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Abstract

Consider a social network where each node (user)
is blue or red, corresponding to positive or nega-
tive opinion on a topic. In the voter model, in dis-
crete time rounds, each node picks a neighbour uni-
formly at random and adopts its colour. Despite its
significant popularity, this model does not capture
some fundamental real-world characteristics such
as the difference in the strengths of connections,
individuals with no initial opinion, and users who
are reluctant to update. To address these issues, we
introduce a generalisation of the voter model.

We study the problem of selecting a set of seed
blue nodes to maximise the expected number of
blue nodes after some rounds. We prove that the
problem is NP-hard and provide a polynomial time
approximation algorithm with the best possible ap-
proximation guarantee. Our experiments on real-
world and synthetic graph data demonstrate that the
proposed algorithm outperforms other algorithms.

We also prove that the process could take an ex-
ponential number of rounds to converge. However,
if we limit ourselves to strongly connected graphs,
the convergence time is polynomial and the conver-
gence period (size of the stationary configuration)
is bounded by the highest common divisor of cycle
lengths in the network.

1 Introduction

Humans constantly form and update their opinions on differ-
ent topics, from minor subjects such as which movie to watch
and which new café to try to major matters such as which po-
litical party to vote for and which company to invest in. In the
process of making such decisions, we tend to rely not only on
our own personal judgement and knowledge, but also that of
others, especially those whose opinion we value and trust. As
a result, opinion diffusion and influence propagation can af-
fect different aspects of our lives, from economy and defence
to fashion and personal affairs.

Recent years have witnessed a booming development of
online social networking platforms like Facebook, WeChat,
and Instagram. The enormous popularity of these platforms

has led to fundamental changes in how humans share and
form opinions. Social phenomena such as disagreement and
polarisation that have existed in human societies for millen-
nia, are now taking place in an online virtual world and are
tightly woven into everyday life, with a substantial impact on
society. As a result, there has been a growing demand for a
quantitative understanding of how opinions form and diffuse
because of the existence of social ties among a community’s
members. Within the field of computer science, especially
computational social choice, there has been a rising inter-
est in developing and analysing mathematical models which
simulate the opinion diffusion in a network of individuals,
cf. [Bredereck and Elkind, 2017; Faliszewski et al., 2022;
Bredereck et al., 2021].

A very popular opinion diffusion model is the Voter Model
(VM) [ [Hassin and Peleg, 1999]]. Consider a social network
G, where each node (user) is either blue or red. In each round,
every node picks a neighbour at random and adopts its colour.
Red and blue can, for example, represent a positive/negative
opinion about a topic/product. This captures the setup where
switching colours is free or inexpensive; for example, chang-
ing opinions about a controversial topic or switching from
one grocery store chain to another.

First Contribution: Model Generalisation. Despite be-
ing simple and intuitive, VM has some fundamental short-
comings. Firstly, it assumes the underlying graph is undi-
rected and unweighted. We allow the graph to be directed
(modelling one-directional relations such as following in In-
stagram) and weighted (modelling the strengths of the rela-
tionships). Self loops indicate inertia against changing their
opinion, thus modelling situations where switching is ex-
pensive. Secondly, unlike VM, our model permits for users
which have no initial opinion (uncoloured nodes) who can
then gain an opinion through interaction. Thirdly, our model
considers the users who may be stubborn and don’t update
their opinions as a result of interaction with their neighbours.

Second Contribution: Adoption Maximisation. In viral
marketing, one aims to convince a subset of users to adopt
a positive opinion about a product (i.e., become blue) with
the goal that this results in a further adoption of blue colour
by many other users later in the propagation process. Moti-
vated by this application, we study the optimisation problem
of maximising the expected number of blue nodes after some
rounds by selecting a fixed number of initial blue nodes. We
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prove that the problem cannot be approximated better than
(1—1/e), unless a fundamental complexity hypothesis is vio-
lated. While the proof uses a classical reduction construction
from the Maximum Coverage problem, the main difficulty
that we need to overcome using novel techniques, is handling
the randomness involved in the process. We believe some of
the tools developed can be of interest to a wider set of prob-
lems. We then provide a polynomial time algorithm with such
approximation ratio. While the algorithm follows a simple
greedy approach, the proof of submodularity and polynomial
calculation of the objective function require novel techniques
from graph theory and linear algebra. Furthermore, our ex-
periments on different real-world graph data demonstrate that
our proposed algorithm outperforms other methods.

Third Contribution: Convergence Properties. How
long does it take for our model to converge in expectation
(the convergence time) and how many states/colouring are in
a converged configuration (convergence period)? (Please see
Section 2 for formal definitions.) Leveraging techniques from
Markov chain analysis and combinatorics, we prove that both
convergence time and period can be exponential in the gen-
eral case. However, we provide polynomial bounds for spe-
cial classes of graphs, such as strongly connected graphs, in
terms of the number of nodes and the highest common divisor
of cycle lengths in the graph.

2 Preliminaries

Graph Definitions. A weighted directed graph G is an or-
dered triple (V, E,w) where elements of V' are nodes and
E C V xV isaset of ordered pairs of nodes called edges and
w : E — RT is a function that assigns a positive weight to
each edge. We define n := |V| and m := |E|. For two nodes
v1,v2 € V, we say v is an in-neighbour of v, (and v, is an
out-neighbour of v1) when (v1,v2) € E. Furthermore, we
say there is an edge from vy to vy. Let Ny (v1) :=={v € V :
(v1,v) € E} and N_(v1) := {v € V : (v,v1) € E} be the
set of out-neighbours and in-neighbours of v, respectively
and d4 (v1) := |Ny(v1)| and d_(v1) := | N_(v1)| be the out
degree and in degree. Graph G is said to be normalised if
>uen, (v) W((v,u)) = 1forevery node v € V.

A path is a list of distinct nodes P = pq, p1,p2, ..., p; for
0 <1 < n such that (p;,p;+1) € E forany 0 < ¢ < [. The
length of a path [ is the number of edges in the path. For any
two nodes S,T C V, an S-T path (or a path from S to T')
isapath Psuchthat SN P = {po}and TNP = {p;}. A
graph is strongly connected if for any two nodes v1,vy € V,
there exists a path from vy to ve. The distance p(vy,vs) is
the length of the shortest path from v; to va. The diameter of
a graph is the largest distance between any two nodes.

Model Definitions. A colouring is a function S : V —
{r,b,u} where r stands for red, b for blue and u for un-
coloured (a node who hasn’t adopted an opinion yet). We say
a node is coloured if it is not uncoloured (i.e., is either blue or
red). Define B7 (v) to be the nodes in N4 (v) which are blue
in S. We write B (v) when S is clear from the context.

We also introduce the notion of stubbornness, where some
nodes are fixed on their opinion and not willing to change it.
The following definition makes it clear that we capture this

notion through nodes with out degree 0.

Definition 1 (Generalised Voter Model). In the GENER-
ALISED VOTER MODEL (GVM) on a graph G = (V, E,w)
and an initial colouring Sy, nodes update their colour simul-
taneously. In each discrete-time round t, let the colouring be
St. Siy1 is decided node-wise as follows: each node v picks
an out-neighbour proportional to the weight of the edge to
that node and adopts that colour if it is red or blue. If it is
uncoloured or if v has no out-neighbours v retains its colour.
Say v picks some w € Ny (v); then, Siy1(v) = Si(w) if
Si(w) # u, and Si1(v) = Si(v), otherwise.

The nodes with no out-neighbours will retain their initial
colour after each round, emulating stubbornness (or loyalty).
Note that under our model, uncoloured represents nodes who
are yet to be introduced to either idea. A stubborn uncoloured
node represents someone who has no opinion and refuses to
get one. In the setting of elections, it may be someone who
dislikes politics and will abstain from voting.

If a node v was not already blue in round ¢, the prob-
ability of turning blue in round ¢ + 1 is the probabil-
ity of picking a blue neighbour. Since the choice of
neighbour is determined by the weights, this comes to be

(ZuéBit(v)w((v7u>))/(2u€1\f+(v) w((mu))) If St(v) =

b, we have to add the probability of picking an uncoloured
neighbour since in that case v remains blue. A similar ar-
gument applies to red and uncoloured case. Note that if we
normalise the graph by dividing the weight of each outgoing
edge foranode vby >, v, () w((v, u)), the probabilities of
picking each neighbour is not affected and hence our model
is not affected. Furthermore, if w’ given by w’'((v,w)) =
w((v,w))/(XCuen, @ w((v,u))) for all (v,w) € E are
the normalised weights, the probability of picking a neigh-
bour is the weight of the edge to that neighbour. For ex-
ample, the aforementioned probability can be rewritten as
ZueBi* ) w'((v,u)). Going forward, we will assume that

all graphs are normalised.

Our model reduces to the original VM [Hassin and Peleg,
19991, when there are no stubborn nodes, the graph is un-
weighted and undirected, and all nodes are either blue or red
(no uncoloured nodes).

Since this is a probabilistic process, at each time ¢ > 0,
node v has a probability of being in each colour. Thus,
by misusing the notation, we represent S;(v) as a vector of
length 3 indicating probability of being coloured r, b, and u
at time ¢, when it’s clear from the context. Further, assuming
an ordering of the nodes, we represent S, itself as a n x 3 ma-
trix where each row is the vector for one node. For1 < i <n
and ¢ € {r,b,u}, we shall use St (v;, ¢) to refer to the proba-
bility of v; having colour c at time ¢.

Adoption Maximisation. Now, we are ready to introduce
our viral marketing problem.

Definition 2 (Adoption Maximisation (AM) Problem). Let
Q= (G=(V,E,w),S) be a system. For A C V define Q4
to be (G,S’) where S’ is given by S"(v) = b forv € A and
S (v) = S(v) forv e V\ Aand F;(A) =3, oy, 524 (v, b)

is the expected number of blue nodes at time T. For a system



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Q, a time T and a budget k the AM problem is to find

argmaz F,(A)
ACV,|A|<k

Convergence Properties. Our model corresponds to a
Markov chain, where the states correspond to all possible 3"
colourings and there is an edge from one state to another if
there is a non-zero transition probability. Consider the di-
rected graph of the Markov chain with the node (state) set S.
A strongly connected component is a maximal node set such
the subgraph induced by the node set is strongly connected.
The node set S can be partitioned to strongly connected com-
ponents. On contracting these components to single nodes,
we get the component graph C¢ of the graph. Cg then has a
topological ordering. The absorbing strongly connected com-
ponents are the components that correspond to nodes with
out degree 0 in C' and we shall call them the leaves of the
graph. The process is said to converge when it enters one of
the leaves of C;. The number of rounds the process needs to
enter a leaf is the convergence time and the size of the leaf
component (number of states) is the period of convergence.

3 Related Work

Models. Numerous opinion diffusion models have been de-
veloped to understand how members of a community form
and update their opinions through social interactions with
their peers, cf. [Noorazar, 2020; Brill et al., 2016; Wilczyn-
ski, 2019]. As mentioned, our main focus is on the gener-
alisation of Voter Model, which was introduced originally
in [Hassin and Peleg, 1999], and has been studied extensively
afterwards, cf. [Petsinis et al., 2023] [Gauy et al., 2025].

We first give a short overview of some of the most pop-
ular opinion diffusion models. The Independent Cascade
(IC) model, popularised by the seminal work of [Kempe et
al., 2003], has obtained substantial attention to simulate vi-
ral marketing, cf. [Li et al., 2018]. In this model, initially
each node is uncoloured (inactive), except a set of seed nodes
which are coloured (active). Once a node is coloured, it gets
one chance to colour each of its out-neighbours. Different ex-
tensions of the IC model have been introduced, cf. [Lin and
Lui, 2015; Myers and Leskovec, 2012]. The IC model aims to
simulate the spread of influence or the adoption of novel tech-
nology (with no competitor). In the Threshold model, each
node v has a threshold 7(v). From a starting state, where each
node is either coloured or uncoloured, an uncoloured node be-
comes coloured once 7(v) fraction of its out-neighbours are
coloured. In the Majority model. cf. [Chistikov et al., 2020;
Zehmakan, 2024], in every round each node updates its
colour to the most frequent colour in its out-neighbourhood.
Unlike the IC or Threshold model, here a node can switch
back and forth between red and blue (similar to ours).

Adoption Maximisation. For various models, the prob-
lem of finding a seed set of size & which maximises the ex-
pected number of nodes coloured with a certain colour after
some rounds have been studied extensively. This problem is
proven to be NP-hard in most scenarios, and thus the pre-
vious works have resorted to approximation algorithms for
general case (see [Lu er al., 2015]) or exact algorithms for
special cases (see [Bharathi er al., 2007]). For example, for

the Threshold model, the problem cannot be approximated

within the ratio of O(2'°8" "), for any constant € > 0, un-
less NP C DTIM E(nP°w°9(")) [Chen, 2009]. However,
the problem is traceable for trees [Centeno et al., 2011] and
there is a (1 — 1/e)-approximation algorithm for the Linear
Threshold (LT) model, where the threshold 7(v) is chosen
uniformly at random in [0, 1], cf. [Kempe et al., 2003].

For the Voter Model, it was proven that the final fraction
of blue nodes is equal to the summation of the degree of
all initially blue nodes divided by the summation of all de-
grees [Hassin and Peleg, 1999]. Thus, a simple algorithm
which picks the nodes with the highest degree solves the
problem in polynomial time. However, as we will prove, the
problem is computationally much harder in our more gen-
eral setup. The problem also has been proven to be NP-hard,
by [Even-Dar and Shapira, 2007], when each node has a cost
and the goal is to maximise the expected number of blue
nodes in round 7 of the Voter Model for a given cost.

Convergence Properties. The convergence time is ar-
guably one of the most well-studied characteristic of dynamic
processes, cf. [Auletta et al., 2018; Auletta er al., 2019].
For the Majority model on undirected graphs, it is proven
by [Poljak and Turzik, 1986] that the process converges in
O(n?) rounds (which is tight up to some poly-logarithmic
factor [Frischknecht et al., 2013]). The convergence proper-
ties have also been studied for directed acyclic graphs [Chis-
tikov et al., 2020] and when the updating rule is biased [Les-
fari er al., 2022]. Tt has recently also been studied for general
directed graphs under the voter model [[Gauy et al., 2025]].
For the Voter Model, an upper bound of O(n3 log n) has been
proven in [Hassin and Peleg, 1999] using reversible Markov
chain argument. [Abdullah and Draief, 2015] considered a
model similar to the Voter Model with two alternatives, where
in each round every node picks k of its neighbours at random
and adopts the majority colour among them. They proved
that starting from a random initial colouring, the process con-
verges in O(logy, log;, n) rounds in expectation.

4 Maximum Adoption Problem

4.1 Innaproximability

Theorem 4.1. There is no polynomial time (1 — é +
€)-approximation algorithm (for any constant ¢ > 0)
for the Adoption Maximisation problem, unless NP C

DTIME(nOUeslogn)),

Proof Sketch. (The detailed proof is presented in the full
version of this paper, available at [Manohara and Zehmakan,
2024].) We will prove this by reducing any instance of the
Maximum Coverage problem (cf. [Khuller et al., 1999]) to an
instance of the Adoption Maximisation Problem. Consider
an instance of the Maximum Coverage problem. Let O =
{01,04,---0,,} be the set and S = {51, So,---S;} be the
collection of subsets of O. We need to find A C S of size
k that maximises (Jgc 4 S. If & = 0, the answer is 0. If
k > 1 we just pick all the subsets and if 3 O ¢ (Jgcs S, it
can’t be covered, so we can safely ignore it. Thus, assume
0 < k < [ (this implies that [ > 2 since k is an integer) and
USeS S = O. If K > m, there is a solution of size m since
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for each object, we can pick a subset which includes it. So
assume k < m. A similar argument yields that the optimal
value is at least k.

Now consider node sets Voo := {01, 0} and Vs :=
{s1,---s1}. Add edges (o;,s;) if and only if O, €
S;. Additionally, for each 1 < j < m, we intro-
duce d = maz([{],m) more nodes o, --- o}, and edges
(ojl-, 0j),- - (05-1, 0j). All edges have weight 1 (before nor-
malisation) and all nodes are initially uncoloured. We also set
7 = ld 4+ 1. This completes the construction of an instance
of our problem from the Maximum Coverage problem. (We
also observe that (1 —  + €) must be at most 1. Thus, e < 1

and [1] >2)

Lemma 4.2. For the above choices of parameters, the fol-
lowing inequalities hold:

Al-(1-H"—d@1-H"">0
Bog>(1-1) (1-t+¢

Cdr1> 0D
e—(l—%)T7 (1—%-’1—6)
Lemma 4.3. Let A’ be a solution to the instance of our prob-
lem such that A’ ¢ Vs, then there is a strictly better solution
A such that A C V.

The above lemma implies that any solution A" ¢ Vs can
be improved (in fact, in linear time, as discussed in the proof)
to a strictly better solution which has only nodes from V.
Particularly, the optimal solution picks only nodes from Vs.
In the following, we use this lemma to focus on the solutions
where the seed set A is a subset of Vs.

Let am be the value of a solution A C Vs of size k
in our problem and mc be the corresponding value for the
Maximum Coverage problem, where set S; is picked if and
only if s; € A. We establish a connection between am
and mec. Firstly, it’s trivial that am < k + mc + d mc
since by our construction at most £k + mc + d mc nodes
are made blue by A, regardless of 7. Secondly, exactly mc
nodes v in Vp satisfy [N, (v) N A| # 0. Then, k nodes
are blue with probability 1, mc nodes are blue with proba-
bility at least 1 — (1 — %)T and d mc nodes are blue with

probability at least 1 — (1 — %)7_1. By linearity, we have
Bme(l= (1= 1)) +dme(1-(1-1)
Using the two aforementioned inequalities and some simple

calculations, we can establish a connection between am and
mc, as presented in the lemma below.

Tﬁl) < am.

Lemma 4.4.

NEHNE=

where D=1 (1= )7 +a(1-(1-1)7")

We’ll need one last result before we prove the theorem.

am —k

<mec <

Lemma 4.5. Suppose A C Vs gives the optimal solution for
the Adoption Maximisation problem, then the corresponding
set {S; : s; € A} is an optimal solution for the Maximum
Coverage problem.

Consider a polynomial time algorithm ALG 45, with ap-
proximation ratio of (1 — % + e) for the Adoption Maximi-
sation problem and some € > 0. Then, we design an al-
gorithm ALG y;¢c which transforms a given instance of the
Maximum Coverage problem to an instance of the Adoption
Maximization following our polynomial time construction,
runs ALG 4)s on this construction, and translates the out-
come to a solution of the Maximum Coverage as explained
above. We claim that ALG ;¢ has an approximation ratio
better than 1 — é, which we know to not be possible unless

NP C DTIME(n®Ucglosn)) cf. [Khuller et al., 1999].
Thus, it remains to prove this claim. L

Let AM be the solution produced by ALG s and M C be
the solution produced by ALG ys¢ as described above. Also,
let AM and M C denote the optimal solutions. We then can
use Lemma 4.4 to connect the values of AM and M C, and
additionally Lemmas 4.3 and 4.5 to establish the connection
between AM and MC'. Leveraging these two connections
and some small calculations (please see the full version for
omitted calculations in the rest of the proof), we get

T—1
MC’><1—1)MC'+€MC’—<1—}> X
e

(1-1+¢) YRR L (1 (1})1>
(1)

Furthermore, by using the inequalities in Lemma 4.2 and
some calculations, we get

T—1

Sy 1y e (ma-hTY)
~(=1) (i)

(2)

Finally, by applying Equation (2) and the fact that the LHS

of Equation (2) is positive according to Lemma 4.2 (B), we

can show that the RHS of Equation (1) is larger than (1 —

1/e)MC. Thus, we can conclude that MC > (1— 1) MC,

that is, the polynomial time algorithm ALG ;¢ has an ap-

proximation ratio better than 1 — 1/e. ]

4.2 Greedy Algorithm

In this section, we provide a greedy algorithm whose approx-
imation ratio matches the lower bound proven in the previous
section and runs in polynomial time when 7 = poly(n). Let
us start by proving some properties of the objective function
Fi(A).

Theorem 4.6. F;(A) is monotone and submodular.

Proof. To prove this, we will introduce the notation of pick
sequence, inspired by [Zehmakan et al., 2024].
Definition 3 (Pick Sequence). A pick sequence of length T is
a function PS; : V x [L,7] NN — V where PS;(v,t) is
the node that node v picks at round t. R is the set of all pick
sequences of length T.

Let Pr[PS;] be the probability that the picks made by the
nodes in the first 7 rounds follow the pick sequence P.S... For
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A C V let BPS7(A) and FP9(A) = |BPS7(A)] be the set
of blue nodes and the number of blue nodes at time 7 for the
system {2 4 if the pick sequence P.S; is followed. Then,

> Pr(PS,)FF5(A)
PS,eR,

FT(A) =

Since monotonicity and submodularity are preserved under
linear combinations, it suffices to show that for each PSS,
FP5+ is monotone and submodular.

Definition 4 (Node Sequence). For a pick sequence PS; and
each time 0 <t < 7, the node sequence up tot is the function

+ + V. — V2 defined recursively by vo(v) = vV v € V
and 7 (v) = y—1(PSr(v,1))||vi—1(v) where || stands for
concatenation.

The node sequence captures the idea of tracking the neigh-
bouring node selected in each round and the nodes selected
by the neighbouring node in previous rounds to get the colour
of the node at round ¢. The following lemma formalises this
idea. Its proof follow a simple inductive argument detailed in
the full version.

Lemma 4.7. The colour of a node at time t is the time 0
colour of the first coloured node in its node sequence. A node
is uncoloured if all the nodes in its node sequence were ini-
tially uncoloured.

To prove monotonicity, consider A C A’ C V. For any
node v, if v € B (A), then there is some node u in 7, (v)
that is blue, and all nodes before it are uncoloured. Then,
either u € A or u is blue in €2 and all nodes before u are
uncoloured in Q2 and notin A. Since A C A’, u € A’ so u is
blue in 4+ and all nodes before w are either in A’ in which
case they are blue in 24/ or not in A’ in which case they
are uncoloured in € 4. Thus, there exists a coloured node in
v+ (v) according to 24, and the first coloured node is blue.
Thus, v € BP57(A’). Since v was arbitrary, BF%~(A) C
BPS(A’) and in particular, F75 (A) < FP37(A).

For submodularity, consider A C A" C V and any
node w. By our previous result, BFS7(A) C BFPS(A),
BPS+(A U {w}), and B~ SDA' U {w} Consider a node
v € BPST(A"U {ws) . We claim that it is
in at least one of BP9 (A U {w} 0r BFS- (A’) To see
this, consider 7, (v). There is some u which is blue in
Q4/u{w) and all nodes before it are uncoloured. w is either
in A" U {w} or it is blue in Q. All nodes before it are not in
A’ U {w} and are uncoloured in Q. If u is blue in §2, then
all nodes until w are not in A since A C A’ U {w} and the
first uncoloured node in v, (v) is blue, so v € BP9 (A)
contradicting our assumption. Hence, u € A’ U {w}. Since
A'U{w} = A U(AU{w}), uisinone of AU {w} or A’
All nodes before u are in neither since they are both subsets
of A’ U {w}. Thus, v belongs to one of BPS (AU {w}) or
BEPS( }2 By our assumption, it isn’t in BP S7(A). Soit’sin
oneofB St (AU{w})\ BPS7 (A) or BPS7(A")\ BPS7(A).
Because v was arbitrary, BY57 (A’ U {w}) \ BFS7(A) C
(BPS-(A") \ BPS7(A) U BPS (AU {w}) \ BPS(4)).
Since by our monotonicity result, BY%7(A) is a subset of
all the other 3, we get FI5 (A" U {w}) — EFS+(A) <
(FPS(A') — FFS-(4)) 1 (FF5 (AU {w}) — FFS-(4)).

Rearranging, we get FP57 (A" U {w}) — FPS(4") <
FPS5 (AU {w}) — FF5(A), thus proving submodularity.
This concludes the proof of the theorem ]

Computing Objective Function. Before discussing the
greedy algorithm, we need to explain how to compute F, (A)
for a set A. The idea of fixing picks was good for the-
ory, but since the number of pick sequences grows exponen-
tially in time, it very quickly becomes impractical to com-
pute. We instead bring back the notion of probability vector
St. We can then calculate the probability of picking colour
blue at round ¢ as Py(v,b) = 3, e, () W(v, w)Si—1(w,b)
and analogously for red and uncoloured. This is just the dot
product of the row vector of v in the (normalised) adjacency
matrix H of the graph and the blue column of S;_;. Thus,
we can obtain the colour distribution probability for all the
nodes as P, = H x S;_1 where row i of P; is the triple
Pi(v;,b), Pi(vi,r), Pe(v;,u) in round ¢. Since the picking
is independent across rounds, these probabilities are inde-
pendent of S;_;(v) and we can find S;(v). For example,
St(v,b) = St_1(v,b)(1—=Py(v,7))+(1—=St—1(v, b)) P:(v, b).
This concludes one round, and repeating this procedure 7
times can give us S, starting from 4. Then we can add
the blue column of S, to get Fi-(A). Multiplying an n X n
matrix with an n x 3 matrix can be done in O(n?) and cal-
culating S; from P; can be done in O(n). Thus, one step of
calculations costs O(n?). Doing this 7 times to calculate S
costs O(n?7). Then, we can add the blue column in O(n).
Thus, the overall cost of calculating F; (A) is O(n?T).

Proposed Algorithm. The greedy algorithm works by iter-
atively selecting and adding the node which gives the highest
increase to the expected number of blue nodes in time 7. In
each iteration, the algorithm needs to compute the value of
F:(-) if each non-selected node was added to the seed set.
Since there are at most n such nodes to be checked, we have
k iterations overall, and computing F, () takes O(n?T) as
discussed above, we can conclude that the run time of the al-
gorithm is O(n3k7), which is polynomial when 7 = poly(n).
Furthermore, as the objective function is both monotone and
submodular, the greedy algorithm achieves an approximation
ratio of 1 — 1/e, cf. [Nemhauser et al., 1978].

4.3 Experimental Comparison

Data. We have used real-world social network data available
on SNAP database [Leskovec and Krevl, 2014], including
Facebook 0 (n = 347, m = 5,038), Twitter (n = 475, m =
13, 289), Facebook 414 (n = 685, m = 3, 386), Wikipedia
(n = 4,592, m = 119,882), Bitcoin OTC (n = 6,005,
= 35,592), Gnutella (n = 6,300, m = 20,777), and
Bitcoin Alpha (n = 7,604, m = 24, 186).
Comparison. We compare the performance of our proposed
greedy algorithm against the following centrality-based meth-
ods, where we pick the nodes with: the highest in degree,
highest out degree, highest closeness centrality, highest be-
tweenness centrality, and highest (pagerank) centrality. A
suffix of “red” to any of the strategies implies that the strat-
egy prioritises converting the red nodes to blue, so selects the
highest ranked red nodes.
We observe that our algorithm not only enjoys a theoret-
ical guarantee (as proven in the previous section), but also



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

outperforms other algorithms on real-world data. Please see
Figure 1 for Facebook 0, Facebook 414, and Bitcoin OTC.
The results for other networks are similar and are given in the
full version.
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Figure 1: Performance of Greedy algorithm against some well
known centrality measures. In each graph, the final expected frac-
tion of blue nodes is plotted against the budget. Each run has 20 red
nodes and a budget varying from 1 to 40 for 7 = 20 rounds.

5 Convergence Properties

So far, we let the number of rounds be an input parameter 7.
But what kind of configurations does our model converge to,
and how long does it take to reach convergence? In this sec-
tion, we study the convergence period and convergence time
of our process (please see Section 2 for their formal defini-
tion).

5.1 Convergence Period

We show that if G is strongly connected, the period is smaller
than the HCF (highest common divisor) of the length of all
cycles in G. However, the period can be exponential if strong
connectivity condition is relaxed.

Strongly Connected Graphs

Theorem 5.1. Let the period v of a graph be the HCF of the
lengths of all its cycles. For a strongly connected graph G,
the period of convergence divides .

Proof. First, we cover the case of v = 1 in Lemma 5.2.
(the proofs of lemmas in this proof are given in the full ver-
sion). To prove this lemma, we show that there is a path from
any non-monochromatic colouring to a monochromatic one.
Then, any strongly connected component that does not con-
tain a monochromatic colouring can’t be absorbing. How-
ever, the monochromatic colourings have out degree 0, thus
are singleton strongly connected components that are also ab-
sorbing, thus, these are the only absorbing strongly connected
components of C (please see Section 2 for the definition of
C¢). Thus, the period is 1. The proof uses a combinatorial
argument, building on the Extended Euclidean algorithm.

Lemma 5.2. A system with a strongly connected aperiodic
graph (v = 1) will reach a consensus.

Let us now consider graphs of period v > 2. The period
classes of a graph are the equivalence classes of V' given by
the relation u ~ v < distance from u to v is a multiple of ~.
Recall that pi(u, v) denotes the distance from u to v

Lemma 5.3. The relation u ~ v < v|u(u,v) is an equiva-
lence relation in a strongly connected graph with period .

To prove the above lemma, we show that all three prop-
erties reflexivity, symmetry, and transitivity hold following
some standard techniques. Building on this lemma and es-
tablishing a connection between the above relation ~ and a
newly defined relation ~,, (with respect to an arbitrary node
v), we provide the below lemma.

Lemma 5.4. The graph obtained by contracting the period
classes to single nodes is a single directed cycle of length .

For a periodic graph with period +, consider a period class
I’ C V. Define the graph G with nodes I" and edges (u, v)
for u,v € I" if and only if there is a u-v path of length v in G,

with weight
wr((wv) = Y JJwle

PeP],  c€P

where P(”u ») is the set of all u-v paths of length . The weight

of an edge thus defined to be the probability of » adopting v’s
colour after v rounds. Then, one round in G exactly depicts
the set I after v rounds in the process on G.

Lemma 5.5. The graph Gr defined above is strongly con-
nected and aperiodic.

Then, by Lemma 5.2, I" reaches a consensus. So each pe-
riod class will be monochromatic. Then, v rounds later, they
will have the same colour again, adopting the consensus of
the previous period class at each round. So the period of con-
vergence divides 7. O

General Graphs

For a strongly connected graph G, we provided the upper
bound of v < n, but there is no such bound in the general
case. In particular, there is a family of graphs for which the
period of convergence is as big as 2"~ 2, which is exponential.

Consider nodes 1 to n with edges (7, 1) and (7, 2) of weight
0.5 each for 3 < ¢ < n. Initially colour node 1 blue, node 2
red, and the rest uncoloured. Please see Figure 2 (left). Nodes
1 and 2 will keep their colour unchanged forever, since they
have out degree O (i.e., are stubborn). On the other hand, all
nodes from 3 to n will switch between blue and red indepen-
dently in each round. In the Markov chain, there is an edge
from every state S with S(1) = b,5(2) = r to every other
such state and no edges to any other state. Thus, this is an
absorbing strongly connected component of size 2" 2. This

implies that the period of convergence in this setup is at least
2n72
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Figure 2: The system constructed with (left) exponential period of
convergence, (right) exponential convergence time for n = 4.

5.2 Convergence Time

If G is strongly connected, we provide a polynomial upper
bound on the convergence time, but in the general case the
convergence time can be exponentially large.

Strongly Connected Graphs

For strongly connected graphs of period ~y (the HCF of the
length of all cycles), the number of rounds required for all un-
coloured nodes to be coloured is in O(n? log(n)), following a
proof from [Zehmakan et al., 2024]. How long does it take for
the process to converge after all nodes are coloured? Similar
to our proof of Theorem 5.1, we consider individual period
classes I';, |I';| = n4, > ;n; = n and their derived graphs
Gr,. The derived graph is strongly connected and aperiodic,
which means that it converges in O(n3 log(n;)), following
the proof from [Hassin and Peleg, 1999]. By our construction,
each round in this graph is -y rounds in the original graph. The
period class T'; is expected to converge in O(vyn3 log(n;)).
There are ~ such classes, which converge independently. The
system is said to converge when all classes have converged.
So we need the maximum of all their convergence times.
Since the convergence time is a positive random variable, we
can upper bound the maximum convergence time by the sum
of all convergence times. Then, by linearity of expectation,
the expected convergence time is O(; yn; log(n;)). Since
f(z) = 2®log(x) is convex, Y, f(n;) < f(3, n;) for pos-
itive n;. Also, remember ) |, n; = n. So the expected stop-
ping time is O(yn3 log(n)).

General Graphs

Consider the graph G on n nodes wv; ---v, with edges
(vig1,v;) forevery 1 <4 <n—1and (v;,v;) for2 < i <
7 < n where the first node is stubborn and blue, and all the
other nodes are initially red. All edges are of weight 1 before
normalisation. Please see Figure 2 (right) for an example.

It is straightforward to observe that this process eventually
converges to a fully blue colouring, where all nodes are blue.
Thus, the convergence time is the number of rounds the pro-
cess needs to reach such a colouring. We establish a connec-
tion between our process and so-called Gambler’s ruin with
a soft hearted adversary process [Fagen and Lehrer, 1958],
which then allows us to bound the convergence time.

We observe that the first time a node turns blue has to be
by picking the previous node when it was blue, since no node
after it can be blue without it having been blue. Furthermore,
if every node after some v turns red at any point, then v can
again only become blue by picking the previous node after
that node turns blue. Let us consider the sequence X () =
maxg, (v;)=p - We know that for the whole graph to turn blue
at round ¢, we must have X (t) = n. And for the n-th node to
turn blue, we need the %-th node to turn blue. Thus, a lower

bound on ¢ for which X (t) = n/2 gives us a lower bound on
the convergence time.

By monotonicity, the expected time from any colouring S;
is at least the time from the colouring where the first X (¢)
nodes are blue. We use this to design a simpler process. Con-
sider a Gambler’s ruin set-up with n nodes where the state at
time ¢ is X (¢). Thus, from a state 4, it moves ahead when
v;+1 picks v;. That is, with probability ﬁ For : < g, this
is < % It stays in the same state when v;4; doesn’t pick
v;, but v; picks v;_;. Since the events are independent, this
happens with probability —“=*=L—. Again, for i < %, this

n— 1+1
4(n—2 .
is less than % Otherwise, state decreases. Again, we

bound it by saying the state only decreases by 1, while the
model can actually have all nodes pick the last node and go
back to the initial state. In fact, let us be generous and say
that if we didn’t decrease, we will increase. Then, for the
first 5 rounds, we have that the probability of moving ahead
p< 2 &L+ (” 2 — 6" 8 < ~. Further, let us consider p = >
and the probablhty of movmg backwards, ¢ = "—6

Using the fact that we are interested in a lower bound, we
could introduce the above, much simpler process, which is at
least as fast as the original process. Thus, any lower bound
on this process applies to our original convergence time. This
simplified process corresponds to the Gambler’s ruin stud-
ied in [Fagen and Lehrer, 1958] whose analysis gives us the
bound of 2(n™ + n?), which is growing exponentially.

6 Conclusion

We studied a generalisation of the popular Voter Model, by
extension to directed weighted graphs and the introduction
of stubborn agents and agents with no initial opinion. We
proved the Adoption Maximisation problem is computation-
ally hard. However, we provided a polynomial time algorithm
which not only has the best possible theoretical approxima-
tion guarantee but also outperforms other algorithms on real-
world data. Furthermore, we gave bounds on the period of
the process in terms of graph parameters such as number of
nodes, and the highest common divisor of cycle lengths.

While our proposed algorithm is polynomial, it can’t han-
dle massive graphs appearing in the real-world. Can we de-
sign faster algorithms without significant sacrifice on accu-
racy? Furthermore, we proved that both convergence period
and convergence time can be exponential in general graphs
(with tighter bounds for special graphs). What about graphs
appearing in the real world? We have done some foundational
studies, reported in the full version, but a deeper study of this
question is left for the future work. Finally, we have checked
that our hardness and algorithmic findings, very easily extend
to more setups such as (1) where the users in the selected seed
set are loyal, that is, keep their colour unchanged, (2) when
the goal is to optimise the average number of adoptions over
the whole process rather than a fixed time 7. However, the
convergence properties fall short in covering a wider collec-
tion of setups. Thus, it would be interesting to study conver-
gence properties under various scenarios, especially for dif-
ferent agent types.
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