectiveness of integrating POI information. w/o Conv,
w/o PSP, and w/o M all have worse performance compared
to full, showing that the removed components all contribute
to TrajCogn’s performance.

Attention Map Visualization

To demonstrate our model’s ability to extract interpretable
movement patterns, we visualize attention scores in the pat-
tern semantic projector, as shown in Figure 6. Each subfigure
shows the trajectory with marked points and subtrajectories
on the left, and their attention maps on the right. We observed
that trajectory points’ movement patterns correspond to spe-
cific anchor words. Terms like “turn,” slow,” and “steady”
reveal the semantics of these patterns. For instance, turns
increase attention for turn,” while ”slow” and ’stationary”
suggest slow movement. However, these words do not always
fully capture true movement semantics, highlighting the need
for accurate labeled data for better alignment.

Additional Model Analysis

Further analysis of TrajCogn is detailed in the Supplemen-
tary Material. Appendix B covers its performance on the
Xi’an dataset. Appendix C examines hyper-parameter effec-
tiveness. Appendix D explores TrajCogn’s efficiency. Ap-
pendix E discusses the impact of anchor words, while Ap-
pendix F looks at additional features. Appendix G analyzes
the foundation LLM’s effectiveness.

6 Conclusion

We propose TrajCogn, a novel trajectory learning model that
leverages LLMs to model trajectories and accurately perform
various trajectory-related tasks. TrajCogn introduces a trajec-
tory prompt that combines movement patterns and travel pur-
poses, enabling task adaptability. It also includes a trajectory
semantic embedder for processing spatio-temporal features,
allowing for effective and explainable extraction of move-
ment patterns and travel purposes. Experiments on real-world
datasets confirm TrajCogn’s superior performance.
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