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Abstract
Federated learning (FL) enables distributed collab-
orative learning across local clients while preserv-
ing data privacy. However, its practical application
in weakly supervised learning (WSL), where only
a small subset of data is labeled, remains underex-
plored. Active learning (AL) is a promising solu-
tion for label-limited scenarios, but its adaptation
to federated settings presents unique challenges,
such as data heterogeneity and noise. In this paper,
we propose Inconsistency-based Federated Active
Learning (IFAL), a novel approach to address these
challenges. First, we introduce a data-driven prob-
ability formulation that aligns the biases between
local and global models in heterogeneous FL set-
tings. Next, to mitigate noise, we propose an inter-
model inconsistency criterion that filters out noisy
examples and focuses on those with beneficial pre-
diction discrepancies. Additionally, we introduce
an intra-model inconsistency criterion to query ex-
amples that help refine the model’s decision bound-
aries. By combining these strategies with cluster-
ing, IFAL effectively selects a diverse and infor-
mative query set. Extensive experiments on bench-
mark datasets demonstrate that IFAL outperforms
state-of-the-art methods.

1 Introduction
Federated learning (FL) is a distributed framework that en-
ables collaborative learning across multiple local clients,
where each client contributes to a shared global model on a
central server through aggregation, all while ensuring the pri-
vacy of local data [Konečnỳ et al., 2016; McMahan et al.,
2017; Huang et al., 2021]. Despite extensive research on
FL, its practical implementation in weakly supervised learn-
ing (WSL) scenarios—where only a subset of examples are
labeled and the remainder are unlabeled—remains limited
[Fan et al., 2022; Kim et al., 2023]. However, WSL is more
aligned with real-world tasks, as acquiring large-scale, fully
labeled datasets for each local client is often prohibitively ex-
pensive and time-consuming due to the labor-intensive nature

∗Corresponding Author

Global training 
data distribution

Training data 
distribution on client 𝑘

Global 
model

Local 
model

Predicted distribution of unlabeled data on local client 𝑘

Learning-based probability Data-driven probability

[0.035, 0.041, 0.096, 0.264, 0.062,
0.144, 0.055, 0.179, 0.028, 0.095]

[0.036, 0.041, 0.093, 0.278, 0.061,
0.138, 0.057, 0.171, 0.030, 0.095]

[0.025, 0.029, 0.035, 0.514, 0.042,
0.055, 0.046, 0.175, 0.026, 0.054]

[0.029, 0.040, 0.104, 0.253, 0.078,
0.169, 0.057, 0.172, 0.023, 0.074]

[0.1, 0.1, …, 0.1]

[0, 0.008, 0, 0.663, 0,
0, 0, 0.264, 0, 0.065]

Figure 1: Data heterogeneity scenario in federated learning (CIFAR-
10, α = 0.1): learning-based and data-driven predicted probability
distributions of local and global models on the local unlabeled set.

of manual labeling [Zong et al., 2025]. Therefore, it is essen-
tial to design FL algorithms capable of effectively learning
from insufficient labeled data at each local client.

Active learning (AL) provides an effective solution for
label-limited scenarios by iteratively selecting the most infor-
mative examples from the unlabeled data pool and querying
their labels from the oracle [Settles, 2009; Zong and Huang,
2025]. Existing AL methods typically operate in central-
ized environments, with two primary example selection cri-
teria: 1) Uncertainty [Li and Sethi, 2006; Balcan et al., 2007;
Holub et al., 2008], which selects the most challenging exam-
ples based on the model’s uncertainty in its predictions; and
2) Diversity [Sener and Savarese, 2017], which queries repre-
sentative examples to ensure the selected subset approximates
the distribution of the original unlabeled data pool.

However, in distributed FL settings, where each client
maintains both local and global models and data is isolated
from other clients, federated active learning (FAL) introduces
unique challenges. For instance, which model is best suited
for uncertainty evaluation? Do local representative instances
accurately reflect global diversity in data selection? Or are
there other sampling criteria that better fit the FL framework?

Recent efforts have been made to address these challenges.
For example, LoGo [Kim et al., 2023] uses the local model
to obtain the gradient embedding for each example, applies
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k-means clustering, and selects the most uncertain example
for the global model within each cluster to form the query
set. While LoGo considers both uncertainty and diversity
and ensures the participation of both models, the authors in
[Kim et al., 2023] do not explain why this combination is
optimal, and our experiments reveal that its performance is
suboptimal. KAFAL [Cao et al., 2023] utilizes prior knowl-
edge of example counts for each class on the client to define
a knowledge-specialized probability form, and calculates the
Kullback-Leibler (KL) divergence between the global and lo-
cal models to query a batch of examples with the most in-
consistent predictions. Although designing AL query strate-
gies based on inconsistency between local and global models
aligns well with FAL’s characteristics, relying solely on ex-
ample counts as a prior tends to overlook temporarily under-
represented or absent classes. Furthermore, considering only
the inconsistency between the two models neglects the impact
of noisy examples, which leads to suboptimal performance.

In this paper, we begin by considering another key char-
acteristic of FL: data heterogeneity, where the local data dis-
tribution may differ significantly from the global distribution.
This can lead to substantial prediction discrepancies between
local and global models on rare local classes (as shown in
Figure 1). Such discrepancies arise from the bias in learning-
based probabilities caused by varying training data distribu-
tions, which may be irrelevant or even detrimental, poten-
tially undermining the effectiveness of existing AL query
strategies. To address this, we propose a data-driven (struc-
tural) probability, where the structural probability of each ex-
ample is determined by its reverse K-nearest neighbors in
the representation space, based on a set of example features
and pseudo-labels. As illustrated in Figure 1, the structural
probability effectively aligns the biases between the models,
with prediction inconsistencies reflecting topological struc-
tural differences in their representation spaces.

Next, we address the noise problem in the query process, as
examples with high prediction inconsistency may not only be
informative, hard-to-learn examples but also noisy ones. To
distinguish between them, we train an additional model on the
client side by distilling knowledge from the global model, and
compute the prediction inconsistencies between this model
and both the local and global models. On one hand, due
to the memory effect of neural networks [Han et al., 2018;
Zong et al., 2024], useful knowledge can be transferred from
the teacher to the student, while noise information is less
likely to be transferred. On the other hand, noise often leads
to more random outputs from the model, so for a noisy in-
put, the prediction discrepancies between any pair of the three
models are likely to be large. Based on these observations, we
propose an inter-model inconsistency criterion to query reli-
able examples that help narrow the prediction gap between
the local and global models.

Additionally, we propose an intra-model inconsistency cri-
terion, defined as the prediction discrepancy between the
learning-based and data-driven probabilities output by the lo-
cal model for each example. This criterion aims to query
the most beneficial examples for improving performance.
Finally, we implement Ostu thresholding [Otsu and others,
1975] to select a batch of examples with high scores in

both inconsistency metrics and then apply k-means clus-
tering to query a representative subset. We refer to the
entire framework as Inconsistency-based Federated Active
Learning (IFAL).

The main contributions of this paper are as follows:
• To address the challenge posed by data heterogeneity,

we propose a data-driven probability formulation based
on the topological relationships of examples in the rep-
resentation space. This formulation effectively mitigates
the inductive bias introduced by prior data distributions
in different models, enabling a more accurate assess-
ment of the data distributional differences across various
model representation spaces.

• We highlight the importance of addressing the noise is-
sue in the AL query process. By introducing an inter-
mediate model and calculating the prediction inconsis-
tencies between this model and both the local and global
models, we propose an inter-model inconsistency-based
query strategy. This strategy effectively filters out noisy
examples while prioritizing those most beneficial for re-
ducing inconsistency between models.

• We propose an intra-model inconsistency-based query
strategy by measuring the divergence between the out-
put probability of the classifier head and the proposed
structural probability, querying examples that are most
beneficial for refining the model’s decision boundaries.

• We introduce a hybrid sampling strategy, called IFAL,
which first applies Ostu thresholding to decide a subset
of examples with high prediction inconsistency and then
uses clustering to query a diverse set of examples.

• We conduct extensive experiments on three benchmark
datasets, demonstrating that IFAL outperforms current
state-of-the-art methods.

2 Related Work
Federated learning (FL) is a distributed machine learn-
ing framework that ensures data privacy by training models
across multiple clients without sharing their private data. The
FedAvg algorithm [McMahan et al., 2017] is a cornerstone
of FL, aggregating local model parameters through averag-
ing, which strikes a balance between communication effi-
ciency and computational flexibility. A key challenge in FL is
the non-independent and identically distributed (non-IID) na-
ture of data across clients, also known as data heterogeneity,
which can severely hinder the performance and convergence
of FL. To address this, various approaches have been pro-
posed, including consistency regularization [Li et al., 2020;
An et al., 2023], optimized aggregation [Pillutla et al., 2022;
Li et al., 2023], and personalized FL methods [Zhang et
al., 2023b; Wang et al., 2024]. FL has also been extended
to address real-world challenges, such as continual learning
[Zhang et al., 2023c], multi-label learning [Liu et al., 2024],
semi-supervised learning [Bai et al., 2024], and active learn-
ing [Cao et al., 2023; Zhang et al., 2023a], expanding its ap-
plicability across diverse domains.

Active learning (AL) is a primary approach for reduc-
ing labeling costs by querying the most informative exam-
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𝑘-means clustering and sampling

Figure 2: The overview of the proposed IFAL framework. The left part illustrates the basic framework of federated active learning, while the
right part demonstrates an example of executing the proposed query strategy on client k.

ples for model training. AL query strategies can be typically
categorized into three types: uncertainty-based, diversity-
based, and hybrid methods. Uncertainty-based methods pri-
oritize instances for which labeling is least certain. Common
uncertainty metrics include entropy-based sampling [Holub
et al., 2008], margin-based sampling [Balcan et al., 2007],
and least confidence sampling [Li and Sethi, 2006], etc.
Diversity-based methods prioritize instances that are most
representative or exhibit the greatest feature diversity. Such as
clustering-based selection, where instances are selected from
distinct clusters [Nguyen and Smeulders, 2004], and core-
set selection [Sener and Savarese, 2017], which minimizes
the distance between queried instances and the entire dataset.
Hybrid methods combine diversity and uncertainty to ensure
that annotated data is both representative and uncertainty.
These techniques often involve two-stage sampling [Wang et
al., 2023; Yuan et al., 2023], leveraging the strengths of both
diversity- and uncertainty-based techniques [Ash et al., 2019;
Prabhu et al., 2021; Caramalau et al., 2021].

Federated active learning (FAL) aims to enhance model
performance with minimal labeled data while preserving data
privacy by incorporating active querying into the FL frame-
work and selecting the most informative instances on each
client for labeling. Early approaches typically apply exist-
ing AL strategies directly using either the local model or the
global model [Wu et al., 2022; Ahn et al., 2024]. However,
due to data heterogeneity, querying examples based on a sin-
gle model may not be optimal for the global system, thus lim-
iting performance gains. To address this, LoGo [Kim et al.,
2023] simultaneously considers local and global inter-class
diversity by first clustering unlabeled instances using the local
model, and then selecting the most uncertain instances within
each cluster based on the global model. KAFAL [Cao et al.,
2023] queries the most uncertain examples by measuring the
prediction divergence between the global and local models
on the same input for the client’s specialized classes. How-
ever, we find that LoGo’s strategy is ineffective, particularly
in complex datasets. While KAFAL is a more reasonable ap-
proach, it suffers from two main issues: it overlooks tem-
porarily unseen or rare classes on the client side, and it does
not account for the interference of noisy examples, leading to

suboptimal performance. Therefore, in this paper, we propose
a novel inconsistency-based FAL framework that effectively
addresses these issues and better aligns with the characteris-
tics of FL.

3 Methodology
3.1 Preliminaries
Notations. Consider the problem of ordinary C-class classifi-
cation in federated learning (FL). Let fG be the global model
on the central server, and {fθ1 , . . . , fθk , . . . , fθN } the set of
local models, corresponding one-to-one with the N clients.
Assume a total of T communication rounds. In each round
t, each client k first downloads the global model f t−1

G from
the server to initialize its local model f t

θk
, and then optimizes

f t
θk

using its isolated training dataset Dk = {(xi, yi)}Nk

i=1,
where xi denotes an arbitrary example, yi is the correspond-
ing ground-truth label belonging to {1, . . . , C}, and Nk is the
total number of examples. The updated local models are then
uploaded to the server and aggregated to update the global
model from f t−1

G to f t
G.

In federated active learning (FAL), each client k main-
tains a limited labeled dataset DL

k = {(xi, yi)}
NL

k
i=1 for model

training and a sufficiently large unlabeled data pool DU
k =

{xi}
NU

k
i=1 for potential labeling, where NL

i and NU
k denote

the total number of instances in DL
k and DU

k , respectively.
Let the total number of FAL cycles be M . In each FAL cycle
m, a complete FL training is first conducted based on the cur-
rent labeled datasets

{
DL

1 |m, . . . ,DL
N |m

}
, after which each

client k queries the b most informative examples (denoted as
Xquery

k ) from DU
k |m according to a specified query strategy

A, and then sends them to the oracle for labeling, resulting in
DL

k |m+1 = DL
k |m∪Xquery

k and DU
k |m+1 = DU

k |m \Xquery
k .

Overview. The FAL framework is outlined in the left part
of Figure 2. In this paper, we aim to design a more effec-
tive AL query strategy tailored to the unique characteristics of
FAL. First, due to inherent data heterogeneity in FL, signifi-
cant discrepancies often arise between client and server mod-
els, particularly on rare local classes, which are often mean-
ingless and can undermine the effectiveness of existing AL
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query strategies. We attribute this to the bias in the learning-
based probability induced by varying prior data distributions
and propose a data-driven probability formulation to miti-
gate its effect. Second, we introduce two inconsistency-based
sampling criteria: 1) Inter-model inconsistency, which uses
an intermediate model to compute prediction discrepancies
between different model pairs, querying examples that can
reduce the prediction gap between local and global models;
2) Intra-model inconsistency, which measures the discrep-
ancy between the learning-based and data-driven probability
predictions given by the local model, querying examples that
can enhance local prediction reliability. Finally, we propose
a hybrid sampling criterion that first selects a set of high-
information examples with significant prediction inconsisten-
cies and then uses clustering to query a representative batch
based on these selections. This approach is referred to as
Inconsistency-based Federated Active Learning (IFAL), and
its overview is presented on the right side of Figure 2.

3.2 Data-Driven Probability
To mitigate the inductive bias in the learning-based predicted
probability introduced by varying training distributions, we
propose a data-driven (structural) probability, determined by
the reverse K-nearest neighbor (rKNN) structure of exam-
ples in the representation space. Specifically, in FAL’s query
phase, for client k, we first extract features from DL

k using a
specific model and combine them with their true labels to ob-
tain FL

k = {(zi, yi)}
NL

k
i=1, and for DU

k , we extract features and

generate pseudo-labels, resulting in FU
k = {(zi, ỹi)}

NU
k

i=1 and

Fk = FL
k ∪ FU

k = {(zi, yi)}
NL

k
i=1 ∪ {(zi, ỹi)}

NL
k +NU

k

i=NL
k +1

. For
simplicity, we omit the distinction between y and ỹ. Then,
we emit K arrows from each instance in Fk to its K nearest
neighbors in FU

k based on cosine distance. For any zi ∈ FU
k ,

its probability given class c can be approximated as:

p (zi|c) =
# of Arrows(zj∈Fk,c)

|Zc
k|

, (1)

where # of Arrows(zj∈Fk,c) denotes the total number of ar-
rows directed at zi from features with label y = c, and |Zc

k|
represents the total number of features with label y = c in Fk.
If zi is in a region where features with label y = c densely
exist, it is likely to receive more arrows, and vice versa.

Under Bayes’ theorem, we define zi’s data-driven (struc-
tural) class probability distribution as

p (c|zi) =
p (zi|c) p (c)∑C

v=1 p (zi|v) p (v)
. (2)

Here, the prior p (c) is the probability of observing class c
and can be approximately determined by the example count
for each class in Fk:

p (c) =
|Zc

k|∑C
v=1 |Zv

k |
. (3)

Based on Equations (1), (2), and (3), we can calculate the
structural probability of any xi ∈ DU

k in class c by:

p (c|xi) = p (c|zi) =
# of Arrows(zj∈Fk,c)∑C
v=1 # of Arrows(zj∈Fk,v)

. (4)

3.3 Inter-Model Inconsistency
As such, we can measure the inconsistency by evaluating the
discrepancy in the structural probabilities output by the local
model and the global model for the same example. In detail,
for client k, only fG is adopted to generate pseudo-labels for
all examples in DU

k . Then, both fθk and fG are employed
to extract features, and the corresponding structural proba-
bilities are derived based on Equation (4). For example, for
xi ∈ DU

k , the structural probability predicted by fG is de-
noted as pG (c|xi), while that predicted by fθk is pk (c|xi).
Here, pseudo-labels are sampled from a single model, ensur-
ing that the measurement of inconsistency focuses more on
the topological structural differences of the examples in the
representation spaces of different models, thus alleviating the
impact of inductive bias. Additionally, the pseudo-labels gen-
erated by the global model are generally more accurate and
better aligned with the true label distribution.

However, directly evaluating the prediction inconsistency
between the local and global models overlooks the detrimen-
tal impact of noisy examples1 on model predictions, espe-
cially in AL scenarios where model performance is often sub-
optimal. Motivated by two key observations: 1) useful knowl-
edge can be transferred from the teacher model to the student,
while noisy information is difficult to transfer; and 2) noise
often induces random outputs from the model, leading to sig-
nificant divergence in predictions across multiple models for
the same noisy example, we propose training an intermediate
model for each client by distilling knowledge from the global
model to facilitate example selection.

Let fθk−KD
denote the intermediate model, with its and

fG’s learning-based softmax probabilities in class c repre-
sented as Pk−KD (c|xi,T) and PG (c|xi,T), respectively,
where T controls the softness of the logits. Given xi ∈ DL

k ,
the knowledge distillation (KD) training loss L for fθk−KD

is
a linear combination of the cross-entropy (CE) loss LCE and
the Kullback-Leibler (KL) divergence loss LKL:

L = (1− λ)LCE + λLKL

= (1− λ)
(
−
∑C

v=1 yi log Pk−KD (v|xi, 1)
)

+ λ

(
T2∑C

v=1PG (v|xi,T) log
PG (v|xi,T)

Pk−KD (v|xi,T)

)
,

(5)

where λ is a balancing factor, yi is the one-hot form of yi,
and Pk−KD (v|xi, 1) can be simplified as Pk−KD (v|xi).

Then, we calculate the prediction divergences of fθk−KD

with respect to fθk and fG for any xi ∈ DU
k and denote as

Dk,k−KD (xi) and DG,k−KD (xi), respectively. Here, we
choose the Wasserstein distance (WD) instead of the com-
monly used KL or Jensen–Shannon (JS) divergence, as WD is
better at handling cases where two distributions barely over-
lap and is more robust to sparse distributions, noise, and ex-
treme values. Based on Dk,k−KD (xi) and DG,k−KD (xi),
we categorize the examples into four typical types:

• Small Dk,k−KD (xi) and small DG,k−KD (xi). The
three models provide stable and consistent predictions

1Noisy examples here also refer to highly challenging instances
that are not yet suitable for model learning at the current stage.
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for the same input, indicating the example is already
grasped by the models and does not require labeling.

• Small Dk,k−KD (xi) and large DG,k−KD (xi). A large
prediction divergence between fG and fθk−KD

suggests
that the input may be difficult or noisy, while a small
divergence between fθk and fθk−KD

indicates a lower
likelihood of noise. Thus, this example likely contains
valuable information and should be labeled.

• Large Dk,k−KD (xi) and small DG,k−KD (xi). A
small prediction divergence between fG and fθk−KD

in-
dicates that the knowledge contained in the input has
been transferred from fG to fθk−KD

. However, a large
divergence between fθk and fθk−KD

suggests a risk of
incorrect knowledge transfer. Therefore, labeling the ex-
ample is also necessary.

• Large Dk,k−KD (xi) and large DG,k−KD (xi). The
three models fail to provide consistent and stable pre-
dictions for the same input, suggesting that the example
may be noisy or too complex for the models to handle at
this stage. Hence, labeling is not recommended.

Based on the above analysis, we propose to calculate the
inter-model inconsistency score for any xi ∈ DU

k by:

Iinter (xi) = (Dk,k−KD (xi) +DG,k−KD (xi))

·max

{
Dk,k−KD (xi)

DG,k−KD (xi)
,
DG,k−KD (xi)

Dk,k−KD (xi)

}
.

(6)

This equation prioritizes querying examples with one high
and one low prediction divergence score, followed by those
with both high scores, and finally those with both low scores.

3.4 Intra-Model Inconsistency
The inter-model inconsistency criterion prioritizes querying
the most valuable examples for reducing the prediction gap
between the local and global models. To query the examples
most beneficial for enhancing the local model’s performance,
here we introduce an intra-model inconsistency criterion.

Since each instance has both a learning-based probability
and a data-driven structural probability, we directly define the
intra-model inconsistency score as the divergence between
the two different prediction probabilities. In detail, for any
xi ∈ DU

k in client k, given Pk (c|xi) and pk (c|xi) for any
class c, the intra-model inconsistency score is computed us-
ing the WD and denoted as Dk,k(xi) or Iintra(xi). Notably,
in this part, pk (c|xi) is obtained using the pseudo-labels
provided by the local model. Therefore, this inconsistency
quantifies the divergence between the learning-based decision
boundary and the “abstract” data-driven decision boundary.
The queried examples are more likely to be located in regions
where the predictions of the two boundaries are inconsistent.

3.5 Inconsistency- and Diversity-Based Sampling
Since Iinter(·) and Iintra(·) are non-negative for any input,
with higher values indicating greater prediction divergence,
we directly calculate the total inconsistency score of any xi ∈
DU

k in client k as

I(xi) = Iinter(xi) · Iintra(xi). (7)

Then, we can obtain the set of inconsistency scores for all un-
labeled examples on client k, denoted as IU

k = {(I(xi))}
NU

k
i=1 .

To reduce information redundancy and maintain diversity
in Xquery

k , we first select a set of examples with high total
inconsistency scores to form a candidate pool Cquery

k . While
we can simply sample the top η% of examples from DU

k in
descending order of IU

k , we use automatically Otsu thresh-
olding to decide the threshold τ , thus eliminating the need
for an additional hyper-parameter. The candidate pool Cquery

k
is then formed as

Cquery
k =

{
(xi, zi) | I(xi) > τ, 1 ≤ i ≤ NU

k

}
, (8)

where zi is the feature of xi extracted from fθk .
Finally, we perform k-means clustering on Cquery

k in the
representation space to obtain b centroids and select the ex-
ample closest to each centroid as the target to form Xquery

k .

4 Experiments
4.1 Implementation Details
Datasets. The experiments are conducted on three bench-
mark datasets: CIFAR-10 [Krizhevsky et al., 2009], CIFAR-
100 [Krizhevsky et al., 2009], and Tiny-Imagenet [Le and
Yang, 2015]. CIFAR-10 and CIFAR-100 each contain 60k
color images of size 32 × 32, divided into 50k training im-
ages and 10k test images, with 10 and 100 classes, respec-
tively. Tiny-Imagenet is a subset of Imagenet [Deng et al.,
2009], consisting of 200 classes, with 500 training images
and 50 validation images per class. For the main experiment
part, the training data is distributed across N = 10 clients
following a Dirichlet distribution with parameter α = 0.1 to
simulate a non-independent and identically distributed (non-
IID) data distribution. For the ablation study part, we vary α
to [0.5, 1], and adjust N to [5, 20]. Visualizations of the dif-
ferent data distributions are shown in the supplementary file.

Implementation Details. The main experiments are con-
ducted using the standard federated learning (FL) framework
FedAvg [McMahan et al., 2017], with FedProx [Li et al.,
2020] and SCAFFOLD [Karimireddy et al., 2020] addition-
ally examined in the ablation study. The total number of com-
munication rounds T is set to 100, with 5 local update epochs
per round. The federated active learning (FAL) process in-
volves 6 cycles for CIFAR-10/100 and 3 cycles for Tiny-
Imagenet. Initially, 5% of the examples are randomly selected
to form DL

k for each client k. In each subsequent AL round,
5% of the examples are queried. A 4-layer CNN is used as
the base model, trained with the SGD optimizer (momentum
0.9, weight decay 1e-5, batch size 64). The learning rate (lr)
is set to 0.01 and reduced by a factor of 10 after T > 75. The
hyper-parameter K in reverse K-nearest neighbor (rKNN) is
generally set to 250. The local distillation model is trained
similarly for 5 × 100 epochs, with early stopping applied to
reduce training time, and the lr is reduced after the (5×75)-th
epoch. For the parameters in Equation (5), λ is 0.9, and T is
4, which are common settings in knowledge distillation tasks.
We repeat all experiments three times on GeForce RTX 3090
GPUs and record the average results for three random seeds.

Baselines. We select nine AL query strategies for com-
parison, which can be further categorized into five groups:
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Figure 3: Test accuracy comparison on CIFAR-10 (left), CIFAR-100 (middle), and Tiny-ImageNet (right) with α = 0.1. Results are repeated
with three random seeds.
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Figure 4: Ablation study on CIFAR-100 with α = 0.1. Results are repeated with three random seeds.

(1) Random, which randomly selects examples from the un-
labeled data pool for labeling. (2) Traditional uncertainty-
based strategies, including entropy-based sampling (Entropy)
[Holub et al., 2008], margin-based sampling (Margin) [Bal-
can et al., 2007], and least confidence sampling (LeastCon-
fidence) [Li and Sethi, 2006]. (3) Traditional diversity-based
strategy, Coreset [Sener and Savarese, 2017]. (4) Traditional
hybrid strategies, including BADGE [Ash et al., 2019] and
GCNAL [Caramalau et al., 2021]. (5) Latest FAL strate-
gies, KAFAL [Cao et al., 2023] and LoGo [Kim et al., 2023].
For traditional strategies, we evaluate their performance sep-
arately using the local and global models, denoted by the pre-
fixes “L-” and “G-”, such as L-Entropy and G-Entropy.

4.2 Performance Comparison
Figure 3 displays the test accuracy of various methods on
CIFAR-10, CIFAR-100, and Tiny-Imagenet. The specific nu-
merical results are provided in the supplementary file.

As the number of AL cycles increases, all methods gener-
ally show improvement with the gradual addition of labeled
instances. However, our method achieves the highest final test
accuracy across all datasets, and in most AL cycles, the curve
of our method consistently lies above those of the other meth-
ods, demonstrating its superiority. Additionally, we make the
following observations. 1) As the difficulty of the dataset in-
creases, all methods, except ours, gradually degrade in per-
formance, with some even falling below random sampling.
2) For traditional strategies, the relative advantages of the lo-
cal and global models used for executing AL queries vary
across datasets. Generally, for uncertainty-based strategies
and the hybrid strategy BADGE, the local model performs
better on CIFAR-10, while the global model outperforms on
other datasets. For the diversity-based strategy Coreset, the
global model is superior on CIFAR-10, while the local model
has a slight advantage on other datasets. Only for the hybrid
strategy GCNAL, the global model consistently outperforms
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Figure 5: Test accuracy on CIFAR-100 with α = 1, N = 20, and the FedProx federated learning (FL) framework, respectively. Results are
repeated with three random seeds. The results with α = 0.5, N = 5, and SCAFFOLD FL frameworks are shown in the supplementary file.

the local model. 3) Although KAFAL and LoGo are specif-
ically designed for FAL, their performance does not show a
significant advantage over other methods. The notable per-
formance improvement of our method over theirs indirectly
validates the rationale behind our approach and the effective-
ness of its design.

4.3 Ablation Studies
Effect of each component. To validate the effectiveness of
each component in IFAL, we first conduct experiments with
three distinct inconsistency query strategies: inter-model in-
consistency, intra-model inconsistency, and their combina-
tion, as shown in Figure 4 (left). We then present the diver-
sity ablation experiment in Figure 4 (middle), where “Only
Diversity” means solely applying k-means clustering to the
unlabeled examples, and “Ours w/o Diversity” refers to di-
rectly selecting the batch of examples with the highest incon-
sistency scores. The results show that removing any of the
components leads to performance degradation, which corrob-
orate the soundness of our strategy design.

Effect of hyper-parameter K. Figure 4 (right) illustrates
the effect of the hyper-parameter K in rKNN on IFAL’s per-
formance, with K set to [200, 250, 300]. The results show
that varying the value of K within a certain range has little
impact on IFAL’s performance.

Robustness to varying federal settings. We further con-
duct experiments to assess the impact of different levels of
data heterogeneity (α), client size (N ), and FL frameworks
on IFAL’s performance. The results are shown in Figure 5,
where the left plot changes α to 1, the middle plot changes
N to 20, and the right plot changes the FL framework to Fed-

Prox. Additional results, where α is set to 0.5, N is set to 5,
and the FL framework is switched to SCAFFOLD, are pro-
vided in the supplementary file. The results demonstrate that
IFAL is independent of the specific FL framework adopted
and exhibits strong generalization across diverse training se-
tups, highlighting the versatility and robustness of IFAL in
real-world FL applications.

5 Conclusion
In this paper, we introduced IFAL, a novel inconsistency-
based federated active learning framework designed to ad-
dress the challenges posed by data heterogeneity and noisy
examples in query strategy design for federated learning.
By leveraging a data-driven probabilistic formulation, IFAL
aligns the biases between local and global models, enabling
a more accurate assessment of model prediction inconsis-
tencies by capturing the structural differences in the repre-
sentation space. IFAL incorporates two inconsistency crite-
ria: inter-model inconsistency and intra-model inconsistency.
The former introduces an intermediate model and utilizes the
randomness in predictions for noisy examples, effectively fil-
tering out noise and querying examples that are truly valu-
able for reducing the prediction divergence between local and
global models. The latter leverages the prediction divergence
between learning-based and data-driven probabilities to iden-
tify examples most useful for refining the local model’s de-
cision boundary. By combining these strategies with clus-
tering, IFAL forms a diverse and informative query set. Ex-
tensive experiments and analyses confirm the superiority of
IFAL over state-of-the-art methods across various settings.
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