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Abstract

Strategyproofness in network auctions requires that
bidders not only report their valuations truthfully,
but also do their best to invite neighbours from the
social network. In contrast to canonical auctions,
where the value-monotone allocation in Myerson’s
Lemma is a cornerstone, a general principle of al-
location rules for strategyproof network auctions is
still missing. We show that, due to the absence of
such a principle, even extensions to multi-unit net-
work auctions with single-unit demand present un-
expected difficulties, and all pioneering researches
fail to be strategyproof. For the first time in this
field, we identify two categories of monotone al-
location rules on networks: Invitation-Depressed
Monotonicity (ID-MON) and Invitation-Promoted
Monotonicity (IP-MON). They encompass all ex-
isting allocation rules of network auctions as spe-
cific instances. For any given ID-MON or IP-MON
allocation rule, we characterize the existence and
sufficient conditions for the strategyproof payment
rules, and show that among all such payment rules,
the revenue-maximizing one exists and is computa-
tionally feasible. With these results, the obstacle of
combinatorial network auction with single-minded
bidders is now resolved.

1 Introduction

In recent years, auction design in social networks has received
emerging attention from the computer science and artificial
intelligence community [Guo and Hao, 2021; Li et al., 2022].
In contrast to canonical auction theory, which concentrates
solely on bidders directly reachable by the seller, network
auction characterizes the auction environment as large and
unfixed, providing the potential to recruit additional partici-
pants. Existing works on network auctions mostly focus on
devising mechanisms that motivate agents to actively dissem-
inate auction information to their neighbors and invite their
neighbours into the auction, thereby expanding the market,
improving allocation efficiency, and simultaneously increas-
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ing the seller’s revenue [Li et al., 2017; Zhao et al., 2018;
Kawasaki et al., 2020; Li et al., 2022].

Monotone allocation combined with critical value payment
capture truthful mechanisms in classic auctions. For one-
dimensional types, Myerson’s lemma [Myerson, 1981] is the
guiding principle. Archer and Tardos [2001] further devel-
oped a concrete characterization of truthful single-parameter
mechanisms based on Myerson’s Lemma. Regarding multi-
dimensional bidder types, incentive compatibility becomes
more complex. For dominant strategy incentive-compatible
(DSIC) and deterministic mechanisms, Robert [1979] pro-
posed the monotonicity termed “Positive Association of Dif-
ferences” (PAD) and showed that all the DSIC mechanisms
are varieties of VCG mechanism [Vickrey, 1961; Clarke,
1971; Groves, 1973] in unrestricted domain with at least three
possible outcomes. Rochet [1987] introduced cycle mono-
tonicity in unrestricted domains, which is necessary and suffi-
cient for DSIC. Weak-Monotonicity (W-MON), weaker than
cycle monotonicity, was proposed in restricted domains [Lavi
et al., 2003; Bikhchandani et al., 2006].

For network auctions, the aforementioned monotonicity
concepts are too general and impractical for strategyproof-
ness. This is because the private types of bidders are shaped
not only by their valuations but also by their social connec-
tions. Agents must take into account invitation behaviors
when formulating their bids, and vice versa. The mechanism
has to consider the complex preferences of agents over all
combinations of bids and network structures, which seems
implausible. To date, no principle for allocation rules in strat-
egyproof network auctions has been established. In sharp
contrast to single-parameterized canonical auctions, where
the value-monotonic allocation in Myerson’s Lemma serves
as a cornerstone, existing network auction mechanisms can
only rely on loosely designed allocation rules based on trial
and error. Even extensions to multi-unit network auctions
with single-unit demands pose unexpected difficulties. In the
following sections, we show that the existing key mechanisms
for multi-unit network auctions are not strategyproof.

Although Li et al. [2020] presented an elegant theorem
to characterize all strategyproof network auctions, a char-
acterization of monotone allocation in network auction and
the effect of monotone allocation on payment and strate-
gyproofness is still missing, which has been a major obsta-
cle for network auctions design. Currently, researchers are
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extending network auction designs to multi-unit scenarios
[Zhao et al., 2018; Kawasaki et al., 2020; Liu et al., 2023;
Fang et al., 2023]. Unfortunately, even seemingly straightfor-
ward extensions to multi-unit network auctions with single-
unit demands present unexpected difficulties, and all existing
mechanisms turn out to be non-truthful or inefficient. For ex-
ample, the first efforts of this line by Zhao et al. [2018] and
Kawasaki et al. [2020] are not strategyproof, allowing certain
agents to gain by inviting fewer neighbours or even by not
inviting at all. LDM [Liu et al., 2023] and MUDAN [Fang et
al., 2023] use complex rules to localize bidders’ competition
to ensure truthfulness, harming efficiency and revenue as side
effect. Please refer to Appendix A for detailed related work.

1.1 Our Contributions

We study the theory of strategyproof network auctions, which
provides a concise approach to achieving truthfulness and
revenue optimization in network auctions. In particularly it
is helpful for multi-unit or combinatorial network auctions,
where most existing mechanisms fall short.

(1) We begin by examining why the Distance-based
Network Auction with Multi-Unit (DNA-MU) mechanism
[Kawasaki et al., 2020] fails to achieve strategyproofness. We
identify the underlying causes of this failure and propose a
revised mechanism that restores strategyproofness. Our anal-
ysis reveals that merely enforcing value-monotonicity in al-
location can complicate or even hinder the payment design.

(2) Given any value-monotone allocation, we identify a
sufficient condition for the payment rule to be strategyproof
in network auctions. We further characterize two categories
of monotone allocation rules: Invitation-Depressed Mono-
tonicity (ID-MON) and Invitation-Promoted Monotonicity
(IP-MON). Each is grounded in different partial orderings
in the bidders’ multi-dimensional type space. Both ID-MON
and IP-MON are not only value-monotone but also monotone
with respect to network structure. Consequently, all exist-
ing strategyproof mechanisms with various allocation rules in
network auctions can be explained by ID-MON or IP-MON.

(3) Building on ID-MON and IP-MON, we formally char-
acterize the revenue-maximizing payment rules that satisfy
individual rationality and strategyproofness. These payment
rules establish the upper bound on the seller’s revenue achiev-
able under any given ID-MON/IP-MON allocation rule.

(4) In sharp contrast to existing multi-unit network auc-
tions, which are burdened by complex payment reasoning,
our principles of ID-MON and IP-MON implementability
greatly simplify the design of strategyproof network auction.
To our knowledge, this is the first work to study a simple
and principled framework for designing network combinato-
rial auction with single-minded bidders.

Results lacking full proofs are proven in the appendix'.

2 Preliminaries

2.1 Network Auction Model

Consider a social network G = (N U{s}, E'), where N U{s}
is the set of nodes while F is the set of edges. s is the seller

"Full version is available at: https:/drive.google.com/file/d/
1F82cDn2si-cQqorw VMQdOtsiK GGjlPjC/view 2usp=drive_link

node while agents in N are potential bidders in the network.
Denote each agent ¢’s neighbor set by N (i) = {j | (i,7) €
E}. Assume that the seller s has a collection of items /C (ei-
ther homogeneous or heterogeneous) to be sold and initially
she can only call together her direct neighbors N(s) by her-
self. In order to expand the market, she can incentivize her
neighbors to invite their own friends to join the market. Fig-
ure 1 is a social network G = (N U {s}, E') where s is the
sellerand N = {A, B,C, F, D, H} are potential bidders.

Figure 1: Social network example with 6 agents

Figure 2 shows an instance of auction information diffu-
sion. It starts from seller s, who invites bidders A and B into
the market. After that, bidder B further invites neighbors C
and I, then C invites D. Later, bidder D does not invite
H, thus H cannot enter the market. Finally, {A, B,C, D, F'}
are the bidders. We denote G = (N U {s}, E) as a digraph
depicting the market with information diffusion.

T,
- H )
~_7

Figure 2: Information diffusion in the market

Each bidder ¢ has private information 6; = (v;,1;),
where v; is her valuation, consistent with the classical single-
parameter environment (e.g., single-item, k-unit with unit-
demand, or knapsack auctions, etc), and r; = N (i) is the
set of neighbors she can invite to participate in the auction.

Letd = (64, ...,0,) be the type profile of the bidder set N,
and 0_; = (01,...,0;_1,0;41,...,0,) be the type profile of
the other bidders N \ {i}. Define © = X;cnO; as the space
of the joint type of bidders N, where ©; = R>oxP(r;) is the
type space of bidder ¢, and P(r;) is the power set of r;. Each
bidder i could strategically misreport. Let 6, = (v}, ) be the
reported type of bidder 4, where v, € R>o and r} € P(r;).

Definition 2.1. A mechanism M = (f,p). Here f is the
allocation rule [ = (f1,---, fn) and p is the payment rule
p= (p17' o 7pn): where fz 0 — {0,1} andpl 0 >R

Given any type profile ', we say [ is feasible if, for all
0" € O, it holds that the seller s can sell at most |K| items.
Let F be the set of all feasible allocations. For a given
0" € © and a mechanism M = (f,p), the social welfare is
SW(f,0') = >_;cn fi(0")vi. Anallocation f* is efficient if
it always allocate goods to bidders who value them the most.
Definition 2.2 (Efficiency (EF)). A network auction mech-
anism M = (f*,p) is efficient if for all ' € ©, f* =
arg maxser SW(f,0').

For any ¢’ € © and a mechanism M = (f, p), the seller’s
revenue is Rev (0') = > ien Pi(0'). Accordingly, we say
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that the mechanism M is (weakly) budget balanced if the
seller never incurs negative revenue from the auction.

Definition 2.3 (Weakly Budget Balance (WBB)). A network
auction mechanism M = (f,p) is (weakly) budget balanced
ifv0' € ©,Rev™(0') >0

Given profile ¢’, each bidder i’s quasi-linear utility func-
tion is u; (¢, (f,p)) = fi(0")v; — p;(0"). We simplify it as
w; (v}, 7}),0";). Next, we formulate individual rationality
and strategyproofness.

Definition 2.4 (Individual Rationality (IR)). A network auc-
tion mechanism M = (f, p) is individual rational (IR) iffor
all 9’ € ©, foralli € N,r; € P(r;), ui((vs,7}),0";)) >

In network auction scenarios, given any mechanism M,
if for each bidder, truthfully disclosing her valuation brings
non-negative utility, we call this mechanism satisfies IR. It
does not place requirements on bidders’ invitation behaviors.

Definition 2.5 (Strategyproofness (SP)). A network auction
mechanism M = (f,p) is strategyproofiffor all§' € ©, for
alli € N, u;((vi,7:),0";) > u; (v}, 7}),0",).

In network auctions, strategyproofnes requires that, for any
buyer, truthfully reporting her valuation and inviting all the
neighbors around is the dominant strategy.

Definition 2.6 (Network-Implementable). A network auc-
tion’s allocation f is network-implementable if there exists
a payment p such that M = (f,p) is strategyproof.

Notably, network-implementable allocation is different
from implementable allocation in classic auctions. The map-
ping from allocation to payment takes network structure (i.e.,
invitational incentive) into consideration.

Definition 2.7 (Degenerated). A network auction mechanism
M = (f,p) is degenerated if for any profile 0 € O, for
any bidder i € N, and any invitation strategy r; C r;,
wi((vi, 77), 07) = wi((vi, 7i), 075).

Intuitively, a network auction mechanism is degenerated if
each agent’s utility is independent of her invitation actions.

2.2 Strategyproof Network Auctions

In classic auction theory, Myerson’s Lemma [Myerson, 1981]
presents the formulations for all individual rationality (IR)
and strategyproof (SP) mechanisms under single-parameter
domains. A normalized mechanism (where losers always pay
zero) is considered SP if and only if the allocation is value-
monotone and winners always pay the critical winning bid.

Definition 2.8 (Value-Monotonicity). Given a network auc-
tion mechanism M = ( f, p) and profile 0', for every
bldder i, if allocation f;((v},r}),0" ) = 1 implies that
fi(y,r}),0-,) = 1 for any v"" > v/, then we say the al-
location rule f is value-monotone.

Value-monotonicity depicts that given any r; and ¢’_,, for
any bidder 4, increasing her bid v} will never turn herself from
a winner to a loser. The characterization of IR and SP in the
context of network auctions was initially proposed by Li et
al. [2020]. They established a sufficient and necessary condi-
tions for IR and SP in network auctions. Before introducing
the theorem, we first provide some essential definitions.

Definition 2.9 (Payment Decomposition). Given a network
auction mechanism M = (f,p) and any profile 0’ for any
bidder i, her payment p; can be decomposed into the winning
payment p; and the losing payment p;, such that p;(0') =
fi(0)pi + (1 — f:(0"))Di.

Definition 2.10 (Bid-Independent). Given a network auction
mecham’vm M = (f,p) and profile 0, ¥ i € N, v} # v/,
pi((vg, 1), 0-0) = Pil(v7',3),0-) and pi((v;, 77), 05) =
pl(( 17 7) 9* )

Definition 2.11 (Invitational Monotonicity). Given a network
auction mechanism M = (f,p), for each bidder i, fixing
all other bidders’ profile 0"_; and bid v;, if her decomposed
winning and losing payments satisfy that for all r; C r;,
Pi(vi, ) = Pi(vi,ri) A Pivi, i) > pi(vi,73), then we say
payment rule p is invitational-monotone.

Intuitively, invitational-monotonicity of the payment repre-
sents that, regardless of being a winner or loser, when fixing
a bidder’s bid, inviting all the neighbors always minimizes
their payment. This property directly incentivizes bidders to
truthfully disclose their invitation sets.

Definition 2.12 (Critical Winning Bid). Given M = (f,p),

for any bidder i, fixing others’ 0'_,, denote v} (r}) as the crit-

ical winning bid for bidder i when her invitation action is r}:

i) = it A, 0L ) =1 )
’U,L-ERZO

The critical winning bid v} (v}

/) is the minimum bid that
makes bidder ¢ a winner, given all other bidders’ strategies
0’ and assuming bidder ¢ takes the invitation action ;.
With the above definitions and decomposition, Li et
al. [2020] proved a basic sufficient and necessary condition

for all IR & SP network auctions.

Theorem 2.1 (IR & SP Network Auction [Li et al., 2020]).
A network single-item auction mechanism M = (f,p) is IR
and SP if and only if, for all profiles 0 € © and all bidders
i € N, conditions (1)-(4) are satisfied:

(1) The allocation rule f is value-monotone.

(2) p; and p; are bid-independent and invitational-monotone.
(3) pi(ri) — pi(r:i) = vi ().

(4) pi(0) < 0.

Conditions (1) to (3) are for strategyproofness, while con-
dition (4) is for IR. However, Theorem 2.1 only gives an ab-
stract condition of the payment, it doesn’t provide details re-
garding how to devise the allocation function f or what the
explicit form of the payment should be. To address this gap,
a more fine-grained and operational characterization of strat-
egyproofness is needed for network auction design.

3 Multi-unit Network Auction

The Vickrey auction [Vickrey, 1961] can be naturally ex-
tended to the multi-unit setting with unit-demand bidders in
classical auction theory by allocating each unit to the top-k
highest bidders and charging each winner the (k + 1)-st high-
est bid. However, this extension becomes substantially more
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complex in network auctions, which has sparked significant
controversy and discussion in the community.

The very first work GIDM by Zhao er al. [2018] tried to
extend IDM [Li et al., 2017] into k-unit settings. However, it
is not strategyproof under some counterexamples constructed
in [Takanashi et al., 2019]. Kawasaki et al. [2020] proposed a
new mechanism called DNA-MU to deal with k-unit network
auctions with unit demand. Unfortunately, Guo et al. [2024]
proved that DNA-MU also fails to be strategyproof for the
same example in [Takanashi et al., 2019]. It is surprising that
two totally different mechanisms fail to be strategyproof for
the same counterexample. Upon encountering these difficul-
ties, subsequent works on multi-unit network auctions either
make strong assumptions about agents’ information [Liu et
al., 2023] or greatly compromise on their design objectives
[Fang et al., 2023]. In this section, we will unveil the under-
lying reason of this failure and fix the DNA-MU mechanism.

3.1 Counterexample of DNA-MU Mechanism

We revisit DNA-MU in Algorithm 1. It is based on a key
notion, invitational-domination, which is widely used in net-
work auctions.

Definition 3.1 (Invitational-Domination). Given a digraph
G = (N U {s},E), for any two bidders i,j € N, i
invitationally-dominates j if and only if all the paths from
seller s to j must include 1.

Intuitively, if bidder A dominates B, then without A’s in-
vitation, it is impossible for B to enter the auction market.
Merging the invitational-domination relations between every
pair of nodes, one can create the invitational-domination tree
(IDT) for all informed bidders in G. IDT is a partial ordering
of agents regarding their topological importance.

Based on these concepts, we introduce the DNA-MU
mechanism, which initially determines a distance-based pri-
ority ordering using the classic Breadth-First Search (BFS)
algorithm. In this priority ordering, it has been proved that
no bidder can improve her priority by misreporting her type.
Next, it decides whether to allocate one item to each bidder
via a threshold bid v* (N \ (T;UW)) 2 where k is dynamically
updated, 75 is the sub-tree rooted at ¢ in the IDT, containing
all the bidders who are invitationally dominated by 4, and W
is the winner set. See Algorithm 1 for details of DNA-MU.

However, DNA-MU fails to be strategyproof in cases
where some losers can invite fewer neighbors to gain an ex-
tra benefit. We run DNA-MU for the social network in Fig-
ure 1 with two invitation profiles: one where all the bidders
fully invite their neighbors (truthful behavior) and the other
where bidder D does not invite H (false behavior), as shown
in Figure 2. Section 3.1 shows that bidder D is profitable by
exhibiting false behavior, making DNA-MU fail to be strate-

gyproof.

Proposition 3.1. In K-unit network auctions, DNA-MU
mechanism is not SP when || > 3.

Please refer to the appendix for more detailed running pro-
cedures and a general proof of Proposition 3.1.

2uR(N\ (T; UW)) is the k-th bid in bidder set N \ (T; U W).

Algorithm 1 DNA-MU Mechanism

Input: G = (NU{s}, E), 0, K;
Output: Allocation f, payment p;
1: Initialize ordering O <— BFS(G, s);
2: Create Invitational-Domination Tree (IDT) T;
3: Initialize k « ||, W « 0;
4: for i in O do
5. T; < Sub-Tree rooted by 7 in T';
6: ifv; > vF(N\ (T; UW)) then
7.
8
9
0
1

fi = Lpi < oF(N \ (T, UW));
Update k + k — 1, W « W U {i};

end if
10: end for
11: Return f, p.
Allocation Payment
rp = {H} {B,F,C}  A(0),B(0),F(5),C(4),D(0),H(0)
rp =10 {4,B,D} A(4),B(0), F(0),C(0),D(6), H(0)

Table 1: Results of DNA-MU in Figure 1 with different rp

3.2 Reason and a Correction

The direct reason why DNA-MU fails to be strategyproof is
that its payment rule is not invitationally-monotone, contra-
dicting condition (2) in Theorem 2.1. This is easily proved in
the following Proposition 3.2.

Proposition 3.2. The payment rule of mechanism DNA-MU
is not invitationally-monotone.

Proof. Consider the counterexample in Figure 2. Bidder D
has two possible invitation strategies 75, = () and 7%, = {H}.
Notice that pp(rh,) = 6 while pp(ry) = vh(ry) =
+00 > pp(rk). However, invitational-monotonicity (Defini-
tion 2.11) requires pp(r%) < pp(rh) asrh C r%, implying
DNA-MU payment fails invitational monotonicity. O

We revise both the allocation and payment rules of DNA-
MU to design a new mechanism, termed DNA-MU-Refined
(DNA-MU-R), which restores strategyproofness. Specifi-
cally, in line 8, we adjust the threshold condition from v; >
VP (N\(T;UW)) tov; > v*(N\T;). Inlines 9-10, we update
the payment rule from p; < v*(N\ (T;UW)) to p; < v (r;)
and remove the decrement of the parameter k (k < k — 1).
The formal algorithm for the DNA-MU-R mechanism is de-
ferred to the appendix.

Lemma 3.1. DNA-MU-R Mechanism is IR, SP, and WBB.

Section 3.2 presents the results of DNA-MU-R in the coun-
terexample. We defer the proof of Lemma 3.1 and the de-
tailed execution steps of DNA-MU-R to the appendix.

Allocation Payment
rp ={H} {B,F,C}  A(0),B(0),F(4),C(1),D(0), H(0)
rp =10 {A,B,F} A(4), B(0), F(4),C(0),D(0), H(0)

Table 2: Results of DNA-MU-R in Figure 1 with different rp
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Regarding DNA-MU-R mechanism, we have revised both
the allocation (line 8 and line 10) and the payment rules (line
9 and line 10). Is is possible to only revise the payment (line
9)? The answer is unknown yet. Technically, the losing pay-
ment P;(r;) is always zero. Thus to satisfy condition (3) in
Theorem 2.1, the winning payment p;(r;) must be equal to
the critical winning bid v} (r;). However, the allocation rule
of DNA-MU leads to a bad consequence that, bidder D’s crit-
ical winning bid, which is determined by allocation, v}, (7 p)
is not invitationally-monotone. It is worth noting that GIDM
[Zhao et al., 2018] also fails to be invitationally-monotone.

Remark 1. Merely ensuring value-monotonicity for the allo-
cation can complicate or even fail the payment design.

Then what kind of allocation rules in network auctions can
ensure network-implementability? In the following section,
we will reveal, from a high-level perspective, the characteris-
tics of allocation rules that are considered “good” in the con-
text of network auction design.

4 Monotonicity and Implementability

In classic auction theory, value-monotone allocation with crit-
ical payment play the vital role for strategyproofness. In this
section, we first propose general payment functions satisfying
strategyproofness for any given value-monotone allocation
rule, based on the fundamental principles in Theorem 2.1.
We then identify two classes of network-implementable allo-
cation rules: Invitation-Depressed Monotonicity (ID-MON)
and Invitation-Promoted Monotonicity (IP-MON).
Technically, we will unveil the fundamental reason why
these seemingly opposite allocations can both be imple-
mented in strategyproof network auctions, despite their sig-
nificantly different performances. Furthermore, we derive the
revenue-maximizing payment rule for both ID-MON and IP-
MON allocations. Specifically, given any ID-MON or IP-
MON allocation, our payment schemes achieve the upper
bound of the seller’s revenue within the strategyproof domain.

4.1 Value-Monotone Allocation

Based on Theorem 2.1, given any value-monotone allocation
f, we characterize a general class of payment schemes p such
that if such a p exists, then [ is network-implementable.

Corollary 4.1. Given any value-monotone allocation f and
profile 0, for each bidder i with 0; = (v;,r;), if there exists
some payment function p(r;) = §(r;) + h(6—;) and p(r;) =
g(r;) + h(0—;) such that the following conditions hold for
Sunctions §(-), g(+),
g(ri) — g(ri) = v*(rs),
i = ang min §(r}), 7 = axg min g(r),

then f is network-implementable.

Corollary 4.1 provides a basic guideline for designing strat-
egyproof payments when a value-monotone allocation func-
tion is given. The critical winning bid v} (r;) in the first con-
straint is determined by the allocation rule. This raises an
immediate question: can we leverage the monotonicity over
r; to develop network-implementable allocation rules?

Another significant observation is that given any value-
monotone allocation, when fixing all other bidders’ report-
ing type, the critical winning bid for each bidder ¢ across two

different invitation strategies r}, 7> C r; is comparable.

170
Lemma 4.1. Given any value-monotone allocation rule f,
for any bidder i, fixing all other bidders’ profile 0_;, for two
different invitation strategies r} C r;,r? C 1y, vi(ri) <
vi(r?) ifand only if Vv; € R>o, f(vi,71) > f(vi,72).
Next, we specify two different types of value-monotone al-
location functions: Invitational-Depressed Monotonicity (ID-
MON) and Invitational-Promoted Monotonicity (IP-MON).
With these allocation functions, a strategyproof payment
scheme always exists, meaning that the ID-MON and IP-
MON allocation rules are always network-implementable.

4.2 Invitation-Depressed Monotone Allocation

Invitation-Depressed Monotone (ID-MON) allocation was
initially defined in [Li et al., 2020]. ID-MON allocations are
based on the economic intuition that invitations can attract
more bidders, thereby intensifying competition in the market
and making it harder for each bidder to win. Although ID-
MON favors bidders who invite fewer neighbors, it does not
inherently incentivize invitations. Therefore, during the pay-
ment design, the auctioneer should compensate the bidders to
encourage more invitations.

Technically, ID-MON allocation is based on a partial or-
dering >p over bidders’ type profile 6.

1

Definition 4.1. For any bidder i and two types 0} = (v}, r})
and 02 = (v2,r?), denote the invitation-depressed partial
order by =p: if vy > v? andr} C r?, then 0} =p 02.

By leveraging this invitational-depressed partial ordering,

the definition of ID-MON is as follows.

Definition 4.2 (Invitation-Depressed Monotonicity (ID—
MON)). Given an allocation rule f and all other bidders’
profile 0_,, If, for every bidder i, the allocation f;(0;,0_;) =
1 implies that for all 0; =p 0;, f;(0,0_;) = 1, then we say
the allocation f is invitation-depressed monotone.
Lemma 4.2. Given an ID-MON allocation f, for each bidder
i € N and two type profiles 0} = (v;,r}) and 6? = (v;,r2),
where v} C r2, it always holds that v} (r}) < v} (r2).

The following theorem shows that for any ID-MON allo-
cation rule f, there always exists a payment scheme p such
that (f, p) is strategyproof.

Theorem 4.1. Every ID-MON allocation f is network-
implementable.

With regard to the implementation of a strategyproof mech-

anism, by leveraging the features of ID-MON, we present the
following theorem to demonstrate how to construct the opti-
mal payment p* such that (f,p*) is strategyproof and max-
imizes the seller’s revenue. Please refer to the appendix for
detail proof of Theorem 4.2.
Theorem 4.2. Given an ID-MON allocation f and profile 0,
for each bidder i, let p; = v} (D), p; = vi (D) — v} (r;), and
p* = {fi0)pi + (1 — fi(0))Pi}ien, then M* = (f,p")
is IR and SP, and for any other IR and SP M' = (f,p),
Rev™ (6) > Rev™' (6).
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It is not hard to see that the social welfare maximizing (ef-
ficient) allocation rule satisfies ID-MON. Therefore, although
directly extending VCG into network does not maximize the
seller’s revenue [Li et al., 2017; Li et al., 2022], we can ob-
tain the maximum revenue by utilizing the payment in Theo-
rem 4.2:

1. Allocate items to bidders with top-k highest bids.

2. Create the Invitational-Domination Tree (IDT) T'.

3. Each winner i pays v* (N \ T}) while each loser j “pays”
V(N Tj) = v (N).
Call this mechanism VCG-Revenue-Maximizing (VCG-RM)
mechanism. We can obtain the following statement.
Corollary 4.2. In k-unit network auction with single-unit de-
mand bidders, given profile 6, VCG-RM mechanism is EF, IR,
SP, and Rev"““*™(9) > Rev"“(9).

4.3 Invitation-Promoted Monotone Allocation
In contrast to ID-MON allocations, we now characterize an-
other class of monotone allocations that allocate items in
the opposite manner. The intuition is rather straightforward:
the more neighbors that bidders introduce into the auction,
the higher their contribution. Therefore, the allocation rule
should favor bidders who have more neighbors. We refer to
this class of allocation as Invitation-Promoted Monotone (IP-
MON) allocation. They are based on an opposite partial or-
dering of bidders’ types.

Ll

Definition 4.3. For any bidder i and two types 0} = (v}, r}
and 0% = (v?,12), denote the invitation-promoted partial or-
dering by =p: if vl > v? and r? C r}, then 0} =p 02.

The difference from this partial ordering with that for ID-
MON is the ordering on r; is totally converse. Given partial
order > p, we propose the following monotonicity.
Definition 4.4 (Invitation-Promoted Monotonicity (IP—
MON)). Given an allocation rule f and all other bidders’
profile 0_,, if for every bidder i, the allocation f;(6;,0_;) =
1 implies that for all 0; =p 0;, f;(6;,0_;) = 1, then we say
allocation f is invitation-promoted monotone.

Similarly, we introduce the monotonicity of critical win-
ning bid for IP-MON allocation rules.

Lemma 4.3. Given an IP-MON allocation f, for each bidder
i € N, for any two type profile 0} = (v;,r}) and 02 (v;,r?)
where r? C r}, it always holds that v} (r}) < v} (r?).
Theorem 4.3. Every IP-MON allocation rule f is network-
implementable.

Following the idea in ID-MON subsection, we can derive
the revenue-maximizing payment for any IP-MON alloca-
tions. See the appendix for detailed proof of Theorem 4.4.
Theorem 4.4. Given an IP-MON allocation f and profile
0, for each bidder i, let p; = v}(r;), p; = 0, and p* =
{£i(0)pi + (1 — fi(0))pi }ien, then M* = (f,p*) is IR and
SP, and for any other IR and SP mechanism M’ = (f,p’),
RevM' (6) > Rev™ (6).

It is worth noting that the DNA-MU-Refined mechanism
we proposed in the last section satisfy [IP-MON and the pay-
ment rule has maximized the seller’s revenue.

Proposition 4.1. The allocation of DNA-MU-R is IP-MON.

4.4 Insights and Implementation Complexity

The mechanism design space in the network auction scenario
is extremely large. Given one value-monotone allocation rule,
there could be various payment rules that make the mecha-
nism strategyproof. We summarize our results in the previous
subsections in Figure 3, which shows the relations between
each category of strategyproof mechanisms.

Network-Implementable Mechanisms

Corollary 4.1

Degenerated
(Theorem 4.2)| (Proposition 4.2) |(Theorem 4.4)

Figure 3: Relations of mechanisms identified in this paper.

( Yellow ) In Theorem 2.1, value-monotonicity is sufficient
and necessary to guarantee truthfulness.

( Orange ) In Corollary 4.1, functions g(-) and g(-) are intro-
duced to specify SP network auctions.

( Pink / Blue ) Since bidders’ type is two-dimensional, only
considering value-monotone allocation while ignoring the
monotonicity in the invitation dimension makes devising the
SP payment, i.e., the §(-) and g(-) functions be much more
complicated. Therefore, we identify ID-MON and IP-MON
and proved both of these two monotone allocations can be
sufficient to achieve strategyproofness.

( Green ) IP-MON and ID-MON can be considered as two
special classes within the design paradigm in Lemma 4.1. By
instantiating the partial order in the invitation r; dimension,
g(+) and g(-) are constructed. There exists a class of strate-
gyproof mechanisms at the intersection of these two classes,
which is degenerated in the sense of Definition 2.7.

Proposition 4.2. Given any mechanism M = (f,p) where
f satisfies both ID-MON and IP-MON, and p satisfies the
revenue-maximizing payment schemes in Theorem 4.2 and
Theorem 4.4. Then M is degenerated.

Corollary 4.3. ID-MON and IP-MON allocations with pay-
ment scheme in Theorem 4.2 and Theorem 4.4 are special
cases in Corollary 4.1.

The ideas of SP auction design for these two mono-
tonicities are entirely different. ID-MON-based mechanisms
should follow the principle that losers could get potential ben-
efits on payoffs to incentivize more invitations, even though
ID-MON allocation itself discourages invitations. On the
other hand, IP-MON-based mechanisms are more straight-
forward in incentivizing invitations since the allocation itself
already guarantees that. These two allocation rules achieve
distinct trade-offs between social welfare and revenue.

Proposition 4.3. Under IR and SP constraint, there exists an
instance such that no IP-MON allocation is EF. Mechanism
under ID-MON may fail WBB.
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Another positive result is that both ID-MON and IP-MON
mechanisms are computationally feasible.

Proposition 4.4. [fan ID-MON or IP-MON allocation f runs
in polynomial time O(T), then the revenue-maximizing pay-
ment p* is computed in O(N - T log(max;cn v;))-

Furthermore, it is interesting to note that the allocation
rules in all existing network auction mechanisms are either
ID-MON, IP-MON, or fall within their intersection. We cat-
egorize the existing mechanisms into three groups, as pre-
sented in Appendix C.16. Based on the above analysis, espe-
cially Theorem 4.1 to Proposition 4.3 and Proposition 4.4, we
emphasize the following major result.

Remark 2. Designing strategyproof network auctions can
boil down to finding ID-MON and IP-MON allocations and
applying the corresponding revenue-maximizing payments in
Theorem 4.2 and Theorem 4.4.

The above characterization can guide the design of strat-
egyproof mechanisms for network auctions with complex
tasks. Given an ID-MON or IP-MON allocation, we can de-
sign an appropriate payment in a simple manner. For exam-
ple, guided by Theorem 4.2, we easily proposed revisions to
VCG and DNA-MU, which are called VCG-RM and DNA-
MU-R, respectively. We showcase that the VCG-RM and
DNA-MU-R mechanisms significantly outperform the only
two existing strategyproof mechanisms LDM-Tree [Liu ez al.,
2023] and MUDAN [Fang et al., 2023] regarding social wel-
fare and revenue in the appendix.

5 Combinatorial Network Auction

Regarding combinatorial network auctions with single-
minded bidders, Fang et al. [2024] recently proposed the
LOS-SN mechanism, inspired by the MUDAN mechanism
[Fang er al., 2023], introducing a novel approach to estab-
lishing the priority order. Notably, we observe that the LOS-
SN mechanism satisfies the IP-MON condition, bringing it
within the framework of Theorem 4.3. Building on this, we
revisit the problem by naturally extending the classic results
from combinatorial auctions with single-minded bidders to
network auction settings, addressing both ID-MON and IP-
MON allocations in a more accessible manner.

The scenario is specified as follows: seller s possesses a
set IC of k heterogeneous items. For each bidder i € N, she
is single-minded if and only if there exists a unique bundle of
goods SF C K that bidder ¢ favors. Formally, each bidder’s
valuation can be represented by v;(S) = wv; if and only if
S = S, and for all other bundlesS’ # S, v(S’) = 0. For all
bidders, their favorite bundles are public information, while
their private information is two-dimensional: the bid v; for
S and the invitation set 7;. It is well-established that finding
an efficient allocation for this problem is NP-hard [Lehmann
et al., 2002]. This complexity extends to network auctions,
where each classical scenario can be interpreted as a net-
worked case in which all the bidders are directly connected to
the seller. Furthermore, it has been shown that there exists no
polynomial time algorithm for optimal allocation with an ap-
proximation ratio better than k'/2~¢. The well-known near-
optimal approximation scheme is presented in Algorithm 2
[Lehmann et al., 2002].

Algorithm 2 /k-approximation for Combinatorial Auction
with Single-minded Bidders

Input: 6 = {(v;, S})}ien, W = 0;
Output: Allocation f;

1: Reorder all bidsin N by —2—= > —22_ > ... n_-

Y st = VIS = Visal

2: for i from 1 to n do

30 i SN (Ujew S5) = 0 then

4: Update W + W U {i};

5:  endif

6: end for

7: Return the winner set V.

Algorithm 3 Allocation Rule of NSA Mechanism

Input: G = (NU{s},E), 0, K;
Output: Allocation f;
1: Initialize the global winner set W;
2: O < BFS(G, s); Create the IDT T,
3: for Bidder ¢ in O do

4 N_p, +« N\T;U{i}; ~

N G,Ti — {(1)]', S;)}jGNfT,iv Wz — W;
6: W« Algorithm 2(0_g;, Wy);

7.  if ¢ in W; then

8: Update W «+ W U {i};

9: endif

10: end for

11: Return f which gives S} to ¢ if and only if ¢ € W.

According to Remark 2, a straightforward way to finding a
monotone allocation is to apply Algorithm 2 to all the bidders
in N, in conjunction with the revenue-maximizing payment
scheme described in Theorem 4.2. We term this mechanism
“Network-v/k-Approximation Mechanism (Net-v/k-APM)”.

Theorem 5.1. Net-v'k-APM is \/k-EF, IR, SP, but not WBB.

Regarding IP-MON allocation, we propose the Network
Single-minded Auction (NSA) mechanism, which combines
a non-trivial extension of Algorithm 2, presented in Algo-
rithm 3, along with the payment scheme introduced in Theo-
rem 4.4.

Theorem 5.2. NSA mechanism satisfies IR, SP, and WBB.

6 Discussion

With the characterization in the above sections, the combi-
natorial network auction with single-minded bidders (includ-
ing the multi-unit network auctions with single-unit demand),
which has been a major obstacle in the field of network auc-
tions since 2018, is now solved in principle. Building on these
insights, this work pioneers the investigation into combinato-
rial network auctions with single-minded bidders. A signifi-
cant open question is whether, given any value-monotone al-
location rule, there always exists a computationally tractable
payment rule that ensures the mechanism is strategyproof.
Other intriguing questions include characterizing Bayesian
truthful mechanisms, extending the deterministic 0-1 alloca-
tion in a more general context, and more.
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