
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

K-Buffers: A Plug-in Method for Enhancing Neural Fields
with Multiple Buffers

Haofan Ren1 , Zunjie Zhu1∗ , Xiang Chen1 , Ming Lu2 , Rongfeng Lu1 and Chenggang Yan1

1Hangzhou Dianzi University
2Intel Labs China

{hfren, zunjiezhu, cchenx, rongfeng-lu, cgyan}@hdu.edu.cn, lu199192@gmail.com

Abstract

Neural fields are now the central focus of research
in 3D vision and computer graphics. Existing
methods mainly focus on various scene represen-
tations, such as neural points and 3D Gaussians.
However, few works have studied the rendering
process to enhance the neural fields. In this work,
we propose a plug-in method named K-Buffers that
leverages multiple buffers to improve the rendering
performance. Our method first renders K buffers
from scene representations and constructs K pixel-
wise feature maps. Then, We introduce a K-Feature
Fusion Network (KFN) to merge the K pixel-wise
feature maps. Finally, we adopt a feature decoder
to generate the rendering image. We also intro-
duce an acceleration strategy to improve rendering
speed and quality. We apply our method to well-
known radiance field baselines, including neural
point fields and 3D Gaussian Splatting (3DGS). Ex-
tensive experiments demonstrate that our method
effectively enhances the rendering performance of
neural point fields and 3DGS.

1 Introduction
Since the pioneering work NeRF [Mildenhall et al., 2020],
neural fields have become the core research problem in 3D
vision and computer graphics. Although NeRF can achieve
high fidelity, it suffers from several drawbacks such as long
training time and slow rendering speed. Instant-NGP [Müller
et al., 2022] uses a multiresolution hash-grid to achieve fast
training and rendering speed at the expense of huge mem-
ory consumption. PlenOctrees [Yu et al., 2021] can render
800 × 800 images at more than 100 FPS, but the model size
has increased by nearly 100 times compared with the original
NeRF. 3D Gaussian [Kerbl et al., 2023] is the most recent rep-
resentation that achieves state-of-the-art visual quality while
maintaining competitive training and rendering times. How-
ever, the model size of 3D Gaussian is still much larger than
the original NeRF. This presents a challenge in balancing

∗Corresponding author. The source code is available: https://
github.com/renhaofan/k-buffers

Figure 1: As shown in the figure, our method can simultaneously
enhance neural point fields(NPF) and 3DGS.

computational cost and model size of neural fields. Con-
versely, neural point fields, due to their intrinsic properties,
hold promise in alleviating this challenge.

However, neural point fields also have some limitations. A
core limitation is that they are non-trivial to render since the
point clouds are noisy. Therefore, neural point fields usually
fail to achieve competitive performance compared with NeRF
since volume rendering is more robust than point cloud raster-
ization. Several recent works have been proposed to solve this
limitation from different aspects. BPCR [Huang et al., 2023]
imposes radiance mapping borrowed from NeRF [Mildenhall
et al., 2020] to construct point features. FrePCR [Zhang et
al., 2023] leverages a HyperNetwork [Ha et al., 2017] and
narrows the positional encoding interval to improve the point
features. READ [Li et al., 2023] propose an improved U-
Net [Ronneberger et al., 2015] named ω - net to filter the neu-
ral point descriptors on different scales to fill the holes in the
rasterized image. SNP [Zuo and Deng, 2022] uses the spheri-
cal harmonics functions to construct point-wise features and a
shallow U-Net [Ronneberger et al., 2015] without a normal-
ization layer to remove noise in the feature map. However,
they all ignore the core difference between volume rendering
and point cloud rasterization. The key insight of volume ren-
dering is to integrate the colors of multiple points along a ray,
rather than a single point in rasterization. This motivates us
to consider using multiple points to determine the rendered

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/renhaofan/k-buffers
https://github.com/renhaofan/k-buffers


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: The motivation of our method. (a) Previous neural point fields first render the pixel-wise z-buffers and then use a decoder to
generate the image from the pixel-wise feature map. However, they are sensitive to the noisy point cloud. (b) A naive solution is to render K
z-buffers and use volume rendering to integrate the K colors. However, this solution achieves overfitted results. (c) Our method uses KFN to
integrate the K pixel-wise feature maps, significantly enhancing the performance of neural point fields.

color of a pixel.
A naive solution is that, after obtaining K z-buffers, we

can follow the approach of NeRF and use volume rendering
to integrate the K colors predicted by MLPs as shown in Fig-
ure. 2(b). Our experiments revealed that this solution suf-
fers from severe overfitting issues. Although data augmenta-
tion methods like random crop could alleviate the overfitting
issue, the rendering quality still falls short of expectations.
Besides, the memory requirement increases dramatically, re-
stricting high-resolution rendering. The main problem of this
naive solution is that it simply integrates the colors along the
ray, still failing to solve the noise problem of neural point
fields. Instead, we propose a novel method named K-Buffers
to enhance the rendering quality by integrating the K fea-
ture maps. Specifically, we first encode the K z-buffers into
K feature maps and then introduce a K-Feature Fusion Net-
work (KFN) to fuse the K feature maps in latent space. In
this manner, we can reduce the noise caused by noisy neural
point fields. In the process of generating the K feature maps,
we introduce a strategy to improve rendering speed. Finally,
we use a decoder to generate the final rendered image. Our
method significantly improves the robustness against noise,
whether it is inherent in the point cloud or introduced during
rasterization. Furthermore, our method can also help 3DGS
to improve the visual quality and reduce the model size due

to its rasterization process. In summary, our contributions can
be summarized as follows:

• We propose a novel method to enhance the performance
of neural point fields with multiple z-buffers.

• We design a tiny K-Feature Fusion Network (KFN) to
reduce the noises caused by the point cloud geometry
and rasterization process.

• We propose a novel acceleration strategy to speed up the
rendering time of the proposed method.

• We conduct comprehensive experiments to demonstrate
the effectiveness and advantages of our method both for
neural point fields and 3DGS.

2 Related Work
Neural Radiance Fields [Mildenhall et al., 2020] utilizes a 5D
implicit function for scene modeling via a continuous volu-
metric approach, allowing it to estimate both density and ra-
diance at any given position and direction. In this way, NeRF
marked a paradigm shift in scene representation and the syn-
thesis of realistic novel views.

Accelerated Neural Radiance Fields
While NeRF yields remarkable results, this comes at the cost
of large computation, due to the need to evaluate a large MLP

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

model hundreds of times for each pixel. Subsequent work
has proposed enhanced data structures to accelerate. Plenox-
els [Fridovich-Keil et al., 2022] is a sparse voxel grid where
each occupied voxel corner stores a scalar opacity and a vec-
tor of spherical harmonic (SH) coefficients for each color
channel. PlenOctrees [Yu et al., 2021] make use of octree
and a modified NeRF that is trained to output spherical basis
functions to accelerate rendering speed. InstantNGP [Müller
et al., 2022] uses multi-resolution hash grids to accelerate the
training speed, reducing training time to a few seconds. Kilo-
NeRF [Reiser et al., 2021] utilizes thousands of tiny MLPs to
accelerate the rendering speed. TensorRF [Chen et al., 2022]
proposes to factorize the volume field tensor into multiple
compact low-rank components to accelerate training speed.
The above methods all use various types of data structures to
store features, making them more efficiently organized in 3D
space. In a sense, this is a trade-off between computation and
memory.

Neural Point Fields
Although the techniques above demonstrate remarkable ef-
fectiveness, it is difficult to adapt them to model large envi-
ronments, which presents a challenge. An alternative method
involves utilizing point clouds to represent the geometric
structure of the scene [Chang et al., 2023a], [Li et al., 2023],
[Chang et al., 2023b]. Point clouds can vary in density, al-
lowing for the allocation of computational resources where
necessary, and effectively skipping the empty space. Thus, it
is not prone to generate floating artifacts, which is a server
problem in neural radiance fields.

There are two major categories of methods for neural point
fields: those based on ray casting and those based on raster-
ization. The ray-casting-based methods achieved high ren-
dering quality. Point-NeRF [Xu et al., 2022] and developed
work [Sun et al., 2023] usually sample hundreds or thousands
of points for each ray. To perform volume rendering, the fea-
ture of each sampled point is queried in the local neighbor-
hood of point clouds to produce density and color. NPLF [Ost
et al., 2022] efficiently represents scenes with just one radi-
ance evaluation per ray by promoting sparse point clouds to
neural implicit light fields. However, the computational bur-
den of these approaches remains high, making it challeng-
ing to achieve real-time rendering. HashPoint [Ma et al.,
2024] proposes to accelerate ray-tracing point cloud render-
ing. However, even with the acceleration, it is still challeng-
ing to achieve real-time rendering. Additionally, the model
sizes are several times larger than NeRF.

On the contrary, the rasterization-based methods get a
great balance between model size and rendering speed.
NPBG [Aliev et al., 2020] rasterize the points with neural de-
scriptors at different scale resolutions and a U-Net followed to
obtain the rendered image. NPBG++ [Rakhimov et al., 2022]
demonstrated that point embedding can be directly extracted
from input images, allowing their method to render unseen
point clouds without per-scene optimization. ADOP [Rückert
et al., 2022] combines neural rendering with a differentiable
point rasterizer to minimize the difference between rendered
images and the ground truth. Dai et al. [Dai et al., 2020]
aggregate points into multi-plane images, combined with a

3D-convolutional network. TriVol [Hu et al., 2023] proposes
a novel 3D representation called triple volumes to get point
embedding. BPCR [Huang et al., 2023] combines implicit
radiance mapping and rasterized z-buffers to achieve excel-
lent results. The improved approach in FrePCR [Zhang et
al., 2023] utilizes a hypernetwork to enhance radiance map-
ping. However, almost all rasterization-based methods do not
specifically address noise introduced by rasterization, such as
holes. The usual practice is to use a post-processing U-Net
that involves downsampling and then upsampling the raster-
ized feature map. Unfortunately, such methods are not always
effective. The noise mentioned above is the main reason why
rasterization-based methods often have lower rendering qual-
ity compared to ray-casting-based methods. 3DGS [Kerbl
et al., 2023] utilizes anisotropic Gaussians with a geometry
optimization strategy to allow a fast and high-quality radi-
ance field. However, it still suffers from the noise issues
mentioned above and significantly increases storage require-
ments. In this work, we focus on improving the rendering
quality of rasterization-based methods without too much in-
crease in model size and computational requirement. Addi-
tionally, we aim to enhance the robustness of these methods
against noise.

3 Method
In this paper, we propose a novel strategy to enhance the ras-
terization pipeline of point-based neural rendering based on
K z-buffers. First, we save the K z-buffers during the depth
test instead of the closest point to the camera position for each
pixel. Then we encode queried points to latent space, which
are the so-called neural points. However, if we directly en-
code all queried points of the K z-buffers, the number of neu-
ral points will increase with the growth of K. Therefore, we
propose a solution to significantly reduce the number of neu-
ral points, even fewer than a single z-buffer. After obtaining
the neural points, we reorganize them into K pixel-wise fea-
ture maps. Finally, we utilize KFN to merge and denoise K
feature maps and a U-Net to decode into colors.

3.1 Feature Extraction
The NeRF representation [Mildenhall et al., 2020] takes the
3D coordinate x = (x, y, z) and view direction d = (θ, ϕ)
as inputs and output the color c and density σ using a Multi-
Layer Perceptron (MLP) FΘ, parameterized by Θ:

c, σ = FΘ(x,d). (1)
Inspired by above equation, the point-based rendering

methods BPCR [Huang et al., 2023], FrePCR [Zhang et al.,
2023] use the radiance mapping L as feature encoder:

L = FΘ(x,d). (2)

Different from NeRF, point-based rendering approaches pro-
vide explicit geometry prior. As a consequence, x can be
acquired by Eq. 3:

x = o+ zd, (3)
where o, d denote camera position and normalized ray di-
rection respectively. In practice, the z value is obtained by
querying the z-buffer via rasterization and depth test.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 3: The Overview pipeline with our model. (a) depicts how to obtain the neural descriptors from noisy point clouds. (b) describe how
to fuse K pixel-wise features and ultimately obtain the rendering result. (c) illustrates the reason why a single 3D point will generate multiple
queried points and how to reduce the number of them by our pruning strategy.

By recording the point closest to the camera, we can
achieve a single z-buffer. To obtain K z-buffers, we only need
to store the previous K z-values during depth testing, which
does not introduce excessive computational complexity com-
pared with a single z-buffer.

The inspiration behind using multiple layers of z-buffers is
that we observe different layers exhibit strengths and weak-
nesses in local geometry. However, due to the character-
istics of rasterization, multiple layers of z-buffers as input
would lead to a sharp increase in computational complexity
and memory consumption. To solve this issue, we propose a
novel method to prune redundant queried points.

Prune redundant queried points
Each point is expanded to a disk of radius τ during rasteriza-
tion as point clouds are discrete. During rasterization, a sin-
gle 3D point will splash on multiple pixels’ positions. These
pixels have the same z value and camera position o, but dif-
ferent directions dj . We take a one-dimensional example to
illustrate this phenomenon. As illustrated in Figure. 3(c), a
3D point pi of point cloud splashed onto pixel plane and oc-
cupies two pixels. These two pixels with different directions
will be encoded into different queried points through Eq. 3.
In this way, a single 3D point generates two queried points.
However, each queried point will be encoded into a neural
point by Eq. 2. As a result, the number of neural points is
greater than the number of points in the point clouds.

We only reserve one direction dm for each 3D point to gen-
erate the queried point. The queried points generated by other

directions are referred to as redundant queried points.
In particular, each pixel’s ID j can be calculated by W ∗

pixel.x + pixel.y, where W means the width of rendered im-
age, pixel.x and pixel.y represent the indices in the pixel co-
ordinate system respectively. For each 3D point pi observed
by the current view, we can deduce ID collection Api

of all
pixels occupied by pi. We only keep the direction dm corre-
sponding to the smallest pixel ID to generate queried point:

dm = dj , j = minApi
(4)

In the example shown in Figure. 3(c), five pixels’ IDs are
0, 1, 2, 3, and 4, respectively. Thus, Api

= {1, 2} and dm =
d1.

Feature rectification
Simply pruning the queried point using Eq. 4 leads to iden-
tical features across different pixel positions occupied by pi,
which diminishes the sensitivity of radiance mapping to vari-
ations in pixel positions.

To address this problem, we utilize a tiny MLP TΨ with
3,656 trainable params parameterized by Ψ to rectify the fea-
tures of queried points via Eq. 2. Thus, our rectified feature
map is formulated as Eq. 5. Besides, we make use of different
encoding methods for FΘ and TΨ. In practice, we apply po-
sition encoding introduced in NeRF [Mildenhall et al., 2020]
to xm and dm, while employing sphere harmonics encoding
for dj . The multi-resolution hash encoding is applied to o.
Our rectified features can be formulated by Eq. 5:

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Lrect = FΘ(xm,dm) + TΨ(o,dj). (5)

3.2 K-Feature Fusion Network
Due to multiple z-buffers as input, the key is how to fuse
and denoise them. A similar research area [Godard et al.,
2018], [Mildenhall et al., 2018], [Xia et al., 2020] is called
burst denoise. It takes a burst of noisy images captured with
a handheld camera as input, and the aim is to produce a clean
image. KPN [Mildenhall et al., 2018](Kernel Prediction Net-
work) is a kind of classic and widely used technique in this
area. KPN predicts a feature vector for each pixel, which is
then reshaped into a set of spatially varying kernels applied
to the input burst images. A naive idea is to direly employ
KPN [Mildenhall et al., 2018] to process multiple z-buffers
and merge them into a single clean z-buffer, which is then
fed into the point-based rendering methods [Huang et al.,
2023], [Zhang et al., 2023]. Nevertheless, this approach can
easily lead to unstable training scenarios.

We designed a tiny network to integrate multiple K z-
buffers in the latent space. In other words, we merge K pixel-
wise feature maps and denoise to generate cleaner feature
maps, where the denoise operation happens in latent space
rather than the aspect of the z-buffer. In practice, we first gen-
erate K pixel-wise feature maps from K z-buffers. Then, we
propose a module called K-Feature Fusion Network(KFN) to
fuse K pixel-wise feature maps. Different from the U-Net
structure of KPN, KFN is very simple and consists of two
convolution layers, two activation layers, and a softmax nor-
malization(see Figure. 3(b)). Besides, KFN predicts a pixel-
wise scalar mask range in [0, 1] to merge K pixel-wise feature
maps rather than the spatially varying kernels. Besides, previ-
ous work [Hedman et al., 2018] also uses CNNs to estimate
blending weights for novel-view synthesis, which results in
temporal flickering. However, our method does not suffer
such a problem(see (Table 5)). The results also demonstrate
the good denoising effects with KFN(see (Figure. 4)).

3.3 Overall Training Process
Neural Points Fields
Our pipeline could be divided into five stages: rasteriza-
tion, neural points construction, pruning, K pixel-wise feature
maps fusion, and refinement. Firstly, through rasterization,
all points P observed by the current view will be splashed
into the pixel plane to generate K z-buffers. Since this process
does not require differentiability, it can be implemented using
hardware-accelerated frameworks such as OpenGL [Shreiner
et al., 2009] and run in real-time. At the same time, we
record the pixel positions Api

occupied by each unique point
pi ∈ P for reorganization.

For each pixel, we generate the queried points x from K z-
buffers by Eq. 3. Afterward, we remove redundant points by
Eq. 4, and the remaining points xm are passed through Eq. 5
to obtain latent features Lrect = N×C, where N and C refer
to the number of queried points xm and the dimension of
latent features respectively. Using the pre-reserved set Api

,
we reorganize the Lrect back to K pixel-wise feature maps
with shape K × H × W × C, while we assign zero to the
feature of those unoccupied pixels. We use KFN to predict a

Z-Buffer BPCR BPCR(ours) Ground TruthPoint Cloud

Figure 4: Illustration of the z-buffer defect. The color of the point
cloud has not been used, which is only for visualization purposes.

mask with the same dimensions as K pixel-wise feature maps.
The fused features would be obtained by the element-wise
multiplication between the predicted mask and K pixel-wise
feature maps. Finally, a U-Net is employed to decode the
fused features into the rendered image in the shape of H ×
W × 3.

3DGS
Each of the 3D Gaussians is parametrized by its potision µ,
covariance matrix Σ, opacity α and high dimension feature
f . We use a tiny MLP HΓ parameterized by Γ to generate
the radiance mapping Lrect, which is constructed by blending
the multiple ordered Gaussians as:

Lrect =
N∑
i=1

αi

i−1∏
j=1

(1− αj) l
rect
i (6)

lrecti = HΓ(di) + f i (7)
where f i, αi and di represent the feature, opacity and view
direction of queried Gaussian i.

In summary, for neural point fields, we incorporate the
pruning queried points strategy and feature rectification into
the radiance mapping Lrect, which will be reorganized into K
pixel-wise feature maps. As for 3DGS, the radiance mapping
is generated by Eq. 6. With the radiance mapping, a proposed
lightweight module named KFN is used to merge K pixel-
wise feature maps. Finally, similar to the previous method, a
U-Net is used to decode and obtain the rendered image. The
loss function remains completely consistent with the baseline
without any modifications.

3.4 Benchmark Evaluation
Settings and Compared Methods
Since our work needs z-buffers rasterized by point cloud,
we choose three methods as our baseline to evaluate: 1)
BPCR [Huang et al., 2023]: A simple but effective archi-
tecture point-based rendering method. 2) FrePCR [Zhang et
al., 2023]: The improved version of BPCR. For a fair com-
parison, we don’t narrow the positional encoding interval as
described in FrePCR but rather keep it the same as BPCR. 3)
3DGS [Kerbl et al., 2023]: An efficient point-based render-
ing method, which represents the scene with 3D Gaussians

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 5: We compare the rendered novel views between ours and previous methods. The scenes are, from the top down: kitchen, stump,
room, bonsai from Mip-NeRF 360 dataset.

Metric PSNR ↑ SSIM ↑ LPIPS ↓ Storage(MB) ↓
InstantNGP 26.67 0.738 0.369 38.57

Mip-Splatting 29.02 0.871 0.224 768.86

3DGS 28.93 0.869 0.136 735.57
3DGS+Ours 29.19 0.859 0.126 383.43

Table 1: Quantitative comparisons on Mip-NeRF 360 dataset.

to optimize the geometry. We keep FΘ and U-Net exactly
the same as the baseline for experimentation. We evaluate
on three datasets: NeRF-Synthetic [Mildenhall et al., 2020],
ScanNet [Dai et al., 2017], DTU [Jensen et al., 2014]. The
point cloud initialization is same as the BPCR. Besides, we
also evaluate the 3DGS on Mip-NeRF 360 [Barron et al.,
2022], which is compared with InstantNGP [Müller et al.,
2022] and Mip-Splatting [Yu et al., 2024].

Quantitative and Qualitative Results
We present the quantitative results in Table 1 and Table 2. It
can be found that our method can simultaneously help im-
prove the rendering quality of neural point fields and 3DGS.
As shown in Figure 4, the first row showcases the noise re-
moval capability of our proposed method. The second row
demonstrates the aliasing caused by unsuitable point radius
and camera observation view, which can be alleviated by our
method. The third row exhibits its capability for filling holes.
As illustrated in Figure 5, our method can effectively help
3DGS mitigate the floater artifacts. At the same time, it can

restore high-frequency details of the scene and also improve
modeling in low-textured areas. Besides, we noticed that the
PSNR of FrePCR on the DTU dataset is bad shown in Table 2.
One possible reason is that the scenes of DTU contain rela-
tively less high-frequency information. FrePCR increases the
expression ability of neural points by AFNet(Adaptive Fre-
quency Net). However, due to the low-frequency informa-
tion of the scene, it is difficult to modulate the implicit radi-
ance signal correctly for AFNet. Incorporating our method is
equivalent to expanding the receptive field of AFNet, which
enhances the comprehensive understanding of the scene. We
compare with the ray-tracing-based method as shown in Ta-
ble 3, which demonstrates the advantages and disadvantages
of our method. We visualize the failure case of our method.
As shown in Figure 6, our method blurs the details of the re-
flective regions.

3.5 Ablation Study
As shown in Table 4, our proposed pruning strategy signifi-
cantly reduces the number of queried points, leading to a sub-
stantial decrease in memory usage and computational load.
Through the pruning strategy, both computational and mem-
ory usage have been reduced by more than 3 times. It seems
that feature rectification does not improve rendering quality.
However, we conducted experiments on different datasets as
shown in Table 7. We find that feature rectification achieves
the best overall rendering quality across multiple datasets. In
addition, each rendered pixel is not derived from the fixed

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

NeRF-Synthetic ScanNet DTU
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

BPCR 29.12 0.935 0.056 25.88 0.794 0.415 30.81 0.904 0.128
BPCR+Ours 29.58 0.936 0.054 26.66 0.789 0.383 30.99 0.907 0.151

FrePCR 29.26 0.934 0.055 26.44 0.788 0.384 24.61 0.870 0.195
FrePCR+Ours 29.83 0.939 0.051 26.34 0.788 0.391 30.61 0.905 0.153
3DGS 33.37 0.968 0.028 24.16 0.773 0.403 33.91 0.943 0.050
3DGS+Ours 33.62 0.969 0.019 25.55 0.785 0.406 33.91 0.954 0.059

Table 2: Quantitative comparisons on NeRF-Synthetic, ScanNet and DTU dataset.

Rasterization Ray Tracing
BPCR BPCR† FrePCR FrePCR† 3DGS 3DGS† PN PN+HP

PSNR↑ 29.12 29.58 29.26 29.83 33.37 33.62 33.31 33.22
FPS↑ 39.21 27.52 39.56 26.39 294.70 82.12 0.12 9.60
Storage(MB)↓ 28.46 28.73 28.63 28.90 170.50 34.87 105.12 105.12

Table 3: Comparison of our method integrated with ray-tracing-
based method PN(PointNeRF) and HP(HashPoint). The storage in-
cludes the point cloud size. † means our method.

Number GFLOPS Model Size(MB) Mem(GB) PSNR FPS

BPCR 203,757 80.96 8.20 9 29.12 39.21
BPCR(KFN) 1,613,013 386.86 8.46 33 29.95 10.12
BPCR(KFN+Pruning) 194,225 122.43 8.46 7 29.68 27.80
BPCR(KFN+Pruning+Rect) 194,225 122.44 8.47 7 29.58 27.52

Table 4: Complexity analysis on NeRF-Synthetic dataset. The first
column of metrics means the number of queried points x. Since the
numbers and GFLOPS are view-dependent, here we take the first
view of the test scene as an example.

number of Gaussians in 3DGS process, which hinders the ef-
ficient implementation of the pruning operation on CUDA.
As a result, the pruning operation is not applied to 3DGS in
our approach.

We use the StopThePop [Radl et al., 2024] to evaluate the
temporal consistency, utilizing MSE(Mean Squared Error)
and FLIP [Andersson et al., 2020] as the evaluation metrics.
As shown in Table 5, integrating our method does not com-
promise the temporal consistency of the original approach.

We conduct tests to evaluate the impact of varying z-buffer
layers as shown in Table 6. It is clear that as K increases,
there is an increase in FPS, model size and rendering quality.
The model size does not sharply increase with the increment
in K, but the computational load becomes more sensitive to
K.

Short-range Long-range
MSE↓ FLIP ↓ MSE↓ FLIP ↓

3DGS 0.018 0.008 0.100 0.028
3DGS+Ours 0.018 0.009 0.102 0.028

Table 5: Quantitative results of temporal consistency on NeRF-
Synthetic dataset. We use step 1,7 as frame offset during optical
flow prediction to evaluate short-range and long-range consistency,
respectively.

K=1 K=2 K=4 K=8

PSNR↑ 26.17 26.29 26.84 27.62
FPS↓ 51.00 44.87 36.83 27.52
Model Size(MB)↑ 8.30 8.33 8.37 8.47

Table 6: Quantitative results on lego scene of NeRF-Synthetic for
different values of K.

NeRF-Synthetic ScanNet DTU Mean

BPCR 29.12 25.88 30.81 28.60
BPCR(KFN) 29.95 25.93 31.20 29.03
BPCR(KFN+Pruning) 29.68 26.05 31.08 28.94
BPCR(KFN+Pruning+Rect) 29.58 26.66 30.99 29.08
FrePCR 29.26 26.44 24.61 26.77
FrePCR(KFN) 29.44 26.20 29.20 28.28
FrePCR(KFN+Pruning) 29.68 26.12 30.78 28.86
FrePCR(KFN+Pruning+Rect) 29.83 26.34 30.61 28.93
3DGS 33.37 24.16 33.91 30.48
3DGS(KFN) 33.20 25.81 33.66 30.89
3DGS(KFN+Pruning) / / / /
3DGS(KFN+Rect) 33.62 25.55 33.91 31.03

Table 7: The impact of different modules on PSNR across multiple
datasets.

Ground Truth FrePCR FrePCR(ours)

PSNR: 26.72 PSNR: 25.82

Figure 6: Our method struggles to produce accurate results in re-
gions with specular reflections.

4 Conclusion
In this work, we propose a point cloud rendering method to
enhance the neural point fields and 3DGS. We propose to uti-
lize multiple points rather than single surface points to decide
the color for each pixel. We also propose a pruning strat-
egy and feature rectification to reduce the number of neural
points. Besides, our proposed method can help 3DGS im-
prove rendering quality and reduce storage. Experiments on
major benchmarks have demonstrated the effectiveness of our
method.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by the Key R&D Program of
Zhejiang under Grant (2025C03001), the Fundamental Re-
search Funds for the Provincial Universities of Zhejiang
(GK259909299001-023), the National Nature Science Foun-
dation of China (62301198).

References
[Aliev et al., 2020] Kara-Ali Aliev, Artem Sevastopolsky,

Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky.
Neural point-based graphics. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXII 16, pages 696–712.
Springer, 2020.

[Andersson et al., 2020] Pontus Andersson, Jim Nilsson,
Tomas Akenine-Möller, Magnus Oskarsson, Kalle
Åström, and Mark D. Fairchild. FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the
ACM on Computer Graphics and Interactive Techniques,
3(2):15:1–15:23, 2020.

[Barron et al., 2022] Jonathan T. Barron, Ben Mildenhall,
Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-
nerf 360: Unbounded anti-aliased neural radiance fields.
CVPR, 2022.

[Chang et al., 2023a] Jen-Hao Rick Chang, Wei-Yu Chen,
Anurag Ranjan, Kwang Moo Yi, and Oncel Tuzel. Point-
ersect: Neural rendering with cloud-ray intersection. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8359–8369, 2023.

[Chang et al., 2023b] MingFang Chang, Akash Sharma,
Michael Kaess, and Simon Lucey. Neural radiance field
with lidar maps. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 17914–
17923, 2023.

[Chen et al., 2022] Anpei Chen, Zexiang Xu, Andreas
Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radi-
ance fields. In European Conference on Computer Vision,
pages 333–350. Springer, 2022.

[Dai et al., 2017] Angela Dai, Angel X Chang, Manolis
Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions
of indoor scenes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5828–
5839, 2017.

[Dai et al., 2020] Peng Dai, Yinda Zhang, Zhuwen Li,
Shuaicheng Liu, and Bing Zeng. Neural point cloud ren-
dering via multi-plane projection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7830–7839, 2020.

[Fridovich-Keil et al., 2022] Sara Fridovich-Keil, Alex Yu,
Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. Plenoxels: Radiance fields without
neural networks. In CVPR, 2022.

[Godard et al., 2018] Clément Godard, Kevin Matzen, and
Matt Uyttendaele. Deep burst denoising. In Proceedings

of the European conference on computer vision (ECCV),
pages 538–554, 2018.

[Ha et al., 2017] David Ha, Andrew M. Dai, and Quoc V. Le.
Hypernetworks. In International Conference on Learning
Representations, 2017.

[Hedman et al., 2018] Peter Hedman, Julien Philip, True
Price, Jan-Michael Frahm, George Drettakis, and Gabriel
Brostow. Deep blending for free-viewpoint image-
based rendering. ACM Transactions on Graphics (ToG),
37(6):1–15, 2018.

[Hu et al., 2023] Tao Hu, Xiaogang Xu, Ruihang Chu, and
Jiaya Jia. Trivol: Point cloud rendering via triple vol-
umes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 20732–
20741, 2023.

[Huang et al., 2023] Xiaoyang Huang, Yi Zhang, Bingbing
Ni, Teng Li, Kai Chen, and Wenjun Zhang. Boosting point
clouds rendering via radiance mapping. In Proceedings of
the AAAI conference on artificial intelligence, volume 37,
pages 953–961, 2023.

[Jensen et al., 2014] Rasmus Jensen, Anders Dahl, George
Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale
multi-view stereopsis evaluation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 406–413, 2014.

[Kerbl et al., 2023] Bernhard Kerbl, Georgios Kopanas,
Thomas Leimkühler, and George Drettakis. 3d gaus-
sian splatting for real-time radiance field rendering. ACM
Transactions on Graphics, 42(4), July 2023.

[Li et al., 2023] Zhuopeng Li, Lu Li, and Jianke Zhu. Read:
Large-scale neural scene rendering for autonomous driv-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 1522–1529, 2023.

[Ma et al., 2024] Jiahao Ma, Miaomiao Liu, David Ahmedt-
Aristizabal, and Chuong Nguyen. Hashpoint: Accelerated
point searching and sampling for neural rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4462–4472, 2024.

[Mildenhall et al., 2018] Ben Mildenhall, Jonathan T Bar-
ron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert Car-
roll. Burst denoising with kernel prediction networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2502–2510, 2018.

[Mildenhall et al., 2020] Ben Mildenhall, Pratul P. Srini-
vasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. In ECCV, 2020.

[Müller et al., 2022] Thomas Müller, Alex Evans, Christoph
Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM
Transactions on Graphics (ToG), 41(4):1–15, 2022.

[Ost et al., 2022] Julian Ost, Issam Laradji, Alejandro
Newell, Yuval Bahat, and Felix Heide. Neural point light
fields. In Proceedings of the IEEE/CVF Conference on

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Computer Vision and Pattern Recognition, pages 18419–
18429, 2022.

[Radl et al., 2024] Lukas Radl, Michael Steiner, Mathias
Parger, Alexander Weinrauch, Bernhard Kerbl, and
Markus Steinberger. StopThePop: Sorted Gaussian Splat-
ting for View-Consistent Real-time Rendering. ACM
Transactions on Graphics, 43(4), 2024.

[Rakhimov et al., 2022] Ruslan Rakhimov, Andrei-Timotei
Ardelean, Victor Lempitsky, and Evgeny Burnaev.
Npbg++: Accelerating neural point-based graphics. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15969–15979,
2022.

[Reiser et al., 2021] Christian Reiser, Songyou Peng, Yiyi
Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 14335–14345, 2021.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, pages 234–
241. Springer, 2015.

[Rückert et al., 2022] Darius Rückert, Linus Franke, and
Marc Stamminger. Adop: Approximate differentiable one-
pixel point rendering. ACM Transactions on Graphics
(ToG), 41(4):1–14, 2022.

[Shreiner et al., 2009] Dave Shreiner, Bill The Khronos
OpenGL ARB Working Group, et al. OpenGL program-
ming guide: the official guide to learning OpenGL, ver-
sions 3.0 and 3.1. Pearson Education, 2009.

[Sun et al., 2023] Weiwei Sun, Eduard Trulls, Yang-Che
Tseng, Sneha Sambandam, Gopal Sharma, Andrea
Tagliasacchi, and Kwang Moo Yi. Pointnerf++: A multi-
scale, point-based neural radiance field, 2023.

[Xia et al., 2020] Zhihao Xia, Federico Perazzi, Michaël
Gharbi, Kalyan Sunkavalli, and Ayan Chakrabarti. Ba-
sis prediction networks for effective burst denoising with
large kernels. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
11844–11853, 2020.

[Xu et al., 2022] Qiangeng Xu, Zexiang Xu, Julien Philip,
Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neu-
mann. Point-nerf: Point-based neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5438–5448, 2022.

[Yu et al., 2021] Alex Yu, Ruilong Li, Matthew Tancik, Hao
Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for real-
time rendering of neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 5752–5761, 2021.

[Yu et al., 2024] Zehao Yu, Anpei Chen, Binbin Huang,
Torsten Sattler, and Andreas Geiger. Mip-splatting:

Alias-free 3d gaussian splatting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 19447–19456, June 2024.

[Zhang et al., 2023] Yi Zhang, Xiaoyang Huang, Bingbing
Ni, Teng Li, and Wenjun Zhang. Frequency-modulated
point cloud rendering with easy editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 119–129, 2023.

[Zuo and Deng, 2022] Yiming Zuo and Jia Deng. View
synthesis with sculpted neural points. arXiv preprint
arXiv:2205.05869, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


