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Abstract

In contrast with human sketching, which pre-
conceptualizes outlines and features, conventional
sketch retrieval models rely primarily rely on pixel-
level processing and feature extraction, limiting
their ability to capture early sketch intent. Conse-
quently, these models are susceptible to subjective
stroke noise, reducing retrieval accuracy. To ad-
dress this issue, we propose a novel on-the-fly noise
stroke retrieval framework designed to align with
human sketch-drawing cognition. The proposed
framework introduces two core innovations. (i)
A stroke consistency detection module that effec-
tively discriminates and suppresses noise strokes
by quantifying the structural similarity between the
current stroke and the target image, as well as its
alignment with key skeletal components. (ii) An
adaptive gated mixture of experts module that dy-
namically selects and integrates features from mul-
tiple expert networks during the early, sparse stages
of sketching, thereby capturing relevant informa-
tion with greater precision. Experimental results
across diverse sketch datasets demonstrate that the
proposed method effectively identifies and sup-
presses early noise strokes, significantly enhances
sketch retrieval performance, and exhibits strong
robustness across varying sketch styles.

1 Introduction

With the widespread adoption of interactive touchscreen de-
vices, sketch-based image retrieval (SBIR) has emerged as an
accessible and practical modality. In particular, the advent of
on-the-fly frameworks[Bhunia er al., 2020; Liang et al., 2021;
Liu et al., 2022; Dai et al., 2024b] has significantly lowered
the entry barriers for users, enabling real-time sketching and
retrieval, thereby reducing the required interaction time and
obviates the need for complete sketches. However, a fun-
damental challenge in the early stages of on-the-fly SBIR is
differentiating between keystrokes indicative of user intent
and those that are unintentional or noisy strokes. To con-
vey specific shapes, structures, or details, users may draw
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Figure 1: (a) The drawing process of sketch based on their under-
standing. The red dots in the line graph (b) indicate the moments
when the user drew the shoelaces, at which point the sketch retrieval
performance of the model significantly decreases. This is because
the model treats the drawn shoelaces as non-critical features or even
noise, leading to a substantial decrease in retrieval performance.

strokes that deviate from typical features expected by the
model. Although these strokes may carry significant semantic
information for the user, existing models may typically mis-
classify them as noise, negatively affecting the understanding
of sketch intent and recognition accuracy. For example, as
shown in Fig. 1, when users aim to represent the textural de-
tails of shoelaces, the drawn strokes may exhibit slight curva-
ture or incomplete closures. These strokes encode significant
semantic information about the texture. However, deep learn-
ing models that primarily rely on statistical regularities for
feature matching may consider these strokes as noise that de-
viates from established category features. This phenomenon
is particularly pronounced in objects with intricate details.
Recent studies have attempted to address noise strokes in
SBIR [Koley et al., 2024b; Bandyopadhyay er al., 2024]. For
example, Sain et al. [Sain et al., 2021] proposed a style-
agnostic model, Bhunia et al. [Bhunia et al., 2022a] de-
veloped a stroke subset selector to filter noisy strokes, and
Koley et al. [Koley et al., 2024a] focused on handling ab-
stract strokes. However, these approaches are largely ori-
ented toward complete sketches. In the early stages of on-
the-fly retrieval, where models receive only sparse strokes
and lack contextual information, the identification of noise
strokes and the extraction of effective features become sig-
nificantly more challenging. The core challenges in on-the-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

fly SBIR are twofold. (1) Accurately determining whether
a given stroke is integral to the target features or an irrele-
vant distractor is challenging, particularly before the key fea-
tures of the target object are fully rendered. This challenge
is particularly pronounced for detail-rich objects such as fa-
cial sketches. (2) Extracting semantic features from sparse,
incomplete strokes in the initial stages of sketching presents
another challenge, as it is essential for effective matching dur-
ing early retrieval.

To address the challenges of noise stroke interference in
the early stages of on-the-fly retrieval, we propose a novel
noise-filtering framework for the on-the-fly SBIR problem.
Our method mitigates the challenges identified above by eval-
uating the significance of user-drawn sketch strokes at both
pixel and structural levels. Our framework consists of two
key components: the stroke consistency detection module
(SCDM) and adaptive gated mixture of experts module (AG-
MoE). The SCDM assesses the importance of sketch strokes
from both pixel-level and contour structure perspectives, en-
suring the accuracy of detection for both simple and com-
plex strokes, and preserving the crucial sketch information
required for model parsing and learning. The objective of the
AGMOoE module is to extract semantic information from fil-
tered strokes comprehensively, aiming to avoid information
loss and semantic leakage, thereby enabling the extraction of
robust and discriminative features, even in the early stages.

To evaluate the generalization ability and robustness of the
proposed model in handling complex strokes, we selected
two categories of datasets: a set of simple sketch datasets
(ChairV2 and ShoeV?2) and detailed facial sketch dataset. Ad-
ditionally, considering the diverse range of sketch styles en-
countered in practical applications, variations in user draw-
ing habits, and the fact that existing datasets may not fully
reflect real-world scenarios, we constructed a more challeng-
ing dataset based on the SKSF-A dataset [Yun ef al., 2024],
encompassing seven distinct sketch styles. The strokes in the
sketch sequences of this dataset closely approximate the ac-
tual user drawing process. Model performance is evaluated
from both qualitative and quantitative perspectives. The ex-
perimental results demonstrate that the proposed model ex-
hibits excellent retrieval performance in the early stages of
sketch drawing and is suitable for handling sketches of dif-
ferent styles. Our contributions are summarized as follows:

(i) We propose a novel on-the-fly noise-filtering cross-
modal retrieval framework. This framework effectively ad-
dresses the noise strokes generated during the drawing and re-
trieval process, thereby enhancing retrieval performance and
user experience.

(i) We design a stroke evaluation and feature extraction
mechanism integrating the SCDM and AGMoE module to
identify key sketch information by assessing stroke impor-
tance at the pixel and contour levels, ensuring the maximal
preservation of crucial semantic information while removing
noise.

(iii)) We construct a challenging multi-style sketch dataset
that aligns closely with practical application scenarios. This
dataset serves as a benchmark for evaluate the generalization
ability and robustness of models in practical settings, provid-
ing a more relevant evaluation tool for future research.

2 Related Work

Sketch-Based Image Retrieval. SBIR has witnessed sig-
nificant advancements, particularly in the fine-grained SBIR
(FG-SBIR), which matches sketches to specific image in-
stances. [Guo et al., 2017; Bhunia et al., 2021a; Bhu-
nia et al., 2021b; Bhunia et al., 2022b; Zuo et al., 2024;
Zhou et al., 2024; He et al., 2025]. Researchers have explored
various strategies to enhance the performance of FG-SBIR,
including leveraging deep Siamese triplet networks [Yu et
al., 2016] and further optimize them by with attention-based
higher-order loss functions and text tags [Bhunia et al., 2023;
Fang et al., 2024]. While some studies address noisy sketches
and style variations[Sain er al., 2021; Bandyopadhyay et al.,
2024], key challenges like sketch style modeling in dynamic
scenes and effective noise discrimination in intricate sketches
still need further investigation.

Mixture-of-Experts. The MoE model uses a gating network
to activate multiple expert subnetworks for task-specific pro-
cessing. Its ability to manage data diversity has made it
prominent in large language models (LLMs) [Carion e al.,
2020; Li er al., 2022; Radford ef al., 2021] following the rise
of vision transformers [Rao et al., 2022; Jain et al., 2023;
He et al., 2024] in the visual domain (e.g., VMoE [Riquelme
et al.,2021], LIMoE [Mustafa et al., 2022], and CuMo [Li et
al., 2024]). Given the inherent stylistic diversity in sketches,
the MoE model can assign different styles to specific experts
for tailored learning, enabling targeted modeling of sketch
features. This study introduces an MoE module to leverage
its advantages for handling diverse sketch styles, aiming to
improve model understanding and generation in complex or
noisy scenarios. This approach allows for finer-grained stylis-
tic capture and efficient resource utilization, enhancing com-
plex brushstrokes processing performance.

3 Problem Definition

On-the-fly SBIR aims to retrieve a target image as rapidly
as possible using the fewest strokes. The drawing pro-
cess is modeled as an ordered sketch sequence & =
{$1,-+-,8t,..., 8}, where s; is the tth stroke and n is the
total stroke count. At time ¢t (1 < ¢t < n), the input sketch
is 5;. Consider a sketch sequence space D°, where S € D%,
Given an image database D! = {I;,...,I,,} containing m
images, the retrieval model dynamically evaluates the degree
of matching between s; and each I; € D!. A matching func-
tion f(s¢, ;) € R is defined to represent similarity. The
model generates a dynamic ranking list R, arranging images
in descending order based on their match with s;. At each
time instance ¢ of dynamic retrieval, the model evaluates the
match between the current sketch s; and each image I; € DL
A matching function f(s, I;) that outputs a scalar similarity
measure is then defined. Based on this matching function, the
model ranks the images in the database, generates a dynamic
ranking list R, and orders images by decreasing match score
s¢. Our objective is to construct a dynamic retrieval model
where the rank of Z € R, improves rapidly as the user adds
strokes. Ideally, a minimum stroke count t,,; < n exists
such that for ¢ > t,,, the target image 7 achieves the top
rank, meaning Rank(Z,R;) = 1. We aim to retrieve the
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Figure 2: Model Architecture. Ours model essentially consists of two separate branches the image branch, encapsulating an image encoder,
SCDM and AGMOoE, and the text branch comprising of a text encoder and linear.

target image as quickly as possible, which translates to the
minimization of ¢,,,. We attempt to optimize the matching
function and ranking such that:

argmin {top |Vt > tiop, Rank (Z,Ry) = 1} (1)
f

where t1,, € [1,7], and ¢, (f) denotes the minimum num-
ber of strokes under the matching function.

4 Proposed Methodology

Overview. We design a cross-modal, real-time retrieval sys-
tem for noise filtering (See Fig. 2), comprising text and im-
age branches for diverse query inputs. The text branch uses
a text encoder and linear layer to reduce dimensionality, fa-
cilitating semantic matching with target images. The im-
age branch handles images and sketches. For sketch queries,
processing involves an image encoder, SCDM, and AGMoE
module. Image queries use an image encoder and AGMoE.
Dimensionally reduced sketch features are then fine-grained
matched with corresponding image features. Text assists
sketch matching, particularly for sparse early sketches, to
mitigate retrieval randomness. Dimensionally reduced text
and sketch features are fused into (v5, = fusion[v{ : v'])
for image matching. Specifically, we present three salient
designs. (i) A novel SCDM analyzes sketch stroke weights
at two complementary levels, improving noise filtering reli-
ability. Simultaneously, AGMoE maximizes semantic infor-
mation retention post-denoising. (ii) Textual data assists re-
trieval of early, sparse sketches, effectively mitigating initial
retrieval randomness. (iii) Training integrates unimodal con-
trastive and auxiliary fusion losses for fine-grained matching
between combined queries and target images.

4.1 Stroke Consistency Detection Module

The SCDM evaluates each stroke’s importance from two
complementary perspectives. First, we focus on pixel-level
similarity between sketch strokes and target images. This

direct comparison captures fine-grained correspondences to
assess the contribution to detail representation. An image en-
coder Ey(-) extracts embeddings V;° = E;(S;) for the cur-
rent sketch stroke s; and V' = E;(TP) for the target image
TP. Pixel-level consistency is then measured using the cosine
similarity between these embeddings.

Vis . VIp

im(S. 7)) = —+———
sm(SL) = [V

2

Second, to enhance the perception of global structural infor-
mation and assess stroke importance, we compare the current
sketch with the target image’s skeleton contour, Spone. This
aids in identifying whether strokes capture the target image’s
key structures. We calculate the cosine similarity between the
embedding representations of the stroke and Spone = K(T?),
described as Vi, . = E7(Spone), using an image encoder
to measure structural consistency. Combining pixel- and
structural-level similarities yields a comprehensive stroke im-
portance score, sim.

sim = wy - $iMy;ix(Vi, VE) + wa - sime (Vi, Vs,,.) 3)

Where, w; and wg are dynamically adjusted parameters. For
simple line drawings, precise pixel-level matching is less crit-
ical, so w is dynamically adjusted based on the sketched ob-
ject’s complexity.

To transform the continuous similarity score s¢m into dis-
crete stroke weights for differentiated processing. we use the
Gumbel-Softmax function. This function differentiably sam-
ples from a categorical distribution, yielding a discrete, sparse
weight distribution. Specifically, Gumbel-Softmax generates
a corresponding weight value for each stroke based on its
comprehensive similarity score. Strokes with higher simi-
larity scores receive higher weights, indicating their crucial
role in representing the target image, while strokes with lower
similarity scores receive lower weights, suggesting they may
be noise or redundant information.
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4.2 Adaptive Gating MoE Module

We use MoE to better capture diverse sketch strokes for en-
hanced quality. To address MoE’s limitations, we propose the
AGMOoE module, which improves model robustness through
a Top-k gating mechanism and adaptive noise.

As shown in Fig. 2, the denoised sketch strokes V;S/ serve
as the inputs for the AGMoE module, which primarily con-
sists of N expert networks Expert; : RP — RP i =
1,2,3,...,n, a gating network G : RPgate —y RN and pa-
rameters wyoise € RP*N, which are utilized for jointly ad-
justing noise. First, the input stroke Xj;,,,,; passes through
the gating network G(-) to generate logit values ({;o4its) for
each expert network, which are used to measure the degree of
applicability of each expert to the current input stroke.

llogits - g(Xinput) S RBXTXN (4’)

Where, B, T, and N denote the batch size, stroke length, and
number of expert networks, respectively. During training,
we add adaptive noise to the gating network’s output logits
(li0gits) to enhance the module’s exploration capabilities and
increase expert selection diversity. This randomness encour-
ages the model to explore various expert combinations during
training, improving its generalization ability. When the train-
ing condition (train = True) is satisfied and noisy gating is
enabled (n0isyyqting = True) , the logits are dynamically ad-
justed by the following formula:

o = softplus(0.1 - liogits) +
Lnosiy = Zlogits + N(Oa 042)

Where o = 1072 is a constant ensuring the noise’s standard
deviation is always greater than zero. The softplus function
correlates noise variance with the magnitude of [;,4,+ achiev-
ing adaptive noise injection. Depending on whether noisy
gating is enabled during the training phase, the final L

are calculated as follows:

I Luosiy, 1f noisygating & train  (6)
logits = liogits,  Otherwise 7

Subsequently, to enhance computational efficiency and direct
the model’s attention to the most relevant experts, we intro-
duce the Top-k gating mechanism. To ensure that softmax
normalization is computed only on the selected Top-k logits,
we set the values of the unselected logits to negative infin-
ity, resulting in a sparse vector lspqrsc. By applying softmax
normalization to [sperse, We obtain the gating weights G(-)
representing the importance of each selected expert.

G = softmax(lsparse) € REXTXK 8

Each expert network is a simple multilayer perceptron with
two linear layers and a rectified linear unit activation function.

{ Z = Relu(w; -z + by),

&)

logits

Expert;(z) = Dropout(ws - Z) ©)

For each selected Expert;,i € {1,2,3,...,k}, its output for
input 7 is computed as Y; = Expert;(z) € REXTXD The
outputs of all k selected experts are then stacked.

Y:D/laYQ;"',Yk]ERBXTXKXD (10)

Dataset Sketch Image Other
Train Test Train Test Style Text

QMUL-Chair-V2 1,275 725 300 100 3 X
QMUL-Shoe-V2 6,051 679 1,800 200 3 X
ChairV2-Ul X 1894 X 100 N X
ShoeV2-Ul X 3781 X 200 N X
FS2K-SDE1 53,950 22,500 1,079 450 1 v
FS2K-SDE2 16,700 7,150 334 143 1 v
User-Ul X 3,474 X 110 N v
SFSK-A X 938 X 134 7 X

Table 1: Several publicly available sketch datasets.

Finally, we apply the gating weights to weight the output of
each expert, thereby obtaining the final weighted output.

Yweighted =G QY (11)

Where, ® denotes element-wise multiplication. The gating
network scales each expert’s output based on its correspond-
ing importance.

4.3 Expert Contrastive Learning

This section outlines our model’s training, which incorporates
two auxiliary tasks designed for noisy stroke filtering during
interactive drawing.

(1) Cross-modal alignment. To account for input modal-
ity variations, specialized alignment tasks are performed by
different experts on specific modalities. We design a cross-
modal alignment learning task to explore the specialized
knowledge and skills of each expert for specific alignment
tasks, thereby facilitating fine-grained learning and optimiza-
tion. Image-text contrastive learning (ITC loss [Radford
et al., 2021]) ensures close alignment of text and images
within the feature space, optimizing their semantic consis-
tency. Sketch image contrastive learning (ISC loss [Radford
et al., 2021]) maps sketches and their corresponding facial
images to a shared feature space.

(2) Bimodal alignment. Leveraging the complementarity
of multimodal information further enhances the robustness of
the model. When one modality’s information is missing or
excessively noisy, the model can rely on the other, preventing
significant overall performance impact. ITSC loss calculates
fused features as follows:

exp(sim(vg;, v})/7)
N -
3 =1 exp(sim(vg;, v])/7)

Where, v%, is the embedding vector after fusing sketch and
text, and 7 is a temperature parameter.

N
Lirso=— Y log (12)
=1

S Experiments

Datasets. To select appropriate datasets based on sketch
stroke complexity, we use eight publicly available datasets
(See Table 1) [Song et al., 2018; Muhammad et al., 2018;
Pang et al., 2019; Bhunia et al., 2020; Dai et al., 2022;
Liu et al., 2024; Dai et al., 2024b]. Furthermore, to test our
model’s generalizability across diverse styles, we expand the
SKSF-A dataset [Yun et al., 2024], which encompasses seven
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Figure 3: Compared to the baseline model, our method shows a clear performance advantage in early sketch retrieval. The x axis represents
indicates the percentage of strokes, and the y axis indicates the retrieval metrics, with higher values indicating stronger retrieval performance.

sketch styles, to simulate scenarios with the stylistic diversity
and cluttered strokes encountered in practical applications.

Implementation Details. The model is trained using
RTX4090 GPUs. Batch sizes are eight for simple stroke train-
ing and 16 for facial sketch training. The model trains for 50
epochs on eight public datasets using the AdamW optimizer
with a 0.05 weight decay factor. The AGMoE module em-
ploys eight expert networks with a top-k value of four. A
cosine-annealing learning rate schedule is adopted, with the
learning rate varying between 3e-5 and zero. During training,
the ChairV2 and ShoeV?2 datasets have 20 total sketch strokes
and 64 output dimensions. The total number of strokes in the
user-drawn dataset varied.

Evaluation Metrics. (i) We employ the standard FG-SBIR
evaluation metric, Acc.@q, which quantifies the percentage
of sketches where the true paired photograph appears within
the top-q retrieval results. (ii) On-the-fly: Given our prioriti-
zation of the target images appearing at the top of the retrieval
lists, we select the metrics m@A (rank percentile) and m@B
(percentage of sketches with 1/rank) [Bhunia er al., 2020]
to gauge average retrieval performance across all sketching
stages. To evaluate early-stage sketching performance, we
use w@MA and w@MB. Higher values of these metrics in-
dicate better performance.

Competitors. TriNN-C [Yu er al., 2016] and TriNN-SR
[Bhunia et al., 2020] use a Sketch-a-Net backbone with stan-
dard triplet loss. TriNN-RL(_TS) [Bhunia et al., 2020] uses
an on-the-fly retrieval framework based on representation
learning (RL). LSTMB [Liu et al., 2022] is a Bi-LSTM mod-
ule optimizing partial sketch sequences. PSERL/N [Liu et
al., 2024] optimizes sketch representations using prior knowl-
edge. We compare the model without labels. Cross-Hier
[Sain er al., 2020] utilizes a cross-modal hierarchy with ex-
pensive paired embedding. StyleMeUp [Sain et al., 2021] uti-
lizes model-agnostic meta learning training. NSR [Koley et
al., 2024a] is a lightweight, portable, and interpretable seam-
less plugin. Seql [Dai et al., 2023] is a sequential learning
method that integrates convolutional neural network and Istm
modules. MGAL [Dai et al., 2022] and MGRL [Wang et al.,
2025] are based on multi-grained RL, using Sketch-a-Net as
backbone. MITRL [Dai et al., 2024b] is a multimodal re-
trieval model trained using LLMs. We also compare its per-
formance against CLIP [Radford ef al., 2021], BLIP [Li et
al., 2022] and FVIP [Dai er al., 2024al.

Figure 4: Left: three styles of the same sketch. Target image’s state
upon its first appearance in the Top-5 list.

ChairV2 ShoeV2

Methods Acc.@] Acc.@5 Acc.@l Acc.@5
TriNN-C [Yu et al., 2016] 48.71 76.37 - 65.59
TriNN-SR [Yu et al., 2016] 45.32 74.31 - 61.79
TriNN-RL_TS [Bhunia et al., 2020] - 73.47 - 62.67
TriNN-RL [Bhunia et al., 2020] 51.20 73.80 30.80 65.10
Cross-Hier [Sain et al., 2020] 62.40 79.10 36.20 67.80
StyleMeUp [Sain et al., 2021] 62.80 79.60 36.40 68.10
NSR(P-SLA) [Koley et al., 2024a] 56.50 77.10 36.50 69.30
NSR(SLA) [Koley et al., 2024a] 54.90 76.60 36.10 67.80
Proposed 62.94 79.52 37.94 69.98

Table 2: Comparison of the retrieval performance of our proposed
method with other models on complete sketches.

5.1 Comparisons With SOTA Results

To evaluate model performance in terms of identifying noisy
strokes, we conduct experiments on simple sketch and face
sketch datasets. The results are detailed below.
Performance Analysis on Simple Lines. Given the inher-
ent lack of textual information in the ChairV2 and ShoeV?2
datasets, the text branch’s input prompt during model train-
ing is set to “a photo of f*{color} chair/shoe > . We chose
color as the textual prompt due to sketches’ inherent black-
and-white characteristics.

(1) Partial/Early Retrieval. As illustrated in Fig. 3, the re-
trieval performance of all methods exhibits an upward trend
as the sketch is progressively completed and tends to stabilize
when the sketch is near completion. Compared with other
models, our model demonstrates a significant advantage in
the initial stages of sketch drawing, as it can rapidly and accu-
rately retrieve the target image with very few strokes. These
results indicate that the proposed method can effectively iden-
tify keystrokes in the early stages of sketching and overcome
potential interference strokes during the drawing process. To
address the challenges of diverse styles, Fig. 4 presents a
retrieval comparison of two groups of sketches. Our model
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Model FS2K-SDE1 FS2K-SDE2
ode m@A m@B w@mA w@mB Acc.@l Acc.@5 m@A m@B w@mA w@mB Acc@.1 Acc@.5
TriNN-C [Yu et al., 2016] 84.77  32.69 50.40 15.83 - 91.33 77.83 24.59 46.00 12.47 - 94.41
TriNN-SR [Yu et al., 2016] 94.16  28.58 58.18 15.83 - 64.22 89.77 34.14 54.99 18.96 - 69.23

TriNN-RL [Bhunia et al., 2020] 8442 2276  51.52 12.21 26.70 51.91 14.59 54.26 69.23

SeqL [Dai et al., 2023] 96.22 4548  59.57 24.56 74.01 90.00 90.22  41.55 54.85 22.22 65.02 95.82
MGRL [Wang er al., 2025] 98.80 78.92  61.69 46.20 78.52 97.11 96.65  69.19 60.12 40.80 78.02 95.10
MITRL [Dai e al., 2024b] 98.50 70.80  61.25 40.58 73.25 97.55 9581 67.90 59.01 39.09 77.60 94.40

" Proposed 99.70 81.10 6234 4897 8213 9757 9793  78.68 60.78 4644 ~ 8025  96.22
Improve(+) 091% 276% 1.05% 599%  4.59% +0.02  1.32% 13.71% 1.09% 13.82% 2.85% 1.17%

" Clip-based* [Radford eral., 20211 ~ 98.01 = 5727 =~ 60.97 3258 ~ 7576 = 78.68 ~ 96.02 '57.32 = 5938 ° 3336 4895  71.04
Blip-based* [Li er al., 2022] 97.64 46.72  60.80 27.01 68.22 75.44 97.10  64.06 60.24 37.50 51.58 87.64

FVIP-based* [Dai et al., 2024al

__ MITRL [Daieral,2024b] 9970 8048 6233 4847 8149 9866  97.82 7002 6082  4L06 978 9650
Proposed(T&S) 99.77 84.51 62.39 51.23 87.11 98.79 99.16 81.93 61.90 49.27 84.91 98.60
Improve(+) +0.07 5.0% +0.03 7.7% 6.9% 0.13% 0.93% 9.5% 1.16% 11.5% 7.6% 0.746%

Table 3: Comparative results with different baseline methods. Comparison of the model’s performance with and without textual input. Data
with horizontal lines indicate the next highest performance.

exhibits the ability to maintain efficient retrieval performance s

in the presence of such variations.

(2) Complete sketch Retrieval. As Table 2 shows, our per-
formed excellently on datasets. On the ChairV2 dataset, our
method demonstrated significant improvements compared —Stylel—Style2—Style3—Styled
with most existing methods. In terms of Acc.@S5, the perfor- I
mance of our model is slightly lower than that of the Style-

L 87

Sketch

(a) Seven Different Facial Sketch Styles.

Style5—Style6—Style7

ml — 1.0

MeUp model but still highly competitive. On the ShoeV2 3 ) En.o Tarfet,l/';age
dataset, our model’s advantages are more significant, showing o4 ®) Scl;en;li\c
notable improvements over the best baselines. This is likely o2l diagram of changes
because ChairV2 has higher similarity than ShoeV2. When ol 0ol in target image
0 20 40 6 S0 100 20 4 6 S0 1ooranking during the

Percentage of sketch

considering the results comprehensively, our model outper-
form all other models.

Performance Analysis on Facial Sketches. Table 3 com-
pares our model with previous models. Our method clearly
outperforms others in the early retrieval stage. Notably, our
method achieves significant performance gains over baseline

Percentage of sketch sketching process.

Figure 5: Examples of sketches in seven styles and the retrieval pro-
cess (Stylel as S1).

. : . o R S Types m@A m@B w@mA w@mB Acc@.1 Acc@.5
models trained with triplet loss. This is because in the initial
stages of sketching, as a result of the sparsity of strokes and Stylel 9308 4691 5723 65 4477  80.59
. . . Style2 9497 51.69  58.63 29.53 50.74 81.34
frequent presence of noise, simpler method.s (e.g., rqducmg Style3 0443 4836 5820 2762 5074 82.08
sketch-positive sample distance) are susceptible to noise, po- Styled 9252 4285 5681  24.09 4402 8283
tentially misleading the model’s training direction. Addition- Style5 9586 5433 5942 - 3177 5298  82.83
1y ; . linf . b ally i Style6 86.00 3277 5239 1841 3880  71.64
ally, incorporating textual information substantially improves Style7 956 4793 5679 2722  44.02 75.37

retrieval performance. This improvement stems from textual
information’s ability to mitigate inherent randomness caused
by limited sketch details. After training our approach with the
FVIP language model, we observed a marked enhancement
in its performance. The results demonstrate that effectively
identifying interfering strokes during the drawing process and

Average Value 9277 4640  57.08 26.45 46.58 79.52

Table 4: Model retrieval performance across different sketch styles.

fluctuations across different styles. Therefore, maintaining

accurately matching them with the target image is crucial for
improving the model’s early retrieval performance.

5.2 Diverse Sketch Style Analysis

Sketch drawing styles vary significantly between individu-
als, with more detailed facial sketches showing even greater
diversity due to increased complexity. To investigate our
model’s ability to manage multiple styles effectively, we ex-
tended the SKSF-A dataset to include seven distinct sketch
styles, as shown in Fig.5. We present seven distinct stylistic
sketches and demonstrate the retrieval process for each. The
results indicate that retrieval performance exhibits significant

the model’s robustness against stroke noise and stylistic vari-
ations is crucial for ensuring retrieval stability.

Table 4 presents the model’s retrieval performance across
different sketch styles. Notably, the m@ A metric maintained
excellent level across all styles, generally exceeding 90%.
This demonstrates the model’s effective recognition capabil-
ity for sketches of varying styles and its excellent ability to
rank candidate results. However, we observe the model’s
m@B value is lowest for Style6 and peaked for Style5, ex-
hibiting a significant 65.79% difference. The model’s perfor-
mance in terms of the Acc.@1 and Acc.@5 metrics aligns
with the trend observed for the m@A, with Acc.@5 showing
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ChairV2 FS2K-SDE1
Abs.Methods m@A m@B Acc.@5 m@A m@B Acc.@5
AGMoE N 85.92 32.61 5826  93.60 77.38  88.35
SCDM 87.21 3500 6522 96.61 79.64 95.24

SCDM_AGMoE_N 88.97 36.92 70.39 98.01 80.23 96.75
SCDM_AGMOE_N_ITSC 89.62 3820  72.26 98.95 81.90 97.24
SCDM_AGMoE 90.17 4094  76.86 99.01 83.37 98.13
Ours-full 92.83 4124  78.89 99.77 84.51 98.79

Table 5: Ablation Experiment.

robust performance across all styles. When comparing early
retrieval performance with complete sketch retrieval, Style6
performed poorest in both m@B and Acc.@]1. These results
indicate that sketches in style6 may possess unique visual
characteristics that pose a challenge to the model’s precise
identification. In summary, the experimental results reveal
inherent performance differences in the model’s handling of
different sketch styles, underscoring the importance of con-
sidering sketch style during model training to mitigate its im-
pact on recognition performance.

5.3 Component Ablation Analysis

To evaluate the contribution of each component, we con-
ducted ablation experiments on four datasets. For the
ChairV2 datasets, we employed the CLIP model for weight
initialization, whereas facial sketches are pre-trained using
FVIP. The AGMoE(_N) sub-table represents the presence or
absence of added noise in the AGMoE modules. Ours-full
represents the training configuration using all components.

The results in Table 5 indicate that the model incorporat-
ing the SCDM outperforms the AGMoE module model with-
out the SCDM or added noise. It can be concluded that
the SCDM enhances the recognition accuracy of the model,
although its impact varied slightly across different metrics.
For the ChairV2 datasets, models utilizing the SCDM con-
sistently exhibited improvements across all metrics, regard-
less of whether noise is added. This result indicates that the
MoE architecture can effectively capture and process diverse
sketch strokes, ensuring a high degree of consistency in stroke
quality and style. These ablation experiments confirm the
positive impact of both the SCDM and AGMoE module on
model performance, with their combination yielding optimal
results. Across all four datasets, the proposed method demon-
strated superior performance, validating the effectiveness of
our framework.

5.4 Analysis Under Practical Applications

Significant variations in user drawing habits, including skill,
style, and stroke length, contribute to increased stroke com-
plexity. To simulate realistic sketching scenarios, we use
three datasets with diverse styles created by numerous vol-
unteers. Distinct sketch styles are presented in Fig. 6. Ev-
idently, sketching styles immediately exhibit noticeable dif-
ferences. However, our method demonstrates the ability to
retrieve target images accurately, even with a limited number
of strokes.

As shown in in Table 6, the retrieval performance of all
compared methods declin across the datasets, indicating that

7
=a

~
| &

Figure 6: The target image first ranked within the top ten retrieval
results during sketching. The red box highlights the target image.

Dataset Model m@A m@B w@mA w@mB
TriNN-RL 88.28 34.70 53.33 20.47
LstmB 90.72 35.98 53.90 19.75
ChairV2-Ul MGAL 91.28 39.05 51.87 15.97
PSERL/N 90.83 36.27 48.20 14.23
Proposed 91.98 40.81 54.69 21.68
T T T T 7 7 TIiNNRL T 8747 T 3076 5275 T 1854
LstmB 89.88 31.29 5343 16.75
ShoeV2-Ul MGAL 90.10 3175 53.47 16.76
PSERL/N 86.29 30.04 41.71 14.28
Proposed 90.25 32.14 53.90 16.97
_______ TriNN-C  ~ 8538 ~ 3129  ~ 2921 ~ 1094 ~
TriNN-SR 85.10 34.37 52.01 18.09
TriNN-RL 79.59 29.09 47.36 15.18
Face-Ul SeqL 93.27 38.91 31.68 13.51
MGRL 73.72 25.78 45.18 14.10
MITRL 90.02 56.79 54.93 28.94
Proposed 94.05 58.35 56.28 31.65

Table 6: Analysis of generalization ability in practical applications.
Data with horizontal lines indicate the next highest performance.

both sketch style and stroke order influence retrieval effec-
tiveness. Regardless of whether the sketches are simple
line drawings or complex facial sketches, our method exhib-
ited superior retrieval performance on diverse and complex
datasets. This outstanding performance can be attributed to
the effective identification of early noisy strokes, ensuring
semantic consistency throughout the sketching process and
maintaining strong early retrieval performance.

6 Conclusion

We propose a novel on-the-fly noise filtering cross-modal re-
trieval framework designed to address the challenges of noisy
stroke interference and effective feature extraction in the early
stages of instant retrieval. Extensive experimental results
thoroughly validate that our proposed method can effectively
identify noisy strokes in various sketches, including simple
line drawings and complex sketches, thereby significantly im-
proving the initial retrieval performance. Furthermore, we
have construct a multi-style dataset to comprehensively eval-
uate the generalization ability and robustness of the model
under complex stroke scenarios.
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