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Abstract
Cancer survival prediction is an important direc-
tion in precision medicine, aiming to help clini-
cians tailor treatment regimens for patients. With
the rapid development of high-throughput sequenc-
ing and computational pathology technologies, sur-
vival prediction has shifted from clinical features
to joint modeling of multi-omics data and pathol-
ogy images. However, existing multimodal learn-
ing methods struggle to effectively learn pathology-
omics interactions due to the lack of proper align-
ment of multimodal data before fusion. In this pa-
per, we propose POMP, a pathology-omics multi-
modal pre-training framework jointly learned with
three training tasks for integrating pathological
images and omics data for cancer survival pre-
diction. To better perform cross-modal learn-
ing, we introduce a pathology-omics contrastive
learning method to align the pathology and omics
information. POMP leverages the principle of
pre-trained models and explores the benefit of
aligning multimodal information from the same
patient, achieving state-of-the-art results on six
cancer datasets from the Cancer Genome Atlas
(TCGA). We also show that our contrastive learn-
ing method allows us to exploit the cosine sim-
ilarity of pathological images and omics data as
the survival risk score, which can further boost
prediction performance compared with other com-
monly used methods. The code is available at
https://github.com/SuixueWang/POMP.

1 Introduction
Cancer is widely recognized as a major global public health
concern. For instance, there were 19.3 million newly diag-
nosed cases of cancer in 2020, and approximately 10.0 mil-
lion deaths attributed to cancer [Sung et al., 2021]. Can-
cer survival prediction is an important direction in precision
medicine, which aims to predict the time from cancer di-
agnosis to death events in cancer patients, thereby helping

∗Corresponding author: Qingchen Zhang.

clinicians to tailor optimal treatment regimens [Vale-Silva
and Rohr, 2021]. Traditional survival prediction methods
mainly relied on clinical features like symptoms, signs, tumor
biomarkers, and biochemical tests, as well as follow-up notes
recording recurrence, metastasis, and response to treatment
[Gensheimer et al., 2019; Chicco and Jurman, 2020]. Un-
fortunately, these methods are laborious and unfeasible when
applied in clinical practice [Wang et al., 2019]. With the swift
advancements in whole slide imaging and high-throughput
sequencing technologies, survival prediction has transitioned
from clinical notes to multi-omics data and pathology im-
ages, which are also known as whole slide images (WSIs)
[Herrmann et al., 2021; Srinidhi et al., 2021]. Computational
pathology methods can extract gold-standard information on
survival prediction from pathology images regarding tumor
cells and their microenvironment [Herrmann et al., 2021],
and integrate multi-omics data such as mRNA, miRNA, and
DNA methylation to enhance prediction from a molecular
perspective [Srinidhi et al., 2021].

In recent years, multimodal learning has made promis-
ing progress in survival prediction by capturing complemen-
tary information from various modal perspectives [Cui et al.,
2023]. However, most works simply concatenate represen-
tations extracted from multimodal data, and employ cross-
modal attention mechanism [Chen et al., 2021; Wang et al.,
2023; Li et al., 2022] or tensor fusion method [Chen et al.,
2020; Wang et al., 2021a] to learn potential interaction infor-
mation. Due to the lack of multimodal alignment, these meth-
ods prevent the models from fully utilizing the information
between different modalities. Specifically, the survival pre-
diction model is trained to learn pathology representation and
omics representation from their own spaces, which has two
main limitations: (i) it poses a challenge for the multimodal
fusion module to fuse different modalities from different se-
mantic spaces; (ii) this would lose the pathology-histology
alignment information that could potentially be used as a sig-
nal for survival prediction.

In this work, we break with traditional approaches to study
how to align multimodal information from the same patient
before fusion while serving as survival predictions. To do
so, we propose a pathology-omics multimodal pre-training
(POMP) framework for cancer survival prediction, leveraging
the principle of pre-trained models and exploring the benefit
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of aligning multimodal information from the same patient.
In practice, we first encode the pathology image and multi-
omics data independently with a pathology encoder and an
omics encoder, and then use a multimodal encoder to fuse
representations of image and omics data. In particular, we in-
troduce a pathology-omics contrastive learning method based
on cosine similarity to align multimodal information, mak-
ing the two modal data from the same patient closer in latent
space. To fully learn the potential interaction information be-
tween different modalities, POMP is jointly pre-trained with
three tasks based on the self-supervised learning paradigm.
During fine-tuning, we leverage the cosine similarity, cal-
culated in the same way as the pathology-omics contrastive
learning, as the survival risk score for cancer survival predic-
tion.

We conduct extensive experiments on six cancer datasets
from the Cancer Genome Atlas (TCGA) [Tomczak et al.,
2015]. The experimental results show that POMP consis-
tently outperforms existing state-of-the-art methods across
six datasets.

Our primary contributions are summarized as follows:

1. We propose a novel multimodal pre-training framework
jointly learned with three training tasks to integrate
pathological images and multi-omics data for cancer sur-
vival prediction.

2. We introduce a pathology-omics contrastive learning
method to align the multi-modalities before fusion. This
enables POMP to pull pathology images and omics data
from the same patients closer together in the latent
space, thereby better performing cross-modal learning.

3. POMP achieves the best results on six cancer datasets;
Extensive experiments show that leveraging the cosine
similarity, calculated in the same way as the pathology-
omics contrast learning, as the survival risk score
achieves better performance compared to other com-
monly used survival risk computational methods.

2 Related Work
2.1 Multimodal Pre-training
Multimodal pre-training aims to improve the performance of
downstream tasks by jointly pre-training the model with mul-
tiple pre-training objectives, garnering considerable attention
in AI research [Xu et al., 2023a; Pei et al., 2024]. A sub-
stantial amount of work has been presented across various
domains, for example, vision-language pre-training (VLP)
[Radford et al., 2021; Kim et al., 2021; Li et al., 2021; Yin et
al., 2024], vision-audio pre-training (VAP) [Deshmukh et al.,
2023; Xu et al., 2023b], audio-language pre-training (ALP)
[Elizalde et al., 2023; Wu et al., 2023b], audio-visual-text
Pre-training (AVTP) [Guzhov et al., 2022; Wu et al., 2022;
Xu et al., 2024]. Among them, VLP is a major research prob-
lem in this field. The pre-training tasks commonly used in
VLP include masked language modeling (MLM) [Li et al.,
2021], masked image modeling (MIM) [Kim et al., 2021],
image-text matching (ITM) [Li et al., 2021], image-text con-
trastive learning (ITC) [Bao et al., 2022; Cheng et al., 2021;
Jin et al., 2023], and word patch alignment (WPA) [Kim et

al., 2021]. While these multimodal pre-training methods have
achieved great success in natural images (with low pixels and
uniform size) and texts, it is not feasible to directly copy them
to the scenario of cancer survival prediction since the patho-
logical image has gigapixels, non-uniform sizes, and large
surfaces of worthless background regions.

2.2 Survival Prediction using Multi-modality
Recently, survival prediction using multi-modality has
achieved notable advancement, attributed to the success of
deep learning-based multimodal fusion technologies [Cui et
al., 2023; Wang et al., 2024]. For instance, DPDBN [Wang
et al., 2021b] and CAMR [Wu et al., 2023a] concatenate
representations learned from multi-modality, where the in-
put features of pathological images, such as sizes, shapes,
intensity distributions, textures, and brightness levels, are ex-
tracted through the hand-crafted CellProfiler tool [McQuin
et al., 2018]. DeepCorrSurv [Yao et al., 2017] maximizes
the correlation to learn the shared representation from two
modalities, while PathOmics [Ding et al., 2023] minimizes
the mean square error to strengthen the interaction between
different modalities. Pathomic Fusion [Chen et al., 2020] in-
troduces a tensor fusion method, Kronecker product, to fuse
multi-modality. MCAT, CMTA, and HC-MAE [Chen et al.,
2021; Zhou and Chen, 2023; Wang et al., 2023] employ a
cross-modal attention mechanism to integrate multi-modality.
However, most methods lack proper alignment of multimodal
data before fusion, which makes it difficult to effectively learn
pathology-omics interactions. We aim to overcome this by
leveraging self-supervised learning and contrastive learning,
where our framework POMP is jointly pre-trained with three
tasks to align multi-modal information.

3 Method
We propose POMP, a pathology-omics multimodal pre-
training framework for cancer survival prediction, as illus-
trated in Figure 1. Given a patient sample xi from the data set
x = {x1,x2, . . . ,xN}, containing a gigapixel pathological
image P i, multi-omics data Oi, survival status ei, and sur-
vival time ti, we aim to train POMP to predict survival risk
scores. This section first introduces data preprocessing, and
then details POMP’s key components, followed by its pre-
training and fine-tuning.

3.1 Data Preprocessing
Pathological Images. Building upon the previous works
[Zhou and Chen, 2023; Wang et al., 2023], we start by
employing CLAM [Lu et al., 2021] to automatically iden-
tify the high-value region and eliminate the background area
within the pathological image. In computational pathology,
gigapixel WSI can reach dimensions of 150,000 × 150,000
pixels at 20× magnification. A straightforward way is to crop
WSIs into 256 × 256 pixel patches, but this will generate a
substantial number of segments, greatly increasing the com-
putational load for self-attention in Pathology-Transformer.
We divide the high-value region into M non-overlapping sub-
regions with 4096×4096 pixels, which are then downsampled
by a factor of 16 to the image patches {ik}Mk=1 with 256×256
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Pathology-Omics
Contrastive Learning

Pathology-Omics
Match

Residual Module

Multi-Transformer

Omics-guided Cross-Attention
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Masked Omics
Modeling

miRNA [ Mask ] DNA methylation

mRNA

ViT ViT ViT...

...
Patch 1 Patch 2 Patch N

Pathology-Omics Match

Pathology-Omics
Contrastive Learning

Masked Omics Modeling

Total Loss
Sum

hard negatives

CLS - P

Pat-Transformer

Linear Linear Linear

Omics-Transformer

Omics
Encoder

Multimodal
Encoder

Pathology
Encoder

Pre-training Tasks

Figure 1: Overview of our framework POMP. It consists of a pathology encoder, an omics encoder, and a multimodal encoder. We pre-train
POMP with three tasks: pathology-omics contrastive learning, pathology-omics match, and masked omics modeling; during fine-tuning, the
cosine similarity of pathology representation and omics representation is taken as a survival risk score.

pixels. Although this might lead to the loss of fine-grained
information, Pathology-Transformer can efficiently capture
inter-patch relationships.

Multi-omics data. For multi-omics data including RNA-
Seq, miRNA, and DNA methylation, we first employ the K-
nearest neighbor interpolation method [Troyanskaya et al.,
2001] to fill in missing values. Then, we calculate the vari-
ance of each gene across all patient samples and remove the
genes with zero variance. To perform differential gene ex-
pression analysis, we use the pydeseq2 package [Muzellec et
al., 2023] to select the genes that exhibit significant changes.
Finally, for each omics type in each cancer dataset, we use
the random survival forest (RSF) [Pölsterl, 2020] to calculate
the feature importance of each gene across all patient samples
and retain the top 300 genes for survival analysis.

3.2 POMP Architecture

Given a patient sample containing pathological images and
multi-omics data, we encode them separately into vector rep-
resentations using two encoders, which are then fed into a
multimodal encoder to fuse them.

Pathology Encoder. Pathology encoder consists of M
Vision Transformer (ViT) [Dosovitskiy et al., 2020] and a
Pat-Transformer. We start by embedding the image patches
{ik}Mk=1 with 256 × 256 pixels by M ViTs with shared

weights, which can be written as:

Ipat = AvgPool
(
ViT

(
{ik}Mk=1

))
(1)

where AvgPool is average pooling used to generate the image
patch embeddings Ipat ∈ RM×d. The lower level patch size
in ViT is 16× 16.

Afterward, we randomly initialize a [CLS-P] token Icls ∈
R1×d, followed by concatenating Ipat and Icls, and then feed
them to the Pathology-Transformer for fully learning the cor-
relation between image patches within WSI, thereby obtain-
ing the final representation of WSI:

I ′
final = Pat-Transformer ([Ipat ⊕ Icls] +Epos) (2)

where Epos denotes the relative position embedding of im-
age patches. I ′

final consists of a sequence of vectors:
{hv

1, . . . ,h
v
M ,v}, where v is the final representation of the

[CLS-P] token. We define Ifinal = {hv
1, . . . ,h

v
M}, which

corresponds exclusively to image patch tokens.
Omics Encoder. Let Opre ∈ R3×300 denotes prepro-

cessed multi-omics data, including mRNA, miRNA, and
DNA methylation. We first feed the omics data to a shared
linear network to learn the intrinsic information of the omics.
Subsequently, the outputs of the shared linear network, to-
gether with a randomly initialized vector of [CLS-O] token,
are sent into a 2-layer Transformer to learn the interactive in-
formation between multi-omics data, thereby generating the
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final representations of multi-omics data:

Ofinal = Omics-Transformer ([Ocls ⊕ Linear (Opre)]) (3)

Where Ofinal consists of four vectors: {w,hw
1 ,h

w
2 ,h

w
3 },

which are the final representations of [CLS-O] token, mRNA,
miRNA, and DNA methylation.

Multimodal Encoder. We propose a multimodal encoder,
which is implemented by an omics-guided cross-attention
module, a 2-layer Transformer, and a residual module, to fuse
the representations of two modalities, thereby learning the fi-
nal multimodal representations:

Hcross = CrossAttn (WqOfinal,WkIfinal,WvIfinal)

= Softmax

(
WqOfinalI

T
finalW

T
k√

d

)
WvIfinal

(4)

H = LN (Multi-Transformer (Hcross) +Ofinal) (5)

where Wq,Wk,Wv ∈ Rd×d denote learnable weights mul-
tiplied by the queries Ofinal, keys Ifinal, and values Ifinal,
respectively. LN represents layer normalization. H are the
final multimodal representations. Notably, there are two spe-
cial representations in H corresponding to the [CLS-O] to-
ken and masked omics token, which are denoted as hcls and
hmask.

3.3 Pre-training Tasks
We pre-train POMP using three tasks: pathology-omics con-
trastive learning (POC), pathology-omics match (POM), and
masked omics modeling (MOM).

Pathology-Omics Contrastive Learning. Given a train-
ing batch of N pathology-omics pairs, there are N positive
and N2 − N negative pathology-omics pairs. Here, we in-
troduce a pathology-omics contrastive learning method that
aims to learn effective representation by pulling pathology-
omics pairs from the same patients closer and pushing nega-
tive pairs farther away. Specifically, we use the representation
of [CLS-P], v, and the representation of [CLS-O], w, as the
aggregated representation of the pathology image and multi-
omics data, respectively. Then, the pathology-to-omics and
omics-to-pathology similarities are computed between v and
w within a training batch. Formally, the softmax-normalized
pathology-to-omics and omics-to-pathology similarities can
be written as:

sp2oi =
exp

(
v⊤
i wi/σ

)∑N
j=1 exp

(
v⊤
i wj/σ

) (6)

so2pi =
exp

(
w⊤

i vi/σ
)∑N

j=1 exp
(
w⊤

i vj/σ
) (7)

where σ is the temperature parameter to scale the similarities.
Let yp2o and yo2p represent the ground-truth one-hot similar-
ity, where the positive pair has a probability of 1 and the neg-
ative pair has a probability of 0. The pathology-omics con-
trastive loss is calculated using cross-entropy (CE) between
s and y:

Lpoc =
1

2
E(p,o)∼D

[
CE
(
yp2o, sp2o)+CE

(
yo2p, so2p)] (8)

Pathology-Omics Matching. Inspired by ALBEF [Li
et al., 2021], we sample two hard negative pathology-
omics pairs based on the max softmax-normalized pathology-
to-omics and omics-to-pathology similarities for each
pathology-omics pair in the training batch. As a result,
we obtain N positive pairs and 2N hard negative samples.
Pathology-omics matching aims to predict whether a pair of
pathology and omics is positive or negative. Specifically, we
use the final multimodal representation of the [CLS-O] token,
hcls, as the integrated representation of the pathology-omics
pair, and feed it into a linear classifier g with cross-entropy
loss for binary classification. Let ypom denote the ground-
truth label, the POM loss is written as:

Lpom = E(p,o)∼DCE (g (hcls) ,y
pom) (9)

Masked Omics Modeling. We randomly mask one of
three omics data and replace it with a zero vector. Masked
omics modeling aims to reconstruct omics from a corrupted
version based on other unmasked omics and pathology cues.
Specifically, we feed the final representation of masked
omics, hmask, into a classifier f over the dimension of omics
data for predicting the probability of masked omics token
f (hmask). Let ymask denote the ground-truth masked omics
data, the MOM loss is written as:

Lmom = E(p,o)∼DCE
(
f (hmask) ,y

mask
)

(10)

3.4 Fine-tuning POMP on Survival Prediction
After pre-training POMP, we fine-tune it for the downstream
survival prediction. Traditionally, the Cox proportional haz-
ards model is expressed as:

h(t|X) = h0(t)exp(x1β1 + · · ·+ xpβp) (11)

where t represents the survival time, h0(t) is the baseline
hazard, h(t|X) is determined by a linear combination of
covariates (x1, ..., xp) and their corresponding coefficients
(β1, ..., βp).

In this work, we employ a neural network to fit the Cox
proportional hazards function, where we consider the final
pathology representation v as covariates and the final omics
representation w as coefficients. We also standardize the lin-
ear relationship between covariates and coefficients, making
the model less sensitive to the scale of the variables. Formally
the Cox proportional hazards function can be written as:

h(t|v,w) = h0(t)exp(
v1w1 + · · ·+ vpwp

∥v∥ · ∥w∥
) (12)

= h0(t)exp(c (v,w)) (13)

Parameter estimates in the Cox proportional hazards model
are often obtained by maximizing the partial likelihood:

lsurv =
∏

i:ei=1

exp(c (vi,wi))∑
j:tj>ti

exp(c (vj ,wj))
(14)

Finally, the survival loss function is set to be the negative log
partial likelihood:

L = − 1

ne

∑
i:ei=1

c (vi,wi)− log
∑

j:tj>ti

exp(c (vj ,wj))


(15)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Unlike vanilla Cox models that only deal with linear con-
ditions in the hazard function, our model can better fit multi-
modal data and learn complex interactions. Particularly, since
h(T |v,w) is an increasing function of c (v,w), we can take
the cosine similarity c (v,w) as the survival risk score when
leveraging the concordance index as the evaluation metric.

4 Experiments and Results Analysis
We implement our framework POMP using PyTorch and train
it on 3 NVIDIA A100 GPUs. The Pathology-Transformer,
Omics-Transformer, Multimodal-Transformer, and ViT in
POMP all adopt the vanilla Transformer, each module has a
2-layer Transformer block with 384 hidden dimensions and 6
attention heads. POMP is trained for 500 epochs during pre-
training and 80 epochs during fine-tuning. For both training
phases, we use Adam optimization with a weight decay of 1e-
2 and a learning rate of 5e-4. Since the pathological images
have different sizes and are cropped into various sub-region
numbers, we use a batch size of 1 with 50 forward accumula-
tion steps (i.e., the actual batch size is equivalent to 50), then
calculate the loss function and update the weights once.

4.1 Datasets and Evaluation Metrics
Datasets. We perform experiments using six cancer datasets
obtained from the Cancer Genome Atlas (TCGA) data por-
tal. These datasets cover various cancer types, namely colon
adenocarcinoma (COAD), hepatocellular carcinoma (LIHC),
stomach adenocarcinoma (STAD), breast invasive carcinoma
(BRCA), lung adenocarcinoma (LUAD), and lower grade
glioma (LGG). Each patient sample consists of a complete
set of data types, including pathological images, as well as
multi-omics data composed of RNA-Seq, miRNA, and DNA
methylation. To better train the multimodal model, the patient
samples missing any data type are removed. Additionally, we
exclude patients with a survival time of fewer than 30 days
or lacking follow-up records. As a result, the sample counts
for COAD, LIHC, STAD, BRCA, LUAD, and LGG are 250,
323, 298, 724, 374, and 451, respectively. We assess all inves-
tigated methods using the same 5-fold cross-validation splits
on each cancer dataset.

Evaluation Metrics. Following previous works [Yao et
al., 2017; Wu et al., 2023a; Chen et al., 2021], we leverage
the concordance index (C-index) as the evaluation metric of
survival prediction. The C-index is commonly used to calcu-
late the concordance pairs between actual survival times and
predicted survival risk scores, which is computed as follows:

c =
1

n

∑
i∈{1...N |ei=1}

∑
tj>ti

I [c (vi,wi) > c (vj ,wj)] (16)

where I [·] stands for the indicator function, n signifies the
number of comparable pairs in which the survival status e
of patients is dead, and t denotes the actual survival time.
A higher C-index suggests superior predictive performance,
whereas a C-index of 0.5 denotes that the model’s predictions
are similar to random chance outcomes.

4.2 Comparison With State-of-the-art Methods
We compare POMP with several state-of-the-art integration
methods, as shown in Table 1. The first observation is that our

proposed framework POMP consistently outperforms all ex-
isting methods across all cancer datasets, both with and with-
out multi-modal pre-training. Specifically, POMP achieves
C-index values of 71.5% on COAD, 75.5% on LIHC, 65.1%
on STAD, 70.0% on BRCA, 69.5% on LUAD, and 85.6% on
LGG, outperforming the previous best-performing methods
by 1.2%, 1.8%, 2.0%, 0.5%, 0.4%, and 0.5%, respectively.

4.3 Survival Analysis
To further evaluate the effectiveness of POMP for survival
prediction, we plot the Kaplan-Meier curves and calculate the
log-rank test p-values across all six cancer datasets, which
are shown in Figure 2. We utilize the median of the predic-
tive survival risk scores as a risk indicator to stratify patients
into high-risk (blue) and low-risk (orange) groups, and then
perform Kaplan-Meier analysis to visualize the survival prob-
ability over time for different groups. Additionally, the log-
rank test p-value is used to measure the statistical significance
and compare the survival distributions between the high-risk
group (blue) and the low-risk group (orange). In Figure 2, it
can be observed that the p-values for all datasets are below
the commonly used significance level threshold of 0.05. This
suggests a statistically significant difference between the sur-
vival curves of all compared groups.

4.4 Ablation Study
To examine the contribution of each component of POMP, we
conduct a set of ablation studies, including input modality,
survival risk computing method, and pre-training tasks.

Unimodal and Multimodal. After pre-training, we add
a linear layer to the pathology encoder and omics encoder,
respectively, computing survival risk under single-modality.
The survival prediction results of unimodal and multimodal
are shown in Figure 3a. Multimodal modeling surpasses any
single modality modeling in all six cancer datasets, demon-
strating the effectiveness of our proposed framework in fus-
ing multi-modality. Interestingly, we observe that the per-
formance of the omics modality is better than the pathology
modality in five of six datasets, indicating that omics can pro-
vide more information than pathology in our framework.

Survival Risk. To investigate the impacts of various sur-
vival risk computing methods in our framework, we conduct
experiments on three kinds of survival risk computing meth-
ods, as illustrated in Figure 4. In this work we propose to
compute the cosine similarity between two modalities as a
risk score. Here we compare our method with two other
methods, including (i) computing the fusion risk by feeding
the final multimodal representation into a Cox layer imple-
mented by a fully connected network; and (ii) computing the
joint risk by averaging the scores of two modalities. Figure
3b shows the experimental results of the three survival risk
computing methods. The cosine similarity method achieves
superior survival prediction compared to other methods, in-
dicating that the survival risk calculation method consistent
with the pathology-omics contrastive learning in pre-training
is more suitable for our proposed POMP framework.

Pre-training Tasks. We analyze the performance under in-
dividual pre-training tasks and different combinations to eval-
uate their impact on survival prediction performance. The
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Methods MP COAD LIHC STAD BRCA LUAD LGG
MCAT [Chen et al., 2021] × 0.691 ± 0.132 0.711 ± 0.029 0.622 ± 0.034 0.663 ± 0.041 0.664 ± 0.026 0.844 ± 0.032
GPDBN [Wang et al., 2021b] × 0.593 ± 0.081 0.643 ± 0.019 0.587 ± 0.025 0.636 ± 0.047 0.615 ± 0.053 0.844 ± 0.025
CAMR [Wu et al., 2023a] × 0.606 ± 0.074 0.691 ± 0.052 0.587 ± 0.029 0.656 ± 0.072 0.647 ± 0.059 0.803 ± 0.044
CMTA [Zhou and Chen, 2023] × 0.641 ± 0.055 0.708 ± 0.034 0.631 ± 0.039 0.680 ± 0.063 0.670 ± 0.046 0.840 ± 0.038
HC-MAE [Wang et al., 2023] × 0.703 ± 0.083 0.737 ± 0.031 0.623 ± 0.045 0.695 ± 0.026 0.691 ± 0.044 0.851 ± 0.033
DeepCorrSurv [Yao et al., 2017] ✓ 0.549 ± 0.026 0.700 ± 0.048 0.609 ± 0.049 0.659 ± 0.018 0.662 ± 0.032 0.828 ± 0.034
PathOmics [Ding et al., 2023] ✓ 0.629 ± 0.042 0.690 ± 0.013 0.622 ± 0.034 0.694 ± 0.074 0.662 ± 0.027 0.848 ± 0.032
POMP (Ours) ✓ 0.715 ± 0.090 0.755 ± 0.047 0.651 ± 0.035 0.700 ± 0.030 0.695 ± 0.053 0.856 ± 0.046

Table 1: Performance comparison of POMP and state-of-the-art methods on six cancer datasets. MP indicates whether it is a multi-modal
pre-training method.

Figure 2: Survival analysis using Kaplan-Meier curves.

(a) Unimodal vs. multimodal (b) Risk computing methods

Figure 3: Ablation studies of modality and survival risk.

experimental results are presented in Table 2, where POMP-
B0 denotes that POMP has not pre-training, +L∗ represents
the specific task is used to pre-train POMP. When looking at
the individual pre-training tasks, we find that POMP-B1 with
POC task obtains the superior C-index values on four out of
six cancer datasets and achieves the best result in terms of

macro average, demonstrating that the POC task contributes
more than the POM and MOM tasks. Additionally, POMP-
B3 with the MOM task obtains the worst performance among
all individual pre-training tasks, even worse than POMP-B0
trained from scratch. However, in the scenario where two pre-
training tasks are combined including POMP-B4, POMP-B5,
and POMP-B6, we observe that POMP-B5 (which merges
POC and MOM) achieves superior performance in terms of
the macro average. Specifically, POMP-B5 surpasses POMP-
B4 and POMP-B6 in four out of six datasets, suggesting
that the MOM task together with the POM task can facilitate
POMP learning to better semantic representation and fusion
capabilities. Notably, the POMP (Ltotal) framework, which
joints all three pre-training tasks, achieves the best C-index
value in terms of the macro average and outperforms other
settings on five out of six datasets, demonstrating the effec-
tiveness of our proposed POMP framework to joint three var-
ious pre-training tasks.

Pre-training Loss. To evaluate the impact of pre-training
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Figure 4: Survival risk computing methods.

Methods COAD LIHC STAD BRCA LUAD LGG All (Macro-avg)

POMP-B0 (From scratch) 0.612 ± 0.030 0.706 ± 0.026 0.610 ± 0.041 0.648 ± 0.051 0.656 ± 0.022 0.847 ± 0.043 0.680 ± 0.036

POMP-B1 (+Lpoc) 0.638 ± 0.102 0.724 ± 0.033 0.583 ± 0.068 0.692 ± 0.048 0.692 ± 0.033 0.833 ± 0.059 0.694 ± 0.057
POMP-B2 (+Lpom) 0.595 ± 0.076 0.738 ± 0.042 0.617 ± 0.025 0.670 ± 0.056 0.676 ± 0.032 0.823 ± 0.032 0.687 ± 0.044
POMP-B3 (+Lmom) 0.618 ± 0.075 0.654 ± 0.039 0.594 ± 0.063 0.594 ± 0.055 0.625 ± 0.027 0.816 ± 0.041 0.650 ± 0.057

POMP-B4 (+Lpoc + Lpom) 0.644 ± 0.049 0.714 ± 0.047 0.594 ± 0.005 0.679 ± 0.032 0.668 ± 0.023 0.815 ± 0.055 0.686 ± 0.035
POMP-B5 (+Lpoc + Lmom) 0.660 ± 0.048 0.714 ± 0.016 0.596 ± 0.041 0.706 ± 0.023 0.679 ± 0.038 0.835 ± 0.062 0.698 ± 0.038
POMP-B6 (+Lpom + Lmom) 0.540 ± 0.074 0.715 ± 0.076 0.574 ± 0.030 0.644 ± 0.067 0.672 ± 0.040 0.836 ± 0.033 0.663 ± 0.053

POMP (Ltotal) 0.715 ± 0.090 0.755 ± 0.047 0.651 ± 0.035 0.700 ± 0.030 0.695 ± 0.053 0.856 ± 0.046 0.729 ± 0.050

Table 2: Ablation experiments of different pre-training tasks.

tasks on the convergence of POMP training, we analyze
the pre-training loss curves corresponding to different pre-
training task settings. As shown in Figure 5a, we can see that
(i) the total loss and POM loss decrease smoothly as the num-
ber of training papers increases; (ii) the POC loss decreases
rapidly in the first 20 epochs, and then there are several fluctu-
ations, but the fluctuations disappear after 300 epochs; (iii) it
is interesting to see that MOM loss does not converge, which
is consistent with POMP-B3 (Table 2) obtaining the worst
performance in three individual pre-training tasks. We further
verify whether the MOM loss will converge when the MOM
task is combined with other tasks, as shown in Figure 5b.
The MOM losses in POMP-B5 (which combines POC and
MOM tasks), POMP-B6 (which combines POM and MOM
tasks), and POMP (which combines three tasks) all decrease
and converge normally, suggesting that the MOM task com-
bined with other tasks contributes to the training of POMP.

5 Conclusion
We proposed a novel pathology-omics multimodal pre-
training (POMP) framework for cancer survival prediction,
by leveraging the principle of pre-trained models and ex-
ploring the benefit of aligning multimodal information of the
same patient. POMP is jointly pre-trained on three tasks
based on self-supervised learning and contrastive learning to
align pathology image and omics data before fusion, allowing
us to use their similarity as survival predictions. Experimental
results show that POMP outperforms existing state-of-the-art

(a) Pre-training loss under dif-
ferent tasks

(b) MOM loss under different
tasks

Figure 5: Loss curves for different pre-training tasks.

methods on six cancer datasets.
While POMP shows promising results, there is still sub-

stantial room for improvement.
1. We will extend POMP to integrate other types of omics

data associated with cancer survival, such as somatic
mutations, copy number alterations, and clinical data.

2. We intend to pre-train the model based on a pancreatic
cancer dataset to learn more prior knowledge about the
potential relationship between multi-modalities.

3. We are going to explore alternative strategies for select-
ing the important genes in original multi-omics data,
which will provide more valuable information in the
omics modality.
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erwińska, and Maciej Wiznerowicz. Review the cancer
genome atlas (tcga): an immeasurable source of knowl-
edge. Contemporary Oncology/Współczesna Onkologia,
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