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Abstract
Real-world knowledge graphs abound with higher-
order logical relations that simple triples, lim-
ited to pairwise connections, fail to represent.
Thus, capturing higher-order logical relations in-
volving multiple entities has garnered significant
attention. However, existing methods ignore the
structural information in higher-order relations.
To this end, we propose a higher-order logical
knowledge representation learning method, named
LORE, which leverages network motifs, the pat-
terns/subgraphs that naturally capture the structural
information in graphs, to extract higher-order fea-
tures and ultimately, learn effective representations
of knowledge graphs. Compared to existing ap-
proaches, LORE aggregates the attribute features of
entities with the extracted higher-order logical rela-
tions to form enhanced representations of knowl-
edge graphs. In particular, three aggregators (i.e.,
Hadamard, Connection, and Summation) are pro-
posed and employed. Extensive experiments have
been conducted on seven real-world datasets for
two downstream tasks (i.e., entity classification and
link prediction). The results show that LORE out-
performs baselines significantly and consistently.

1 Introduction
The representation learning of knowledge graphs (KGs) is a
long-standing challenge, as KGs serve as foundational com-
ponents in a wide range of real-world applications, includ-
ing recommender systems [Zhao et al., 2023; Shokrzadeh et
al., 2024], question-answering systems [Wang et al., 2024;
Ding et al., 2024], and semantic analysis models [Song et
al., 2024b; Zhong et al., 2023; Shan et al., 2023; Sun et al.,
2022], to name just a few. It has been demonstrated that in
these systems, KGs can be leveraged to improve the overall
effectiveness via incorporating structured and machine com-
prehensible external knowledge [Taunk et al., 2023] and to
improve the interpretability of these systems [Li et al., 2024]
via providing insights about the underlying decision-making
process. KGs structure knowledge as graphs, where nodes

∗Corresponding author: Qingchen Zhang.

represent entities (e.g., concepts or objects) and edges denote
relationships between them. KG representation learning aims
to encode entities and relations into meaningful representa-
tions, capturing their semantics to improve performance in
tasks like entity classification and link prediction.

The fundamental unit of data in a KG for representing
a single piece of knowledge is a triple, which consists of
a subject entity, an object entity, and the relation between
them. The usage of triples allows a KG to capture binary
relations (i.e., relations involving a pair of entities) precisely.
Therefore, various studies have proposed triple-based repre-
sentation learning methods for KGs [Vashishth et al., 2019;
Liao et al., 2021]. However, triples do not explicitly capture
those relations that involve multiple entities, i.e., higher-order
relations. We illustrate this using the example in Figure 1,
where a snapshot of a knowledge graph involving the entities
Steven Allan Spielberg and Tom Hanks is presented. Based on
the three triples — (Steven Allan Spielberg, Cooperate, Tom
Hanks), (Steven Allan Spielberg, Director of, Saving Private
Ryan), and (Tom Hanks, Actor of, Saving Private Ryan), three
first-order logical relations, i.e., triples, can be established:
(1) Steven Allan Spielberg has cooperated with Tom Hanks;
(2) Steven Allan Spielberg has directed the film Saving Pri-
vate Ryan; and (3) Tom Hanks has played a role in the film
Saving Private Ryan. However, none of the triples explicitly
express the ternary relationship between Steven Allan Spiel-
berg, Tom Hanks, and Saving Private Ryan; linking the se-
mantic meanings of the three triples is required to capture the
ternary relationship.

Hence, the development of approaches for explicit mod-
eling of higher-order relations has attracted intensive atten-
tion. One popular approach is to extend the triples to multi-
hop paths through graph traversal [Xu et al., 2020]. Con-
sidering the importance of different relations encoded via
multi-step paths can enhance knowledge graph representa-
tion learning and downstream tasks [Donnat et al., 2018;
Ranganathan and Barbosa, 2022; Liu et al., 2024; Zong et
al., 2024; Zheng et al., 2018]. However, we argue that ex-
tracting linear paths from a knowledge graph is not sufficient
to represent the rich semantic meanings of high-order rela-
tions in KGs, still with the example in Figure 1. We can
formulate two second-order logical relations through path ex-
traction: “Steven Allan Spielberg has collaborated with Tom
Hanks, who is an actor in Saving Private Ryan” and “Tom
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Hanks has cooperated with Steven Allan Spielberg, who di-
rected the film Saving Private Ryan” (as shown in the mid-
dle of Figure 1). In both two higher-order relations, it is un-
known how Tom Hanks and Director Spielberg collaborated,
although by observing the knowledge graph, one can easily
establish the fact that “Tom Hanks played a role in the movie
Saving Private Ryan, which is directed by Steven Allan Spiel-
berg”. Such information is lost when a model can only extract
linear paths.

Figure 1: Higher-order knowledge representation.

To address this limitation, we propose to keep the struc-
tural information of higher-order relations that involve mul-
tiple entities. The main idea is to employ motifs, i.e., sub-
graphs and patterns that appear frequently in a graph, to rep-
resent the structural information of higher-order relations. As
shown in Figure 1, the ternary relation between Steven Allan
Spielberg, Tom Hanks, and Saving Private Ryan can be read-
ily represented through the triangle network motif. Based on
this, we propose a knowledge graph representation learning
framework, namely LORE (higher-order Logical knOwledge
Representation lEarning), to capture first- and higher-order
relational attributes in knowledge graphs simultaneously. In
LORE, we consider two aspects of features: (1) the attribute
features carried by a knowledge graph, i.e., attribute features
of entities and relation types of edges; and (2) the struc-
tural features that are represented using heterogeneous mo-
tifs. LORE extracts and aggregates these features to enhance
the effectiveness of learned graph representations. We fur-
ther conduct extensive experiments on real-world datasets
and evaluate the proposed method on two different tasks: en-
tity classification and link prediction. Experimental results
show that the proposed method can significantly improve the
knowledge representation effectiveness, providing substantial
improvements to downstream tasks. The contribution of this
paper can be summarized as follows:

• Higher-order logical relation formulation: We tackle
the problem of the formulation of higher-order logical
relations in the knowledge graph representation learn-
ing. Specifically, we propose to employ network mo-
tifs to preserve the complex semantic relations within
higher-order logical relations in the knowledge graph.

• Quantifying motif complexity in KGs: We propose the
entity motif degree to quantify the capability of motifs to
represent complex relational features and preserve high-
order logical relationships in KGs.

• Precise knowledge representation: We propose a
knowledge graph representation learning framework,

LORE, which jointly considers the first- and higher-
order relations for knowledge graph representation
learning.

• Real-world datasets verification: We conduct exten-
sive experimentats on seven real-world datasets, includ-
ing AIFB, PPI, MUTAG, BGS, FB15k-237, WN18,
and WN18RR, and evaluate the proposed representation
learning model on two classification tasks, including en-
tity classification and link prediction. The experimental
results confirm the effectiveness of the proposed frame-
work, LORE, with significant improvements over strong
baseline methods.

2 Related Work
2.1 Higher-Order Relations in Knowledge Graphs
Relations in knowledge graphs are complex, since two enti-
ties can be indirectly related via multiple intermediate nodes.
Most existing studies aim to simplify such higher-order logi-
cal relations by representing them as multiple simple pairwise
relations [Niu et al., 2021; Qiu et al., 2020]. However, accu-
rately representing real-world higher-order logical relations
is challenging due to the limitations of the triple representa-
tion format. Meanwhile, most of the existing approaches are
based on the assumption that the knowledge graph is a set of
independent triples, ignoring the structural information in the
graph. To address this, the Triple-Context-based Knowledge
Embedding model (TCE) proposed by [Shi et al., 2017] rep-
resents each triad together with its in-graph context in a uni-
fied framework to reflect the structural information in the con-
text of the triad. A deep fact detection model, DEAN, is pro-
posed by [Tu et al., 2023], which captures hidden structural
information between facts by comprehensively modeling en-
tities and relationships, thereby identifying obsolete facts in
the knowledge graph. Higher-order logical relation occupies
a vital position in knowledge graph representation learning
and can improve the effectiveness of learning results [Ren et
al., 2021]. However, the challenge lies in formulating these
higher-order logical relations effectively. Thus, in this work,
we employ network motifs to model higher-order logical rela-
tions, aiming to enhance the performance of knowledge rep-
resentation.

2.2 Motif-driven Graph Learning
Network motifs play a vital role in uncovering rich infor-
mation within graph networks and have diverse applications.
For instance, [Wang et al., 2023a] proposes the Motif-
based Graph Attention Network (MGSR) for service recom-
mendation, leveraging motif attention mechanisms to capture
higher-order information and employing collaborative filter-
ing for predictions. Similarly, [Yu et al., 2020] introduces
a motif-dimensional framework that harnesses higher-order
structural features to enhance existing network representa-
tion learning methods. A novel solution, Dual-level Graph
Self-Supervised Pretraining with Motif Discovery (DGPM),
is proposed by [Yan et al., 2024]. DGPM autonomously
discovers significant graph motifs through an edge pool-
ing module and aligns learned motif similarities with graph
kernel-based similarities. This solution addresses challenges
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such as limited topology learning, human knowledge depen-
dency, and incompetent multi-level interactions faced by self-
supervised graph pre-training techniques. In this paper, we
use network motifs to formulate higher-order logical relations
in knowledge graphs and properly integrate structural rela-
tions and attribute features to represent knowledge graphs.

3 Preliminary
3.1 Problem Definition
We represent a knowledge graph (KG) as a directed graph
with multi-relations: KG = {E ,R, T }, where E and R are
the sets of entities and relations, respectively. T is the triple
set consisting of (h, r, t) ∈ {E ,R, E}, where h and t are the
head and tail entity in the relation r, respectively. The task
of knowledge graph representation learning is to embed enti-
ties and relations in a latent vector space, i.e., h, t ∈ Re and
r ∈ Rr, in such a way that it captures the semantic meanings
between them.

3.2 Network Motifs in Knowledge Graphs
Our proposed graph learning framework, LORE, constructs
higher-order logical relational features through network mo-
tifs. Network motifs refer to those subgraphs/patterns that
appear with high frequency in a large graph. Many networks
exhibit rich motifs, and effective modelling of them has been
proven to be beneficial in exploring graph structures. Figure 2
indicates three-order and four-order motifs. In a knowledge
graph, these motifs carry rich relational information features
in their topological structures, and hence, can be used to un-
cover higher-order logical relations between entities. There-
fore, we propose the entity motif degree for quantifying the
capability of a motif in representing relational features. The
formal definition is shown as follows:
Definition 1. Given an entity e and a motif m, the entity motif
degree of e w.r.t m is defined as the number of subgraphs with
the same structure as m, whose constituent entities include e.

Figure 2: Three-order and four-order motifs.

Figure 3 illustrates the computation of the entity motif de-
gree. Let e be Node 5 and m be the last four-order motif in
the middle part of Figure 3. Although m appears four times in
the graph (i.e., 1-3-4-2, 3-4-2-1, 4-2-1-3, and 2-1-3-4), none
of those subgraphs include Node 5. Hence, the entity motif
degree of Node 5 w.r.t. the last four-order motif is 0. On the
contrary, the entity motif degree of Node 1 w.r.t. the same
motif is 4.
Definition 2. Given an entity set E and a motif set M , the en-
tity motif degree matrix is defined as a two-dimensional ma-
trix D ∈ Z|E|×|M |:

D =
[
d1,d2, . . . ,d|E|

]T
where for any i ∈ [1, |E|]:

di =
[
di,1, di,2, . . . , di,|M |

]

Here, di,j is the entity motif degree of the i-th entity in E
w.r.t. j-th motif in M .

Continue with the example in Figure 3, the knowledge
graph can be represented by an entity motif degree matrix,
where the i-th row represents the entity degree vector of the
i-th node w.r.t. the motif set in the middle part of Figure 3,
e.g., the first row d1 indicates the entity motif degree vector
of Node 1.

Figure 3: Network motifs and motif degree matrix.

In this paper, we use the entity motif degree matrix to rep-
resent the higher-order logical relations carried by a knowl-
edge graph. Each row in the matrix, i.e., each entity motif
degree vector, encodes information about the connectivity of
the corresponding node in the graph. In the above example,
the first row, D1, has high motif degrees in all columns, re-
flecting that Node 1 in Figure 3 is a highly-connected node
in the graph with rich first- or higher-order logical relations.
On the contrary, the fifth row, D5, is a sparse vector, which
reflects the relatively limited logical relations of Node 5 with
other nodes.

4 The Design of LORE
This section introduces LORE, a framework for learning
knowledge graph representations by jointly modeling entity
features and higher-order logical relational features. The
overall framework of LORE is shown in Figure 4. LORE
mainly consists of three stages: higher-order logical rela-
tional features formulation, features representation, and fea-
tures aggregation. Next, we discuss each of the three stages
in detail.

4.1 Higher-order Logical Relation Formulation
We model higher-order logical relations among entities using
the entity motif degree matrix introduced in Section 3.2. For
each relation r ∈ R, we generate a subgraph by retaining
only edges of type r. The entity motif degree matrix D(r) for
each relation type r captures the higher-order relations among
entities with respect to r.

To enhance the representation, we expand the original re-
lation set R to include edges in both directions (outgoing
and incoming). Assuming directed knowledge graphs, edges
between two nodes in different directions may have distinct
semantic meanings. Therefore, we incorporate the inverse
edges, denoted as Rinv , allowing the flow of semantic infor-
mation in both directions. We also include self-loops, which
connect an entity to itself, to capture self-referential informa-
tion. The final relation set, R′, combines the original rela-
tions, inverse relations, and self-loops: R′

= R∪Rinv ∪ T̂ .
Note that some relations in R′ may cover fewer entities

due to limited motif coverage, leading to long-tail relations.
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Figure 4: The overall framework of LORE.

To address this, LORE enhances the entity motif degree ma-
trices for sparse relations by randomly adding 1s based on a
threshold. This threshold balances matrix sparsity with suffi-
cient information to represent the relation and is empirically
set according to the knowledge graph and relation character-
istics.

4.2 Feature Representation
Most existing approaches for the representation learning of
knowledge graphs rely on the adjacency matrix of a knowl-
edge graph for feature aggregation: the attribute features of
direct and multi-hop neighbors are fused to learn the repre-
sentation of a node. These approaches only capture simple
and linear logical relations between nodes. In contrast, LORE
can take attribute features and higher-order logical relational
features into consideration simultaneously. Let D(r), r ∈ R′

represent the higher-order logical relation for relation type r
and F(r) be the attribute matrix for relation type r. Graph
Convolutional Networks (GCN) [Kipf and Welling, 2016] are
used to extract useful features from D(r) and F(r) and map
them into a feature space with the same dimensions. The
formula of a single convolutional layer for one relation r is
shown as follows:

Hl+1
d = ÂHl

dWd (1)

Hl+1
f = ÂHl

fWf (2)

where Hd = [h1
d,h

2
d, . . . ,h

|E|
d ], Hf = [h1

f ,h
2
f , . . . ,h

|E|
f ],

Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A + I, D̃ii =
∑

j Ãij, Wd and
Wf are the learnable parameters. In the initialization of the
formula, H1

d = ÂD(r)Wd, H1
f = ÂF(r)Wf . The entity

update formula for all relations is shown as follows:

hl+1
i = σ(

∑
r∈R′

∑
j∈N r

i

1

|N r
i |
W(l)

r hl
j) (3)

Here, |N r
i | indicates the number of the neighbors of entity

i, σ is the activation fuction, W(l)
r is the learnable parame-

ters in the l-th layer. Both features use the same node update
method.

Due to a large number of relations in knowledge graphs,
there will be a large number of parameters to represent
higher-order logical relational features and attribute features.
In addition, the overfitting problem also exists. In order to
address these two problems, we use the basis decomposition
to decompose Wd and Wf as follows:

Wd =
B∑

b=1

adbVdb (4)

Wf =
B∑

b=1

afbVfb (5)

where adb, afb, Vdb, and Vfb are learnable param-
eters. B denotes the hyperparameter. According to
the basis decomposition, the number of parameters to be

learned can be reduced to B×dim
(l+1)
d ×dim

(l)
d +|R

′
|×B

|R′ |×dim
(l+1)
d ×dim

(l)
d

+

B×dim(l+1)
a ×dim

(l)
f +|R

′
|×B

|R′ |×dim
(l+1)
f ×dim

(l)
f

. Here, |R′ | is the number

of the relation, Vdb ∈ Zdim
(l+1)
d ×dim

(l)
d and Vfb ∈

Zdim
(l+1)
f ×dim

(l)
f . The optimization of the basis matrices

Vdb and Vfb is shared universally across both common and
uncommon relations, so the shared optimization parameters
may effectively prevent the occurrence of overfitting on un-
common relations.

4.3 Feature Aggregation
In this phase, the extracted higher-order logical relational fea-
tures and attribute features from previous stages are merged
to obtain a comprehensive feature representation of entities.
In LORE, we consider three different aggregation methods:
Hadamard, Summation, and Connection aggregations.

Hadamard: Hadamard aggregation is a binary operation,
which multiplies the higher-order logical relational features
representation H1

d and attribute features representation H1
f .

The Hadamard aggregation matrix requires elements to mul-
tiply with each other. The calculation equation is shown as
follows:

Hagg = H1
f ⊙H1

d (6)
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Hagg[i, j] = H1
f [i, j]×H1

d[i, j] (7)

The dimension of the Hadamard aggregation result is the
same as the dimension of the original feature matrices. How-
ever, the shortcoming of this aggregator is that it may lead to
the loss of information. For example, if H1

d[i, j] is relatively
small (e.g., close to 0), the final product, however, will be
small even if H1

f [i, j] has a relatively large value. As a re-
sult, the feature information in H1

f [i, j] will be lost during the
aggregation. In general, we observe that this aggregator may
result in the dilution of dominant features.

Connection: Connection refers to the concatenation of the
matrices [Wang et al., 2023c]. It is the process of integrating
two features into a new matrix. The calculation equation is
shown as follows:

Hagg = [H1
d : H1

f ] (8)

The aggregation dimension of the result is higher than the
matrix dimension of H1

d and H1
f , which will make the subse-

quent iterative training process more time-consuming. Mean-
while, this aggregator will damage the internal independence
of features. On the other hand, the Connection Aggregator
preserves complete feature information..

Summation: This aggregator is a traditional aggregator for
feature aggregation. A summation aggregator is an operation
of adding two feature matrices by adding the corresponding
elements together. The calculation equation is shown as fol-
lows:

Hagg = H1
d +H1

f (9)

The dimension of the final result is the same as that of
Hadamard. Therefore, the computational cost will be lower
than the connection method for the subsequent training.
However, the summation aggregation will also lead to the loss
of information. To give an example, if H1

d[i, j] ≫ H1
f [i, j],

then the elements in H1
f will barely have an impact on the

final feature value.
The aggregated feature representation Hagg is then used

for classification. We map the representation to the predicted
class label Ŷ as follows:

Ŷ = σ(HaggWo + bo)Wy + by (10)

Here, σ(·) represents the activation function, Hagg is the fea-
ture vector obtained through the aggregation method, Wo

and bo are the weight matrix and bias vector used for linear
transformation, Wy is the weight matrix of the output layer,
and by is the bias vector of the output layer. With this com-
bined formula, we can directly map the input feature Hagg to
the final predicted class label Ŷ .

The loss function is shown below:

L(Ŷ , Y ) =
1

N

N∑
i=1

ℓ(f(Ŷi), Yi) (11)

Here, ℓ(f(Ŷi), Yi) computes the cross-entropy loss between
the predicted and the ground-truth labels, where f(Ŷi) rep-
resents the predicted class probabilities. This loss function
measures the dissimilarity between the predicted class proba-
bilities and the actual labels.

5 Experiments
5.1 Experiment Setup
Datasets
We evaluate our model on four commonly used datasets for
entity classification: AIFB, MUTAG, BGS, and PPI. Mean-
while, for link prediction, we evaluate our model on three
datasets commonly used: FB15k-237, WN18, and WN18RR.

Baselines
We evaluate our model on the task of entity classification,
comparing it with baselines such as R-GCN [Schlichtkrull
et al., 2018], RDF2Vec [Ristoski and Paulheim, 2016],
TransE [Bordes et al., 2013], and Comp-GCN [Vashishth et
al., 2019]. And we evaluate our model on the task of link pre-
diction, comparing it with baselines such as DistMult [Yang
et al., 2015], ComplEx [Trouillon et al., 2016], RotatE [Sun
et al., 2018], DualE [Cao et al., 2021], GIE [Cao et al., 2022],
TDN [Wang et al., 2023b], MSHE [Jiang et al., 2024], MR-
SAGCN [Song et al., 2024a], and TCRA [Guo et al., 2024].

Evaluation Metrics
In entity classification, we evaluate performance using accu-
racy, macro-precision, macro-recall, and macro-F1 for multi-
classification tasks, and accuracy, precision, recall, and F1
for binary classification tasks, with higher values indicating
better performance. For link prediction, we use four metrics:
Mean Reciprocal Rank (MRR), and hit rates at 1, 3, and 10
(Hits@1, Hits@3, Hits@10), where higher values also indi-
cate better performance.

5.2 Performance Evaluation of Entity
Classification

Datasets Entities M31 M32 M41 M42 M43

AIFB 8,285 15,508 21,004 157 2,010 4,687
MUTAG 23,644 21,181 169,839 576 7,857 12,278
BGS 333,845 433,834 1,479,289 1,125 16,957 27,540
PPI 56,944 749,255 3,159,482 4,248 28,956 50,214

FB15k 14,541 188,001 358,181 5,102 24,196 30,584
WN18 40,943 1,378,722 2,195,504 8,769 28,807 67,593

Table 1: Entity motif degrees of six types of datasets.

Table 1 shows the entity motif degrees, Table 2 and Table 3
present the evaluation results of LORE and other baselines on
four datasets, with the best metrics bolded.

For multi-classification tasks, LORE outperforms other
baselines on the AIFB and PPI datasets. In AIFB, accu-
racy exceeds other methods by 3%-9%, and in PPI, by 1%-
7%. Macro metrics also show improvements of 2%-10%.
These results demonstrate that LORE accurately classifies en-
tity types, with micro-F1 (equal to accuracy) and macro-F1
showing high performance, regardless of the balance of the
data distribution.

In AIFB, the average entity motif degrees (M31, M32,
M41, M42, and M43) are 1.87, 2.54, 0.02, 0.24, and 0.57,
respectively, leading to higher classification accuracy due to
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AIFB

Method Acc Macro-Pre Macro-Rec Macro-F1

RDF2Vec 0.8888 0.8494 0.9 0.8672
R-GCN 0.9583 0.9391 0.8750 0.8983
TransE 0.9167 0.8862 0.9375 0.9148
Comp-GCN 0.9444 0.9 0.9583 0.9147

LORE 0.9722 0.9583 0.9722 0.9692

PPI

Method Acc Macro-Pre Macro-Rec Macro-F1

RDF2Vec 0.5752 0.5494 0.6020 0.5757
R-GCN 0.7059 0.7391 0.6822 0.7107
TransE 0.6891 0.7015 0.6716 0.6866
Comp-GCN 0.7356 0.7029 0.7595 0.7312

LORE 0.7687 0.7583 0.7722 0.7653

Table 2: Performance evaluation in multi-classification tasks.

entities with similar higher-order relations being classified to-
gether. Conversely, in PPI, the network’s density and com-
plex protein relations limit the effectiveness of larger motifs,
with LORE achieving a maximum accuracy of 76.87%.

For binary classification, LORE ranks second on MUTAG
and first on BGS. On MUTAG, sparse relations and overfit-
ting hinder LORE’s performance, though it still performs well
compared to Comp-GCN. In BGS, motifs with higher entity
degrees (M31, M32) lead to improved performance, as the
dataset is more sensitive to these higher-order logical rela-
tions, yielding better results than the baselines.

MUTAG

Method Acc Precision Recall F1

RDF2Vec 0.6720 0.5 0.6528 0.5660
R-GCN 0.7323 0.5714 0.8696 0.6897
TransE 0.7353 0.6 0.6522 0.6250
Comp-GCN 0.8650 0.8429 0.8826 0.8625
LORE 0.8088 0.8 0.8696 0.8333

BGS

Method Acc Precision Recall F1

RDF2Vec 0.8724 0.8750 0.7 0.7778
R-GCN 0.8310 0.7778 0.7 0.7368
TransE 0.8667 0.8 0.8 0.8
Comp-GCN 0.9 0.8889 0.8 0.8421
LORE 0.9333 1.00 0.8 0.8889

Table 3: Performance evaluation in binary classification tasks.

5.3 Performance Evaluation of Link Prediction
Table 4 shows the performance evaluation of link prediction.
Our model achieves state-of-the-art results for all metrics in
the FB15k-237 dataset, and for the WN18 dataset, our model
performs best on the metrics of MRR, Hit@1, and Hit@3.

As shown in Table 4, the values of LORE on all of the
FB15k-237 datasets are excellent and higher than all base-
lines. The results show that our method performs well in the

FB15K-237

Model MRR Hits@10 Hits@3 Hits@1

R-GCN 0.248 0.417 0.264 0.151
TransE 0.294 0.465 - -

DistMult 0.191 0.376 0.258 0.153
ComplEx 0.201 0.388 0.213 0.112

Comp-GCN 0.355 0.535 0.390 0.264
RotatE 0.338 0.533 0.375 0.241
DualE1 0.326 0.512 0.357 0.235
DualE2 0.359 0.552 0.391 0.264

GIE 0.364 0.553 0.401 0.270
TDN 0.350 0.546 0.395 0.263

MSHE 0.356 0.544 0.392 0.264
MR-SAGCN 0.368 0.550 0.403 0.276

TCRA 0.367 0.554 0.403 0.275

LORE 0.386 0.567 0.412 0.308
WN18

Model MRR Hits@10 Hits@3 Hits@1

R-GCN 0.819 0.938 0.929 0.697
TransE 0.495 0.943 0.888 0.113

DistMult 0.813 0.943 0.921 0.701
ComplEx 0.941 0.947 0.936 0.936

Comp-GCN 0.930 0.973 0.931 0.732
RotatE 0.949 0.959 0.952 0.942
DualE1 0.948 0.957 0.952 0.940
DualE2 0.949 0.958 0.953 0.943
MSHE 0.948 0.957 0.951 0.943

LORE 0.955 0.948 0.965 0.944
WN18RR

Model MRR Hits@10 Hits@3 Hits@1

R-GCN 0.358 0.430 0.388 0.312
TransE 0.232 0.533 0.409 0.022

DistMult 0.322 0.469 0.375 0.241
ComplEx 0.395 0.474 0.425 0.345

Comp-GCN 0.466 0.525 0.476 0.435
RotatE 0.474 0.570 0.492 0.426
DualE1 0.475 0.542 0.491 0.440
DualE2 0.486 0.555 0.502 0.449

GIE 0.494 0.582 0.511 0.448
TDN 0.481 0.481 0.502 0.439

MSHE 0.461 0.530 0.473 0.429
MR-SAGCN 0.489 0.563 0.505 0.450

TCRA 0.496 0.574 0.511 0.457
LORE 0.363 0.432 0.387 0.321

Table 4: Performance evaluation of the link prediction task on
FB15K-237, WN18, and WN18RR datasets.

link prediction task on the FB15k-237 dataset. The motif-
based performance of LORE is also analyzed in this dataset.
The knowledge graph represented by the FB15k-237 dataset
is very sparse, as shown in Table 1, the average entity mo-
tif degrees of M31, M32, M41, M42, and M43 are 12.93,
24.63, 0.35, 1.67, and 2.1, respectively. For 237 relations,
all the baselines and LORE can not accurately predict the re-
lation. However, compared with other baselines, LORE still
achieves better results. In the WN18 dataset, LORE achieves
the highest values among all methods, with an MRR of 0.955,
a Hit@1 of 0.944, and a Hit@3 of 0.965. As the WN18
dataset has fewer types of pairwise relationships, there are
fewer types of higher-order logical relationships. However,
the number of higher-order logical relationships is enormous.
As shown in Table 1, the average entity motif degrees are
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33.67, 53.62, 0.21, 0.7, and 1.65, respectively, so our method
can accurately represent higher-order logical features in the
representation process. On the WN18RR dataset, however,
the performance of LORE is lower than that of other base-
lines. Considering that, compared with the WN18 dataset,
the training set of WN18RR has no inverse triples, this re-
sult could partly prove that LORE utilizes inverse relations to
achieve better performance.

6 Ablation Study
6.1 The Effectiveness of Formulating

Higher-order Logical Relations with Motifs
LORE formulates higher-order logical relations using motifs.
To assess their impact on the embedding results, we design
four variants: LORE-ID, which uses the identity matrix as
relational features; LORE-M3, which uses all three-order
motifs; LORE-M4, which uses all four-order motifs (exclud-
ing four-node motifs with 3 edges); and LORE-ALL, which
incorporates all motifs except the four-node motifs with 3
edges.

Figure 5: Accuracy of LORE and its variants.

Figure 5 shows the accuracy of LORE and its variants on
three datasets. The results indicate that LORE achieves the
second-highest accuracy on the MUTAG dataset, slightly be-
low the LORE-ALL method, but outperforms all variants on
the AIFB and BGS datasets.

We exclude four-node motifs with three edges and compare
the accuracy of LORE-ID with the other variants to assess the
effectiveness of higher-order logical relations. In MUTAG,
LORE-ALL outperforms LORE-ID by 17%, while LORE
surpasses LORE-ID by 18% in BGS. However, in AIFB, only
LORE achieves higher accuracy than LORE-ID. These re-
sults show that formulating higher-order relations with motifs
is beneficial, but improper motif selection may hinder repre-
sentation learning.

On the AIFB and BGS datasets, LORE outperforms other
variants using different motif selection strategies. In MU-
TAG, LORE’s accuracy is lower than LORE-ALL. Despite

LORE-ALL considering all motifs, its performance is worse
than LORE on AIFB and BGS, possibly due to model over-
fitting or the sensitivity of these datasets to motif selection.
This suggests that for different networks, motif selection is
crucial for representation learning and can vary based on the
task and dataset.

6.2 The Effectiveness of Aggregators

(a) Accuracy (b) Time costs

Figure 6: Accuracy and time costs of three aggregators of LORE.
(a) Accuracy; (b) Time costs.

LORE employs three aggregation methods: Connection,
Hadamard, and Summation, referred to as LORE-C, LORE-
H, and LORE-S, respectively. Figure 6 compares these meth-
ods after normalizing the calculated values. Figure 6a illus-
trates their accuracy, while Figure 6b depicts their time costs.
Deeper colors indicate higher accuracy and greater time con-
sumption. The Connection method achieves the highest accu-
racy across all datasets but incurs the highest time cost. The
Summation method strikes a balance, with accuracy surpass-
ing Hadamard but falling short of Connection, and a moderate
time cost between the two. Hadamard offers the lowest time
cost but also the lowest accuracy.

In summary, the Connection method best preserves struc-
tural and attribute features at the expense of higher time costs.
The Hadamard method sacrifices more features but is compu-
tationally efficient, while the Summation method provides a
middle ground. These aggregation methods can be selected
based on specific application needs.

7 Conclusion
Existing knowledge graph representation learning methods
cannot represent higher-order logical relations and entity at-
tributes at the same time, leading to much representation loss.
To solve this problem, we propose the LORE method, which
uses motifs to formulate higher-order logical relations. In
LORE, both the attribute features and relational features can
be well represented. To aggregate these features, three feature
aggregation methods are provided. Then, our method is eval-
uated on entity classification and link prediction tasks. In the
entity classification task, our method is 2%–10% higher than
baselines on accuracy. Also, our method is slightly higher
than the baselines on MRR in the link prediction task. The re-
sults show that representation learning enhanced with higher-
order logical relations formulation yields better performance
than pure representation learning methods.
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