Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

CSF-GAN: Cross-modal Semantic Fusion-based Generative Adversarial Network
for Text-guided Image Inpainting

Shilin Zhang', Suixue Wang?, Qingchen Zhang®*, Liang Zhao**, Weiliang Huo?, Sijia
Hou*, Chunjiang Fu*
ICollege of Intelligence and Computing, Tianjin University, Tianjin, China
2School of Information and Communication Engineering, Hainan University, Hainan, China
3School of Computer Science and Technology, Hainan University, Hainan, China
4School of Software, Dalian University of Technology, Dalian, China
zhang_shilin_sd @ 163.com, {wangsuixue, zhangqingchen} @hainanu.edu.cn, liangzhao @dlut.edu.cn,
wlhuo @hainanu.edu.cn, {housj, fuchunjiang } @mail.dlut.edu.cn

Abstract

Most visual-guided image inpainting methods
based on generative adversarial networks (GANSs)
struggle when the missing region has weak corre-
lations with the surrounding visual context. Re-
cently, diffusion-based methods guided by textual
context have been proposed to address this limi-
tation by leveraging additional semantic informa-
tion to restore corrupted objects. However, these
models typically involve more parameters and ex-
hibit slower generation speeds compared to GAN-
based approaches. To address this problem, we pro-
pose a novel text-guided image inpainting model,
the cross-modal semantic fusion generative adver-
sarial network (CSF-GAN). CSF-GAN is designed
as a one-stage GAN with the following key con-
tributions. First, a novel semantic fusion mod-
ule (SFM) is introduced to integrate sentence- and
word-level textual context into the inpainting pro-
cess, enabling more effective guidance from multi-
granularity semantic information. Second, a newly
designed word-level local discriminator provides
detailed feedback to the generator, enhancing the
accuracy of generated content in alignment with
word-level semantics. Third, two loss functions,
the inpainting loss and edge loss, are employed to
enhance both structural coherence and textural real-
ism in the generated results. Extensive experiments
on two benchmark datasets demonstrate that CSF-
GAN outperforms state-of-the-art methods.

1 Introduction

Image inpainting aims to generate missing regions and re-
construct visually plausible images, posing a significant chal-
lenge in computer vision. It is crucial for various applica-
tions, including restoring damaged artwork, editing digital
images, and removing unnecessary objects.
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text(a): “this small bird has a black body and a small pointy black bill.”
text(b): “this small bird has a dark blue body and a small pointy blue bill.”

text(c): “this small bird has a brown body and a small pointy brown bill.”
text(d): “this small bird has a gray body and a small pointy gray bill.”

Figure 1: The first row presents the comparison of generated images
between the proposed CSF-GAN and other advanced text-guided
image inpainting methods, given the text a. The second row shows
three examples of generated images based on CSF-GAN, with dif-
ferent texts as guidance (text b-d).

Generative adversarial network (GAN)-based methods are
widely used for image inpainting [Tizuka et al., 2017; Pathak
et al., 2016; Yin et al., 2024; Zheng et al., 2019], typi-
cally employing an encoder-decoder architecture for image
synthesis and a discriminator to distinguish between gener-
ated and real images. However, their performance degrades
when contextual information is weakly correlated with sur-
rounding pixels. For example, in datasets like CUB-200-2011
and Oxford-102, where objects are centered, central masking
makes inpainting more difficult than random masking.

Compared to internal guidance, providing inpainting mod-
els with external guidance offers a promising approach to
controlling the output. In internal guidance, Feng et al. [Feng
et al., 2022]infer the content of corrupted regions using
learned inter-image reasoning priors that capture semantic
distribution patterns among similar images. However, text
descriptions contain richer semantic information, making
them more effective for guiding content generation in miss-
ing regions. As shown in Figure 1, using different text
prompts results in distinct image content. Therefore, Lin et
al. [Lin ef al., 2020] introduce a coarse-to-fine inpainting
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model (MMFL, as shown in Figure 1) that captures essen-
tial information in the damaged areas. Furthermore, Wu et
al.  [Wu er al., 2021] develop a module for reconstruct-
ing masks, ensuring that the restored object closely resem-
bles the original object in the initial image (ALMR, as de-
picted in Figure 1). However, the two methods inject se-
mantic information into the inpainting process by simply con-
centrating on hidden visual features and visual text features,
leading to the insufficient utilization of semantic informa-
tion. Besides, the primary loss in their loss functions is re-
construction loss, which can only guarantee accurate struc-
tures but fail to consider the high-resolution textures, lead-
ing to unsatisfying inpainting results. To tackle these prob-
lems, our method injects sentence-wise and word-wise se-
mantic information into the inpainting process to modulate
visual features, which can better employ text semantics to
guide this inpainting task. Also, our method uses the in-
painting loss and the edge loss to guarantee accurate struc-
tures and high-resolution textures in inpainting images. As
shown in Figure 1, CSF-GAN generates realistic and natu-
ral outcomes in terms of structure and texture according to
the text description, while prior methods [Lin et al., 2020;
Wu et al., 2021] are unable to generate visually plausible re-
sults.

In recent years, diffusion-based models [Rombach et al.,
2022] have demonstrated notable performance in image in-
painting. However, these models are not without limitations.
Firstly, the number of parameters in diffusion-based models
significantly exceeds that of GAN-based models, resulting in
higher demands on the machine’s GPU configuration. Sec-
ondly, diffusion-based models require numerous iterations to
generate images, resulting in a generation speed that is con-
siderably slower than that of GAN-based models. In practi-
cal applications, generation speed serves as a critical perfor-
mance indicator. Consequently, we continue to utilize GAN
as our foundational model.

This paper presents a cross-modal semantic fusion ap-
proach to guide the restoration of damaged image pixels.
Prior research employs a two-stage model for image restora-
tion, wherein a shallow generator first produces a coarse-
grained image, which is subsequently used as input for a
deeper generator to generate a fine-grained image. In con-
trast, we propose a one-stage restoration model with fewer
parameters that directly generates fine-grained images. Fur-
thermore, to effectively leverage semantics from textual de-
scriptions, we introduce a semantic fusion module (SFM) to
facilitate the fusion of coarse-to-fine features between textual
and visual components. The primary contributions of this re-
search are as follows:

e We first introduce a one-stage cross-modal semantic fu-
sion generative adversarial network with fewer model
parameters for image inpainting based on text guidance.

e To better leverage the semantics in text descriptions,
we propose a semantic fusion module (SFM) to embed
sentence-level context and word-level context into the
restoration process.

e We develop a novel word-level local discriminator,
specifically for discriminating the missing patches from

the word-level semantics in an adversarial way.

e An inpainting loss and an edge loss are introduced to op-
timize the proposed network considering structural and
textural information respectively.

2 Related Work

2.1 Image Inpainting

Image inpainting aims to reconstruct damaged regions and
generate visually realistic images. In recent years, deep learn-
ing methods, specifically Convolutional Neural Networks
(CNNSs) and Generative Adversarial Networks (GANs) [Du
et al., 2024; Chen et al., 2022], have demonstrated significant
efficacy in this domain. For instance, Pathak et al. [Pathak et
al., 2016] introduce an encoder-decoder framework that in-
tegrates adversarial loss to enhance content comprehension
across the entire image. To establish semantic relevance be-
tween the missing and existing areas, Liu et al. [Liu ef al.,
2019] propose a two-stage architecture that employs a novel
coherent semantic attention mechanism.

2.2 Text-guided Image Generation and
Manipulation

Text-to-image generation is to create images based on text
descriptions. Extensive GAN-based approaches are explored
about text-to-image generation and can obtain photo-realistic
images that match text priors. Reed et al. [Reed et al.,
2016] are the first to demonstrate that GANs can generate
images conditioned on human-written descriptions. Zhang et
al. [Zhang et al., 2017; Zhang et al., 2019] decompose this
complex problem into several sub-problems and stack mul-
tiple GANs to synthesize images of varying sizes gradually.
Xu et al. [Xu et al., 2018] introduce a word-level attention
mechanism within GANSs, enabling the generation of specific
image sub-regions based on the most relevant words.

Different from text-to-image generation, text-guided image
manipulation focuses on modifying specific visual features of
an image based on textual input while preserving irrelevant
parts of the image. In [Nam et al, 2018], a text-adaptive
discriminator is introduced to provide fine-grained feedback
to the generator for the generation of specific visual content.
Li et al. [Li er al., 2020a] propose a text-image affine com-
bination module that selects image regions corresponding to
the input text and a detail restoration module that fulfills any
missing content.

Compared with the text-to-image generation task, it is
more strict for the requirement of the text-guided image in-
painting task. This is because the inpainting result must align
with both the text and the existing content. Unlike text-guided
image manipulation, which utilizes the entire image as a ref-
erence, the inpainting task only employs the semantics of the
text and the existing image regions to restore damaged areas,
making it more challenging.

2.3 Text-guided Image Inpainting

The semantics in text play a crucial role in image inpainting,
leading to increased interest in the text-guided image inpaint-
ing task. Wu et al. [Wu er al., 2021] propose a mask recon-
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Figure 2: The structure of our generative adversarial network that utilizes cross-modal semantic fusion.

struction module to ensure that the primary object in the gen-
erated image closely resembles that in the source image. Li
et al. [Li ef al., 2023] provide a visual-textual modalities fu-
sion module to extract more valuable and informative textual
features for image inpainting.

However, these methods treat text-guided image inpaint-
ing as a multi-stage or two-stage task, which is more com-
plex than our one-stage model. Additionally, they primarily
rely on reconstruction loss, which is insufficient for generat-
ing high-resolution textures in completed images.

3 Cross-Modal Semantic Fusion-based
Generative Adversarial Network

Given a text description ¢ and a masked image M;, our
method aims to produce an inpainting image I’ which aligns
with ¢ and the existing image content. The structure of CSF-
GAN is presented in Figure 2. It contains three compo-
nents: the Generator for Image Inpainting, the Semantic Fu-
sion Module, and the Word-Level Local Discriminator.

3.1 Generator for Image Inpainting

The input of the generator M7 is a 3 X 256 x 256 image with a
central hole, and the output I’ is the painted image, matching
the size of M;. The generator is based on the UNet archi-
tecture [Ronneberger et al., 2015], with both the encoder and
the decoder consisting of 8 layers of neural networks. Before
entering the encoder, the input image is first processed by a
convolutional operation to increase the number of channels
in the feature map to 64. In the encoder, each layer consists
of two convolution blocks. To prevent convolution operation
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Figure 3: Semantic Fusion Module (SFM).

from excessively losing information, dilated convolution [Liu
et al., 2019] instead of traditional convolution is employed
in a convolution block in each layer. In the semantic fusion
module (SFM), semantic details at the sentence and word lev-
els are integrated into the second and fourth, sixth and eighth
layers of the encoder respectively. The decoder’s structure
mirrors that of the encoder, but the decoder doesn’t have the
SFM and uses the deconvolution operation. The generator un-
dergoes training with text-matching loss, reconstruction loss,
and inpainting loss, and edge loss explicitly. Furthermore, a
one-stage generator is employed to reduce the parameters and
the training time of the model.

3.2 Semantic Fusion Module

To make full use of the textual semantics, we propose a se-
mantic fusion module (SFM), which aims to provide the se-
mantic information in different granularities to the model and
better guide this inpainting task. The SFM contains two com-
ponents: sentence-level fusion and word-level fusion.

1) Sentence-level Fusion: The first four layers of the en-
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coder are regarded as the coarse inpainting stage. There-
fore, sentence-level fusion is applied in this stage. The
condition vector c is derived from the sentence vector
s using the condition enhancement method [Zhang er
al., 2017]. As shown in Figure 3(a), ¢ and the noise
z ~ N(0,1) are concatenated to get a global condition
¢. Then, the scale parameter 7. and the shift parameter
0. are learned from the global condition ¢ respectively,
as shown in Eq.(1).

Ve = W(E)vﬁc = B(E) (1)

where W (-) and B(-) denote a linear projection layer re-
spectively. The modulated visual features v is calculated

by Eq.(2).

v —p(v)
o (v)
where v denotes the visual features of the image, u(v)
and o(v) denote the estimated average and variance,
which are calculated from both batch and spatial dimen-

sions for every channel.

V=" + ﬁc )

2) Word-level Fusion: Naturally, the last four layers of
the encoder are regarded as the fine inpainting stage.
To generate more fine-grained inpainting results, word-
level fusion is employed in this stage. w; denotes the
word embeddings of the i*" word. v € RE*¥ remains
as the image-related hidden characteristics of the image,
here, C' represents the channel count and N = W x H.
The attention mechanism is used to compute a word-
based context vector as the local condition for every sub-
area of the image, as illustrated in Figure 3(b). Each col-
umn of v is a sub-area of the image. For the jth sub-area,
the word-based context wc; is calculated by Eq.(3).

T-1

WC; = Z aj’iwi,where ajq = %
i=0 Zk:o exp(hj,k)

3

where hj; = v;Tw;, and o ; denotes the weight of "

word w; for the 7' sub-region v;. After obtaining the
local condition, two 1 x 1 convolution layers are adopted
to convert wc into the word-level modulation parameters
. and f. respectively. Finally, Eq.(2) is employed to
modulate the visual hidden features v.

3.3 Word-Level Local Discriminator

To enhance the generator’s ability to reconstruct missing
patches based on textual descriptions, we introduce a word-
level local discriminator, inspired by [Nam et al., 2018;
Li ef al., 2019]. Consistency is measured between the lo-
cal regions and their corresponding word embeddings, rather
than across the entire image.

As shown in Figure 4, there are two inputs to our word-
level local discriminator: 1) the word embeddings w €
RP*T obtained from the pre-trained RNN, and 2) v,..,; and
Vtake are the local visual features corresponding to the real
image I and generated image I’ respectively. In the follow-
ing, using v € R*N to represent the local visual features
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Figure 4: Details of Word-Level Local Discriminator (WLD).
(Trans: Transpose; MLP: Linear Projection Layer; MatMul: Matrix
Multiplication; Sum: Along Column Direction; Pow: element-wise;
Prod: Along Row Direction.)

Vreal and Vyqre. Two linear projection layers are used to ob-
tain the weight W and the bias b from the word embeddings
w. For the j sub-region of the image v;, Eq.(4) is applied
to get a probability 3; ; which can determine whether it is re-
lated to the i*" word w;.

Byi = a(Wi-v; +b) 4)

where o denotes the sigmoid function and W; € R'*¢. The
self-attention at the word level [Nam et al., 2018] is employed
to compute the importance of the i*” word o; relative to the
temporal average of the word embeddings w. The final score
D(I,w) between the image I and word features w is calcu-
lated as bellow:

a;

T-—1 N—-1
D(I,w) = H Z Bj,i ()
i=0 \ j=0

where N denotes the total count of sub-regions within the
missing area.

3.4 Loss Functions

Let I, My, I’ represent the original image, the damaged im-
age, and the inpainting result respectively.

Reconstruction Loss: To guarantee that the inpainting re-
sult I’ has a similar structure with the original image I, re-
construction loss is employed to measure the absolute error
of each pixel, which is formulated as:

Lyiec = HI - I/Hl (6)

Inpainting Loss: Inpainting Loss includes two parts: per-
ceptual loss and total variation loss.

1) Perceptual Loss: Since reconstruction loss can not
guarantee that the inpainting result has high-resolution
textures, perceptual loss [Johnson et al., 2016] is em-
ployed to obtain vivid textures. To extract high-level se-
mantic features, a pre-trained VGG [Simonyan and Zis-
serman, 2015] network is utilized. The perceptual loss
computes the absolute error of semantic features of the
inpainting result I’ compared to the original image I.
The definition of perceptual loss is given as:

Lper = > l65(1) = 65 (1), (7)
i€t
where ¢(-) denotes the VGG network and J is selected
VGG layers.
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2) Total Variation Loss: Relying solely on perceptual loss
results in checkerboard artifacts in the inpainting out-
put [Johnson er al., 2016], and [Johnson et al., 2016]
recommends using total variation loss to address this is-
sue. Total variation loss Ly, calculates the error between
each pixel in the inpainting image and its neighboring
pixels above and to the left [Hong et al., 2019].

The inpainting loss can be defined as:
Linp N Apeere'r' + Am Lt’u (8)

where \,¢, and )\, denote the weights of perceptual loss and
total variation loss, respectively.

Edge Loss: To further generate vivid textures in the miss-
ing area, the edge loss is introduced. Edge information for
the whole image is extracted using a Sobel operator. The er-
rors are calculated from these edges instead of the original
images. The edge loss is defined as:

Leage = [[S(I) = S(I)l; ©)

where S(-) denotes a Sobel operator.

GAN Loss: To generate visually realistic images and miss-
ing patches which are consistent with words, the loss function
for the generator is given by:

Lg = —Eppgllog(D(I') + log(D(I', w))] (10)
The discriminator loss function is expressed as:
Lp = =Einpye..[log(D(I)) + log(D(I, w))]+

— Errpg [log(1 = D(I')) +log(1 — D(I",w))]

where both D(I,w) and D(I’, W) are computed by Eq.(5).
Finally, the loss function for CSF-GAN can be expressed
as:

an

Ltotal = Archrec + Linp + )\cgchcdgc + )\GLG (12)

where Arec, Ainp, Aedge, AG Serve as hyper-parameters to ad-
just the balance between the losses.

4 Experiments

We conduct a quantitative comparison between our CSF-
GAN and the top-performing GAN-based inpainting tech-
niques: RFR[Li er al., 2020b], PD-GAN([Liu et al., 2021] and
PUTI[Liu et al., 2022], MMFL [Lin et al., 2020], ALMR [Wu
et al., 2021], MIGT [Li et al., 2023] and MISL[Wu et al.,
20241, which are recently proposed methods for text-guided
image inpainting. Then, we carry out ablation studies to an-
alyze the essential elements of our CSF-GAN, such as the
Semantic Fusion Module (SFM), the Word-level Local Dis-
criminator (WLD), and the edge loss.

4.1 Experiment Settings

Datasets: CSF-GAN is evaluated on two public benchmark
datasets: CUB-200-2011 [Wah et al., 2011] and Oxford-
102 [Nilsback and Zisserman, 2008]. CUB-200-2011 in-
cludes 11788 bird images in 200 bird categories, and each
image is paired with 10 corresponding textual descriptions.
Following the settings of previous methods [Lin et al., 2020;
Wu et al., 2021], we select 8,855 bird images from 150

CUB-200-2011 Oxford-102

FID" PSNR* SSIM* | FID" PSNR* SSIM*
RFRILi et al., 2020b] 7234 2053  0.764 |43.83 19.59  0.753
PD-GANILiu et al., 2021] | 65.94 1827  0.688 |49.27 17.27  0.651
PUTILiu et al., 2022] 56.19 1833  0.727 | 4258 1695  0.678
MMFLILin et al., 2020] | 31.82 2049  0.826 |32.05 2027 0.822
ALMRI[Wu et al., 2021] | 3233 1623 0507 |32.65 2032 0812
MIGTILi et al., 2023] 3530 2147  0.846 | 3248 21.57 0.847
MISLI[Wu et al., 2024] 1477 18.87  0.764 |30.85 0.764  0.726
CSF-GAN (ours) 13.50 2075  0.829 |26.94 20.61 0.834

Methods

Table 1: Performance comparing CSF-GAN with SOTA methods.
“ denotes better performance with lower values, and * with higher
values.

Methods Parameters (Million) Training Time (Hour)
MMFL [Lin et al., 2020] 149.20M 42.5 Hours
ALMR [Wu et al., 2021] 175.87TM 54.5 Hours
CSF-GAN (ours) 82.29M 35.5 Hours

Table 2: The number of trainable parameters and training time com-
pared across different methods on the CUB-200-2011 dataset.

species for training and 2,933 images from 50 species for test-
ing. The Oxford-102 dataset comprises 102 flower species
and 8,189 images in total, each of which has also 10 textual
descriptions. We select 7034 and 1155 flower images with 82
categories and 20 categories as train and test sets respectively.

Implementation Details: CSF-GAN is implemented us-
ing PyTorch. All images in both bird and flower datasets are
adjusted to a resolution of 256 x 256. In the image, a rect-
angular hole of size 128 x 128 is filled. A pre-trained bidi-
rectional LSTM [Schuster and Paliwal, 1997] is used as the
text encoder to extract sentence and word embeddings from
the text. Each layer in the encoder contains a 3 x 3 convo-
lution followed by a 4 x 4 dilated convolution. We use the
Adam optimizer [Kingma and Ba, 2015] for parameter up-
dates, setting 51 = 0.5,82 = 0.999 and a learning rate of
0.0002. The hyper-parameters Arcc, Apers Atv, Aedge and Ag
in the loss function are assigned values of 1.0, 0.5, 0.1, 0.5,
0.002 for both datasets respectively.

Evaluation Metrics: In line with prior studies [Lin et
al., 2020; Wu et al., 2021], we assess the effectiveness of
our CSF-GAN using several metrics: Fréchet Inception Dis-
tance (FID) [Heusel er al., 20171, Peak Signal-to-Noise Ra-
tio (PSNR)?, and Structural Similarity (SSIM) [Wang et al.,
200411.

4.2 Comparison With the Baselines

Quantitative Results: To assess the effectiveness of CSF-
GAN in text-guided image inpainting, we carry out numer-
ous experiments comparing it with state-of-the-art inpainting
techniques, such as RFR, PD-GAN, PUT, MMFL, ALMR,
MIGT, and MISL. As shown in Table 1, CSF-GAN outper-
forms all compared methods in relation to FID on the CUB-
200-2011 and Oxford-102 datasets, which can prove that in-
painting images produced by our CSF-GAN exhibits supe-
rior image quality and greater visual plausibility. Compared
to the best image inpainting method without text guidance,
PUT, on the CUB dataset, CSF-GAN achieves a substantial
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Figure 5: Visual examples comparing CSF-GAN with SOTA meth-
ods on the CUB-200-2011 dataset. The region within the red box is
generated by the SOTA methods and CSF-GAN.
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Figure 6: Qualitative examples of the SOTA methods and CSF-GAN
on Oxford-102 flower dataset. The region within the red box is gen-
erated by the SOTA methods and CSF-GAN.

reduction in FID, from 56.19 to 13.50, achieving a remark-
able improvement of 76.0%. On the Oxford-102 dataset, the
FID score similarly declines from 42.58 to 26.94, marking an
improvement of 36.73%. Although CSF-GAN shows slightly
lower PSNR and SSIM scores than MIGT on both datasets, it
still achieves competitive performance, ranking second over-
all. The reason lies in the fact that PSNR and SSIM eval-
uate the pixel-level variations between the original and in-
painting results. We observe that high performance in PSNR
and SSIM does not necessarily mean the ability to generate
high-quality images [Zhao et al., 2017]. For this reason, we
do not include PSNR and SSIM results for these methods in
subsequent assessments.

Furthermore, we conducted a comparison with two-
stage text-driven image inpainting architectures, MMFL and
ALMR, in terms of model parameters and training time. As
shown in Table 2, although the parameters of these models are
approximately twice as large as ours, and their training time
is approximately 1.5 times longer than ours, our one-stage
CSF-GAN model still demonstrated superior performance.

Qualitative Results: For evaluating the effectiveness of
our CSF-GAN, we list some inpainting results generated by
two SOTA text-guided image inpainting methods MMFL,
ALMR, and CSF-GAN on two datasets in Figure 5 and Fig-
ure 6.

In the analysis of the image quality generated by the meth-
ods, the top row of Figure 5 and the fourth row of Figure 6
vividly demonstrate that the restoration results of MMFL and
ALMR often appear blurred and structurally chaotic when the
main object is obscured by a mask. In contrast, CSF-GAN not
only accurately reconstructs the correct structure of bird and
flower images but also produces visuals that are highly real-
istic and closely resemble the original images. Particularly,
CSF-GAN displays a remarkable capability in detail recon-
struction. For example, in the third line of Figure 5, guided by
the text description “this flower has yellow-orange stamen,”
CSF-GAN endeavors to replicate the details of the stamens,
manifesting the basic structure of the stamens clearly in its
generated restoration result, while other models fail to iden-
tify specific objects in the damaged area clearly. This demon-
strates CSF-GAN’s strong ability to generate images rich in
detail, surpassing existing text-guided image inpainting ap-
proaches.

Observing the restoration results in Figure 5 and Figure 6,
it is evident that the images generated by CSF-GAN perfectly
align with the text descriptions. While MMFL and ALMR
can reflect the color information from the text descriptions in
the restoration area to some extent, they lack depth in under-
standing the semantics of the text, particularly in accurately
filling specific regions. For example, in the fourth row of Fig-
ure 5, the text description mentions “this bird has black wings
and an orange belly.” CSF-GAN more accurately interprets
the semantics of the text, filling the matching textual infor-
mation in the corresponding sub-areas of the image, resulting
in a bird with black wings and an orange belly. This success
is attributed to the efficient collaboration of our designed se-
mantic fusion module and the word-level local discriminator.

Notably, the images inpainted by CSF-GAN may not show
higher similarity to the original images, as the text descrip-
tions may not include all the features. For example, the wings
of the ground truth have black and white stripes in the first
row of Figure 5, but the text does not mention this character-
istic. Therefore, this may not lead to significant improvement
in PSNR and SSIM.

4.3 Ablations

To assess the effectiveness of the proposed SFM and word-
level local discriminator, and resolve their effects, we conduct
ablation experiments on the CUB-200-2011 and Oxford-102
datasets. Due to our CSF-GAN being a one-stage method,
we modify the MMFL as the baseline model. Table 3 sum-
marizes the quantitative performance of the ablation study on
both datasets. We discover that adding any component signif-
icantly boosts image quality. We incorporate the word-level
local discriminator into the baseline model, which reduces
the FID from 32.39 to 19.56 on the bird dataset and achieves
29.56 in FID on the flower dataset. This proves that the inclu-
sion of both components enhances the performance of CSF-
GAN.
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this bird is all black and has a long, pointy.
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a small blue bird with black wmgs and a sharp bill.
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+WLD

Baseline Baseline
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Input‘

Figure 7: Visual comparisons of CSF-GAN variants on the CUB-
200-2011 and flower datasets.

CUB-200-2011 Oxford-102
Methods
FID" PSNR* SSIM* | FID" PSNR* SSIM*
baseline 32.39 20.73 0.829 | 38.01 20.42 0.824

baseline+SFM 18.23 20.89 0.831 28.03 20.46 0.823
baseline+WLD | 19.56 20.74 0.832 | 29.56 20.39 0.821
CSF-GAN(ours) | 13.50 20.75 0.829 | 26.94 20.61 0.834

Table 3: Performance of different CSF-GAN components on the
CUB-200-2011 and Oxford-102 datasets. ~ denotes better perfor-
mance with lower values, and * with higher values.

As depicted in Figure 7, the baseline model generates
blurred images. However, a significant change is observed
when we introduce SFM or WLD into the baseline model.
These enhanced models are capable of effectively parsing key
information from text descriptions, thereby ensuring that the
generated restoration results are closely aligned with the tex-
tual content. After adding SFM or WLD, the color of the
generated birds becomes all black. This further proves that
the introduction of SFM or WLD makes full use of the text
semantics.

To prove the performance of the word-level fusion mod-
ule, we visualize the attention map and show the top-4 most
attended words by the attention map in Figure 8. The word-
level fusion module and the WLD urge the model to focus
more on important words (bright regions in Figure 8.). In Fig-
ure 8, we can observe that on the words related to attributes,
such as colors, are emphasized for restoring details.

Aedge FID"
no edge loss | 30.23
0.1 15.87

0.2 19.23

0.5 13.50

1 16.31

Table 4: Influence of Acqge on the efficiency of CSF-GAN on CUB-
200-2011 dataset.

To demonstrate CSF-GAN’s ability to repair images with
irregular masks, Figure 9 presents several examples of in-

________________ bird rellow
| this bird has a

1 yellow belly, a
: dark brown

! wing and a

1 gray head.

I

brown has

1

:black bird with
1blue feathers
:on the back.

jpetals that are
1white and has
:yellow shading,|
' purple white
1 this flower has
: petals that are [§
: purple and has
| white stamen.

‘Word-level Attention Map

Figure 8: Examples of the word-level attention map on bird and
flower datasets.

Figure 9: Results of repairing images with irregular masks

painting results. The first row shows the irregular masks, and
the second row displays the corresponding inpainted images.
Notably, CSF-GAN generates realistic inpainting outcomes
even for these challenging cases.

We also investigate how different values of A.q4. influence
the performance of CSF-GAN. As shown in Table 4, it can be
seen that changing the value of A4 has minimal impact on
the performance of CSF-GAN. Finally, we set A¢qq¢ to 0.5 as
it has the best effectiveness on the bird dataset.

5 Conclusion

We present CSF-GAN, a novel one-stage text-guided image
inpainting method. Our approach introduces two key innova-
tions: (1) a semantic fusion module that integrates visual and
textual features at varying granularities across different in-
painting stages, and (2) a word-level local discriminator that
ensures consistency between the generated inpainted patches
and the corresponding words in the text. Additionally, we in-
troduce an edge loss and an inpainting loss to regularize the
inpainting process. Extensive experiments demonstrate that
CSF-GAN not only achieves superior inpainting quality but
also ensures strong alignment between the generated images
and their associated textual descriptions.
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