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Abstract
Skills are effective temporal abstractions estab-
lished for sequential decision making, which en-
able efficient hierarchical learning for long-horizon
tasks and facilitate multi-task learning through their
transferability. Despite extensive research, re-
search gaps remain in multi-agent scenarios, par-
ticularly for automatically extracting subgroup co-
ordination patterns in a multi-agent task. In this
case, we propose two novel auto-encoder schemes:
VO-MASD-3D and VO-MASD-Hier, to simulta-
neously capture subgroup- and temporal-level ab-
stractions and form multi-agent skills, which firstly
solves the aforementioned challenge. An essen-
tial algorithm component of these schemes is a
dynamic grouping function that can automatically
detect latent subgroups based on agent interac-
tions in a task. Further, our method can be ap-
plied to offline multi-task data, and the discov-
ered subgroup skills can be transferred across rel-
evant tasks without retraining. Empirical eval-
uations on StarCraft tasks indicate that our ap-
proach significantly outperforms existing hierar-
chical multi-agent reinforcement learning (MARL)
methods. Moreover, skills discovered using our
method can effectively reduce the learning diffi-
culty in MARL scenarios with delayed and sparse
reward signals. The codebase is available at:
https://github.com/LucasCJYSDL/VOMASD.

1 Introduction
Skill discovery aims at extracting useful temporal abstrac-
tions from decision-making sequences. The downstream pol-
icy learning can be much more efficient by simply compos-
ing the discovered skills temporally into complex maneuvers.
Also, skills can potentially be transferred among tasks to fa-
cilitate multi-task learning. Despite considerable research
on single-agent skill discovery [Eysenbach et al., 2019;
Chen et al., 2023a], skill discovery in multi-agent reinforce-
ment learning (MARL) remains under-explored. A straight-
forward approach is to discover single-agent skills for each
agent independently and then learning a multi-agent meta
policy to coordinate their use, as in [Yang et al., 2020;

Sachdeva et al., 2021]. However, multi-agent coordination
can not be abstracted in such individual skills. On the other
hand, there are a limited number of works [Chen et al., 2022;
Yang et al., 2023] on discovering skills for the entire team of
agents. However, in multi-agent tasks, coordination patterns
can emerge within subgroups of varying scales (from 1 to n),
and team skills (i.e., n-agent skills) can be inflexible to use.

Notably, complex multi-agent tasks can often be decom-
posed as a series of subtasks, each of which requires partic-
ipation of a subgroup of agents for a certain duration. The
policies for these subgroups can be abstracted as multi-agent
skills. While agents can explore various forms of collabo-
ration in an online setting (by interacting with the environ-
ment), offline multi-agent skill discovery in contrast must
infer latent coordination patterns from agent interactions in
the offline data, with the subgroup size arbitrarily varying
from 1 to n. This gives rise to a combinatorial problem of
dynamic subgroup division and forming temporal abstrac-
tions within each subgroup for skill discovery, which is a
significant new challenge. To the best of our knowledge,
this is the first work to fully automate the extraction of
collaborative patterns among agents as subgroup skills
from offline data. We also note that the problem is dif-
ferent from (online) role-based MARL [Xu et al., 2023;
Zhou et al., 2024]. They instead focus on partitioning agents
into subdivisions that consist of agents with similar responsi-
bilities (i.e., roles), sharing the same policy and thus homo-
geneous behaviors. Our goal is to learn multi-agent skills – a
collective set of single-agent skills taken by a subgroup where
agents could have distinct yet coordinated behaviors.

To be specific, we provide effective auto-encoder frame-
works for extracting embeddings of subgroup coordination
patterns from offline data as a codebook, where each code
corresponds to a multi-agent skill and provides abstractions in
both subgroup- and temporal-level. We propose two scheme
designs for this purpose: VO-MASD-3D and VO-MASD-
Hier. In VO-MASD-3D, three-dimensional codebooks are
adopted, where each multi-agent skill code consists of several
single-agent skill codes such that it can be used to represent
subgroup behaviors. In contrast, VO-MASD-Hier employs a
two-level codebook: the bottom codes encode individual be-
haviors, while each top code is aggregated from a set of bot-
tom codes to encode subgroup behaviors. Further, to enable
automatic grouping while forming temporal abstractions, we
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co-train a grouping function with the proposed auto-encoder
schemes. Using this function, agents can be dynamically
grouped based on the environment state, and each subgroup
can then be assigned a multi-agent skill of the correspond-
ing size. Importantly, our algorithm is designed to work with
multi-task data, such that the discovered skills can be utilized
in multiple relevant tasks (without retraining). Empirical re-
sults on challenging StarCraft tasks [Samvelyan et al., 2019;
Ellis et al., 2024] demonstrate the superiority of the discov-
ered multi-agent skills using our algorithm even in previously
unseen tasks, and show the great advantages brought by the
use of skills in long-horizon multi-agent tasks characterized
by sparse reward signals.

2 Background
Dec-POMDP. This work focuses on a fully coopera-
tive multi-agent setting with only partial observation for
each agent, which can be modeled as a decentralized par-
tially observable markov decision process (Dec-POMDP)
[Oliehoek et al., 2016] and described with a tuple G =
⟨n, I, S,O, F,A, µ, P,R, γ⟩. At a time step, each agent i ∈
I = {1, · · · , n} would obtain a local observation oi ∈ O
from the observation function F (s, i) : S × I → O, where
s is the real state of the environment, and determine its
action ai ∈ A. This would lead to a state transition in
the environment according to the function P (s′ | s, a⃗) :
S × An × S → [0, 1] and all agents would receive a shared
team reward r = R(s, a⃗) : S × An → R. To mitigate the
issue of partial observability, each agent i holds an action-
observation history τ it−1 = (o1, a1, · · · , ot−1, at−1) and de-
cides on its action ait based on a policy πi(ait | oit, τ it−1). The
goal of MARL in a Dec-POMDP can be formally defined as
maxπ⃗ Eµ,π⃗,P,R [

∑∞
t=0 γ

trt], where π⃗ = (π1, · · · , πn) and
µ(s0) : S → [0, 1] denotes the distribution of the initial state.
CTDE. The paradigm of centralized training with decen-
tralized execution (CTDE) [Oliehoek et al., 2008] is proposed
for solving Dec-POMDP and has gained substantial atten-
tion. In this paradigm, agents learn their policies with ac-
cess to global information (e.g., the state s) during central-
ized training and only rely on their local action-observation
histories for decentralized execution. Notably, the discov-
ered skills with our algorithm can be easily integrated into
the CTDE paradigm. We select MAPPO [Yu et al., 2022b]
as the base CTDE MARL algorithm throughout this work,
as it has shown superior performance across various MARL
benchmarks. It learns a decentralized actor π(ait | oit, τ it−1),
which is used for each agent i ∈ I to determine its action ait
based on its individual action-observation history (oit, τ

i
t−1),

and a centralized critic V (st). Viewing the n agents as a
whole, the critic function is trained as in a single-agent RL
algorithm – PPO [Schulman et al., 2017], while the actor (of
each agent) is trained to maximize the advantage function de-
fined with the team reward and centralized critic.
Skill & Task Decomposition. In single-agent scenarios,
skills are used as temporal abstractions of an agent’s behav-
iors. This is inspired by the fact that complex tasks can usu-
ally be decomposed as a sequence of subtasks and each sub-
task can be handled with a corresponding subpolicy, i.e., a

skill. With skills, an agent learns a hierarchical policy, where
the low-level part πl(a | s, z) is the skill policy and the high-
level part πh(z | s) determines the skill selection. Each skill
z ∈ Ωz , after being selected, will be executed for H time
steps – a predefined subtask duration. However, in multi-
agent scenarios, task decomposition occurs not just at the
temporal level but also at the agent level, since the overall
multi-agent task can be viewed as several subgroup tasks ex-
ecuted in parallel. Here, we define such a task decomposition:
Definition 1. Given a cooperative multi-agent task
⟨n, I, S,O, F,A, µ, P,R, γ⟩, at a time step, it can be
decomposed into a set of m subtasks, each of which is
solved by a subgroup of agents for H time steps and can be
represented as a tuple ⟨nj , Ij , S,O, F,A, µ, P,Rj , γ⟩. Here,∑m
j=1 nj = n, ∪jIj = I , and Ij ∩ Ik = ∅ (∀ j ̸= k).

Certain subtasks may frequently occur, such as passing and
cutting cooperation among two or three players in a football
match, and their subpolicies, showing coordination patterns,
can be extracted as multi-agent skills and transferred across
similar tasks for reuse. In this work, we propose an algorithm
for discovering such multi-agent skills Z ∈ ΩZ from multi-
agent interaction data.
Related Works. In Appendix A of an extended version
of this paper1, we provide a thorough review of research
on applying skills in MARL. There are three main cate-
gories: MARL with single-agent skills [Lee et al., 2020;
Yang et al., 2020; Chen et al., 2023a; Chen et al., 2023c],
role-based MARL [Yang et al., 2022; Xu et al., 2023], and
team skill discovery [Chen et al., 2022; Chen et al., 2023b].
As a summary, research on multi-agent skill discovery is still
at an early stage of development, especially for the offline
setting. Even without prelearned skills, when dealing with a
complex multi-agent task, the agents would implicitly learn
to decompose the overall task into several subtasks, assign a
subgroup for each subtask, and develop a joint policy (i.e.,
multi-agent skill) within the subgroup to handle the corre-
sponding subtask. Replacing primitive actions with single-
agent skills or role policies could make such a learning pro-
cess more efficient, as agents can assemble these higher-level
abstractions to obtain the required subgroup policies more
easily. As the first offline multi-agent skill discovery algo-
rithm, our work takes one step further by directly identifying
subgroups, which could change throughout a decision hori-
zon, and extracting their coordination patterns as multi-agent
skills. With these joint skills, the MARL process could be
greatly simplified, since agents only need to select correct
multi-agent skills without considering grouping with others
or forming subgroup policies. Thus, multi-agent skills repre-
sent a more efficient form of knowledge discovery.

3 Proposed Approach
Variational Offline Multi-agent Skill Discovery (VO-MASD)
aims to extract a finite set of multi-agent skills from given
offline trajectories. Proposed for Computer Vision, VQ-VAE
[van den Oord et al., 2017; Chen et al., 2024] provides a fun-
damental manner to learn discrete representations for com-

1https://arxiv.org/abs/2405.16386
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Figure 1: Multi-agent skill discovery based on a VQ-VAE with 3D codebooks.

plex, high-dimensional data. Besides the encoder and de-
coder as used in VAEs [Kingma and Welling, 2014], a code-
book containing a finite set of codes, each of which is a latent
representation of the data, is learned. In this case, VQ-VAE
is a natural choice for skill discovery, with each code work-
ing as a skill embedding Z. Each Z would correspond to
a skill policy πl(⃗a | τ⃗ , Z) that leads to continuous multi-
agent behaviors. In this section, we present two schemes
of VO-MASD based on VQ-VAE by adopting novel code-
book designs and involving an automatic grouping module.
The challenge is to extract temporal-level abstractions (i.e.,
useful control sequences) and agent-level abstractions (i.e.,
multi-agent coordination) at the same time, without using
domain knowledge or task-specific reward signals. In this
way, VO-MASD can be applied to a mixture of multi-task
data and the learned skills are generalizable to relevant tasks.

3.1 VO-MASD Based on 3D Codebooks
VQ-VAE typically adopts a 2D codebook [e1, · · · , ek] ∈
Rk×d, where ei ∈ R1×d is a latent representation. How-
ever, in our case, there are three levels of abstractions: prim-
itive actions → single-agent skills → multi-agent skills. As
part of our novelty, we propose to use 3D codebooks within
Rk×m×d to represent a set of (i.e., k) m-agent skills. Each
code ei = [ei,1, · · · , ei,m] ∈ Rm×d represents a multi-agent
skill composed of m single-agent skills. Note that m ranges
from 1 to n (i.e., the size of the team).

A straightforward approach to utilize such codebook de-
sign for skill discovery is repeatedly applying a VQ-VAE
with an m-agent codebook to m-agent skill discovery, for
m = 1, · · · , n. As some variational methods for single-agent
skill discovery [Campos et al., 2020; Ajay et al., 2021], the
objective for learning m-agent skills could be minimizing the
reconstruction error of m-agent trajectory segments. Ideally,
after training, each code can represent a coordination pattern
among m agents and the code-conditioned decoder can be
used as an m-agent skill policy. However, if there are no co-
ordination involving m agents in the offline data, the effort to
discover m-agent skills would be wasted. Also, in this way,
the learning processes for skills involving different numbers
of agents are independent and cannot benefit from each other.

In this case, we introduce a grouping function hψ that dy-
namically groups agents throughout an episode to identify
existing coordination patterns in the offline data and unify
the training of skills with different numbers of agents. The
skill discovery process is illustrated as Figure 1. As shown
in (a), at time step t, for each agent i, we encode its follow-

ing H time steps, i.e., τ i = [oit, a
i
t, · · · , oit+H−1, a

i
t+H−1],

into a skill embeddings zie using the encoder fθ. Also, each
agent i selects its group based on the global state st and group
choices of previous agents g1:i−1 using a grouping function
hψ . There can be at most n groups, when all agents choose
to use individual skills. Notably, both hψ and fθ are shared
by all agents. Subsequently, in (b), the skill embeddings z1:ne
from the encoder are first clustered based on the grouping re-
sult g1:n: if m agents choose the same group (indicated by the
one-hot output gi), they aim to form an m-agent coordination
skill and their respective embeddings will be concatenated in
the sequence of their agent indices, resulting in an m × d
joint embedding zj1:me . Then, as in VQ-VAE, the code that
is the closest to zj1:me in the m-agent codebook (i.e., zj1:mq ) is
queried to work as the skill code. Finally, in (c), a decoder πϕ
maps the skill code back to an m-agent trajectory segment,
i.e., τ̂ j1:m . The training objective for subgroup j1:m is:

L3D(τ j1:m) = −
H−1∑
l=0

m∑
i=1

log πϕ(a
ji
t+l | o

ji
t+l, z

ji
q )

+

m∑
i=1

[
∥sg(zjie )− eji∥22 + β∥zjie − sg(eji)∥22

] (1)

As shown in Figure 1, zjie = fθ(τ
ji), ej1:m =

argmine∈Em
∥zj1:me − e∥2 (Em denotes the m-agent code-

book), and zjiq = eji . L3D(τ j1:m) is an objective with re-
spect to (w.r.t.) θ, ϕ,Em. As in VQ-VAE, the first term in
Eq (1) is a reconstruction loss of trajectory segments, and
the last two terms move the skill codes (e.g., eji ) and en-
coder embeddings (e.g., zjie ) towards each other, where sg
represents the stop gradient operator. Through reconstructing
m-agent (m ∈ {1, · · · , n}) trajectory segments in an auto-
encoder framework, representations of m-agent skills can be
extracted as codes in the codebook. The overall objective for
VO-MASD-3D is as below:

min
θ,ϕ,E1:n

L3D = min
θ,ϕ,E1:n

Eτ1:n∼DH

∑
j

L3D(τ j1:m) (2)

Here, DH is a (multi-task) offline dataset with trajectories
segmented every H time steps; each n-agent trajectory seg-
ment is partitioned into subgroups (e.g., j1:m) based on the
grouping function hψ . Note that, unlike fθ, E1:n, and πϕ,
hψ cannot be trained in an end-to-end manner by minimizing
Eq (2), since its output g1:n are used for clustering which is
not an differentiable operation. Thus, we choose to optimize
hψ with MAPPO, where each agent i takes an action gi to
maximize the global return −L3D. In this way, all modules in
Figure 1 are effectively updated with a common objective.
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Figure 2: Utilizing discovered skills for downstream CTDE MARL. Compared to standard CTDE MARL, individual actions a1:n are replaced
with skill embeddings z1:n as the actor’s output. These embeddings are then translated into skill codes and control segments using the
pretrained VO-MASD components, as shown in Figure 1. Thus, only the individual actor πω and centralized critic Vη need to be trained.

Algorithm 1 MAPPO with learned skills

Input: πω , Vη , πϕ, hψ , E1:n, Env
Initialize πω , Vη
while not converged do

Buffer← ∅
for b = 1 · · ·B do

Initialize τ1:n−H , Traj← ∅, r̃ ← 0
for t = 0 · · ·T do

if t%H == 0 then
zit, τ

i
t ← πω(o

i
t, τ

i
t−H), i = 1 · · ·n

Get e1:n based on z1:nt using hψ and E1:n, fol-
lowing Fig 1 (b)
Add (r̃, st, o

1:n
t , τ1:nt−H , z1:nt ) to Traj

r̃ ← 0
end if
ait ← πϕ(o

i
t|ei), i = 1 · · ·n

rt, st+1, o
1:n
t+1 ← Env(a1:nt ), r̃ += rt

end for
Buffer← Buffer ∪ Traj

end for
Train πω , Vη based on Buffer using MAPPO

end while

This framework is advantageous: (1) the training of skills
with different number of agents can facilitate each other, as
they share all modules but the codebook; (2) the modeling
of temporal- and agent-level abstractions within multi-agent
skills are decoupled as training the decoder to reconstruct
single-agent trajectories and training the grouper for auto-
matic grouping; (3) the grouper is trained to form subgroups
only when it enhances the overall pattern extraction objec-
tive (i.e., Eq (2)), ensuring that each subgroup, along with its
policy, corresponds to a genuine coordination pattern.

We illustrate how to utilize the discovered skills in CTDE
MARL in Figure 2. Also, Alg 1 outlines the detailed training
process for a decentralized actor πω and centralized critic Vη
using MAPPO in a multi-agent task Env, leveraging the pre-
trained components hψ , E1:n, and πϕ. In particular, every H
time steps, the actor produces a skill embedding zi ∈ R1×d

for each agent i. z1:n are mapped to the closest multi-agent
skill codes e1:n using the grouper hψ and codebook E1:n,
following Figure 1 (b). Then, for the next H time steps, each
agent i interacts with Env using corresponding πϕ(a

i | si, ei),
i.e., the decoder working as the skill policy. Based on the
interaction transitions, i.e., {(st, o1:nt , τ1:nt−H , z1:n, r̃t, st+H)},

πω and Vη can be trained with MAPPO, where τ1:nt−H are the
skill – observation (i.e., z − o) history, z1:n can be viewed as
(high-level) actions, and r̃t =

∑t+H−1
l=t rl is the skill reward.

Besides the approach illustrated in Figure 2, we propose
two alternative methods for mapping z1:n to e1:n in Appendix
B. All the three methods assign each multi-agent (m × d)
code as a complete unit to a corresponding-size (m-agent)
subgroup, such that the collaboration pattern encoded in the
multi-agent code can be utilized. Alternatively, each (m× d)
code can be decomposed into a set of (m) single-agent codes.
Each agent i could then independently select its skill from
the set of single-agent codes. In particular, the single-agent
skill code closest to the agent’s actor output zi would be
selected. We denote this algorithm as ‘VO-MASD-Mixed’.
Later, we empirically compare these four skill assignment
manners. Importantly, no matter which manner we choose,
we only need to train a decentralized actor and a centralized
critic for (online) MARL, without any additional learning ef-
fort beyond standard CTDE MARL approaches.

3.2 VO-MASD Based on a Hierarchical Codebook
Here, we present VO-MASD-Hier, which is an alternative
to VO-MASD-3D and adopts a hierarchical codebook as in
[Razavi et al., 2019]. Although [Razavi et al., 2019] is origi-
nally proposed for image generation, its top and bottom code-
books perfectly echo the two-level structure of multi-agent
and single-agent skill embeddings. Thus, we propose to learn
top and bottom codebooks as agent- and temporal-level ab-
stractions, respectively, for multi-agent skill discovery. The
overall framework of VO-MASD-Hier is shown as Figure
3. It contains a two-level codebook, i.e., Etop, Ebtm. VO-
MASD-Hier does not need to learn n codebooks (i.e., E1:n)
as in VO-MASD-3D, while VO-MASD-3D can potentially
make better use of domain knowledge. For example, if the
subgroup scale (e.g., m) is known in advance, VO-MASD-3D
only needs to learn E1 and Em, while VO-MASD-Hier can-
not specify the number of agents within a multi-agent skill.

The skill discovery process is detailed as follows. In Fig-
ure 3 (a), the embedding process of each individual trajec-
tory segment τ i (i = 1, · · · , n) is the same as the one of
VO-MASD-3D (i.e., Figure 1 (a)). Subsequently, in (b), the
skill embeddings z1:nbtm are clustered based on the output from
the grouping function, i.e., g1:n, and then embeddings within
the same subgroup (e.g., z11:2btm ) are aggregated to a higher-
level representation (e.g., z1top) which is then used to query
a top code (e.g., q1top). Note that the aggregator fθtop uses a
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Figure 3: Multi-agent skill discovery based on a VQ-VAE with a hierarchical codebook.

multi-head attention module [Vaswani et al., 2017] to process
varied-length inputs and so can be shared by all subgroups (of
varied sizes). In Figure 3 (c), for each agent i, a bottom code
qibtm is assigned based on its individual skill embedding zibtm.
Finally, qibtm and qlitop, involving temporal- and agent-level ab-
stractions respectively, are used to decode/reconstruct τ i. The
overall objective is minθtop,btm,Etop,btm,πϕ

Eτ1:n∼DH
LHier(τ1:n):

LHier(τ1:n) = −
H−1∑
j=0

n∑
i=1

log πϕ(a
i
t+j | oit+j , q

i
btm, q

li
top)

+

n∑
i=1

[
∥sg(zibtm)− qibtm∥22 + β∥zibtm − sg(qibtm)∥22

]
+

n∑
i=1

[
∥sg(zlitop)− qlitop∥

2
2 + β∥zlitop − sg(qlitop)∥

2
2

]
(3)

This loss function is similar with Eq (1), i.e., to reconstruct
the input multi-agent trajectory segment, and move the codes
and corresponding skill embeddings towards each other.

As for the design intuition, considering the first term in Eq
(3), the gradient w.r.t. the bottom code qibtm only comes from
reconstructing agent i’s individual skill trajectory τ i. How-
ever, the gradient w.r.t. the top code qlitop is derived from
reconstructing the multi-agent skill trajectories of the sub-
group li that i belongs to, since each agent j in li would adopt
qlitop as the decoder condition to reconstruct corresponding τ j .
This reflects that the top and bottom codebooks are trained
to embed subgroup- and temporal-level abstractions, respec-
tively. Notably, both VO-MASD-3D and VO-MASD-Hier
follow the inductive bias: primitive actions → single-agent
skills → multi-agent skills. That is, each single-agent skill
code is trained to embed an individual trajectory and each
multi-agent skill code is a composition of single-agent ones.
In VO-MASD-3D, each (m× d) multi-agent code contains a
set (m) of (1× d) single-agent codes; while for VO-MASD-
Hier, each multi-agent embedding ztop is obtained through
aggregating individual skill embeddings zbtm from the same
subgroup using an attention mechanism, as in Figure 3 (b).

To utilize the discovered skills in downstream online
MARL, Alg 1 can be applied to VO-MASD-Hier by replacing
the process in Figure 1 (b)(c) with corresponding ones in Fig-
ure 3 (b)(c). Specifically, a decentralized actor πω gives out
skill embeddings z1:nbtm every H time steps. hψ , Etop,btm, fθtop ,
and πϕ are fixed during online MARL, transforming z1:nbtm to
multi-agent and single-agent skill codes, i.e., q1:ntop and q1:nbtm .

The decoder is then used to produce skill trajectories of length
H , according to πϕ(a

i
t | oit, q

li
top, q

i
btm).

4 Evaluation and Main Results
Experiments are conducted on the StarCraft multi-agent chal-
lenge (SMAC) [Samvelyan et al., 2019] – a commonly-used
benchmark for cooperative MARL. Following ODIS [Zhang
et al., 2023], we adopt two SMAC task sets to test the dis-
covered multi-task multi-agent skills. In each task set, agents
control some units like marines, medivacs, and marauders,
but the number of controllable agents or enemies varies across
tasks in a task set. We refer to the two task sets as ‘marine’
and ‘MMMs’, which evaluate algorithm performance in sce-
narios with homogeneous and heterogeneous agents, respec-
tively, and are detailed in Appendix C. For each task set, we
discover skills from offline trajectories of source tasks, and
then apply these skills to each task in the task set (including
source and unseen tasks) for online MARL. The offline trajec-
tories are collected with well-trained MAPPO agents, which
can be viewed as expert demonstrations for the source tasks,
and are included in our released code folder.

Next, we show evaluation results on several aspects. (1)
In Section 4.1, we compare skills discovered using different
algorithms on two SMAC task sets, based on their utility for
downstream online MARL, to demonstrate the superiority of
the multi-agent skills discovered by our methods. (2) In Sec-
tion 4.2, we test the algorithms on a task set from another
benchmark – SMACv2 [Ellis et al., 2024], which features
stochastic environments. (3) In Section 4.3, we show that, for
MARL tasks with sparse reward signals, hierarchical learn-
ing with skills discovered using our methods can significantly
outperform usual MARL algorithms. Notably, the skills are
from relevant but different tasks. (4) In Appendix F of the ex-
tended version, we provide visualizations of the skills, evalu-
ate our algorithms on offline datasets of varying quality, and
present an ablation study to support our design choices.

4.1 Utility of Discovered Skills for Online MARL
The first group of results is shown as Figure 4, where ‘3d’,
‘hier’, ‘mixed’, ‘single’, and ‘odis’ refer to VO-MASD-3D,
VO-MASD-Hier, VO-MASD-Mixed, VO-MASD-Single,
and ODIS, respectively. As mentioned in Appendix A, ODIS
is the only existing algorithm for discovering multi-agent
temporal abstractions from offline multi-task data, and is
a representative of role-based MARL. Notably, ODIS has
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(a) 3m (b) 5m (c) 7m

(d) 10m (e) MMM (f) MMM2

Figure 4: Evaluation of effectiveness of the discovered skills using different algorithms for online MARL.

demonstrated superior performance compared to direct im-
itation learning from the offline dataset, MADT [Meng et
al., 2021] (an offline MARL algorithm using pretraining),
and UPDeT [Hu et al., 2021] (a SOTA multi-task MARL
method), making it a strong baseline for comparison2. VO-
MASD-Single represents the other main branch of hierarchi-
cal MARL – learning a set of single-agent skills and collabo-
ratively utilizing them for MARL, which is realized through
removing Etop and fθtop in VO-MASD-Hier (i.e., Figure 3).
VO-MASD-Single discovers and utilizes single-agent skills,
while VO-MASD-Mixed discovers multi-agent skills as in
VO-MASD-3D but employs the learned skills as single-agent
ones, which is detailed in the last paragraph of Section 3.1.
Thus, the baselines include SOTA algorithms in this field and
two variations of our algorithms to respectively show the ef-
fect of discovering and utilizing skills as multi-agent units.

Skills (of length 5) discovered from source tasks are ap-
plied to both source and unseen tasks for online MARL us-
ing Alg 1. In marine, 3m and 5m are source tasks; while in
MMMs, MMM is the source task. We believe that the learn-
ing performance on unseen tasks with higher-complexity is
the best way to testify the utility and generality of skills dis-
covered with different algorithms. In particular, we track the
change of win rates as the number of training samples in-
creases, presenting the mean and 95% confidence intervals
as solid lines and shaded areas, respectively. Several conclu-
sions can be drawn from Figure 4. (1) ODIS and VO-MASD-
Single, which represent two main existing approaches of ap-
plying skills in MARL, exhibit inferior performance com-
pared to the others, especially in unseen tasks. This under-
scores the importance of discovering coordination patterns
as multi-agent skills, which can significantly enhance per-
formance and generality in new multi-agent tasks. (2) In

2In ODIS, the discovered skills are used for offline MARL. For
fair comparisons, we instead integrate skills from ODIS with online
MARL, as in VO-MASD-3D and VO-MASD-Hier.

marine tasks, the performances of VO-MASD-3D and VO-
MASD-Hier are comparable, with VO-MASD-Hier perform-
ing better in 10m and VO-MASD-3D excelling in the oth-
ers. However, VO-MASD-3D’s performance deteriorates in
MMMs, suggesting that its design may not be well-suited for
heterogeneous-agent tasks like MMM and MMM2 and indi-
cating a potential future research direction for improvement.
(3) VO-MASD-Mixed follows the same skill discovery pro-
cess as VO-MASD-3D but adopts the skills as single-agent
ones. Surprisingly, VO-MASD-Mixed consistently outper-
forms VO-MASD-3D. While VO-MASD-3D utilizes fixed
combinations of single-agent (1×d) codes from the discovery
stage, VO-MASD-Mixed explores all possible combinations
of these (1 × d) codes to achieve a higher return, which ex-
plains its better performance. However, in the most challeng-
ing settings (i.e., 10m and MMM2), VO-MASD-Hier demon-
strates better results, showing the potential benefit of utiliz-
ing discovered multi-agent skills as complete units. (4) The
evaluation on MMM2 – a super-hard task setting [Samvelyan
et al., 2019], demonstrates the superiority of VO-MASD-Hier
over other algorithms. All algorithms, except for VO-MASD-
Hier, exhibit large variance across different runs.

4.2 Evaluation Results on SMACv2
SMACv2 [Ellis et al., 2024] uses procedural content gener-
ation [Risi and Togelius, 2020] to address SMAC’s lack of
stochasticity. In SMACv2, for each episode, team composi-
tions and agent start positions would be generated randomly.
Thus, it is no longer sufficient for agents to repeat a fixed
action sequence, but they must learn to coordinate across a
diverse range of scenarios. Specifically, we select the Terran
task, which involves teams composed of three types of units:
marines, marauders, and medivacs. As in SMAC tasks, we
train an MAPPO policy as the offline data collector. How-
ever, the learned policy can only achieve a win rate around
55% on the source tasks upon convergence, highlighting the
difficulty of SMACv2. For different tasks in this task set, we
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(a) Terran-3 (b) Terran-5 (c) Terran-7

Figure 5: Evaluation results on SMACv2. We compare the performance of online MARL using skills discovered with our methods and ODIS.
As an additional baseline, we also include HMASD, an online hierarchical MARL method that discovers task-specific skills during training.

(a) 7m (b) 10m (c) MMM2

Figure 6: The effectiveness of discovered skills in online MARL with sparse reward signals.

vary the team size, selecting the less challenging Terran-3 and
Terran-5 as source tasks and Terran-7 as the target task.

Our methods consistently outperform ODIS, discovering
more effective skills for downstream MARL. We also adopt
HMASD [Yang et al., 2023] as a baseline. HMASD is a
SOTA online hierarchical MARL algorithm that discovers
skills while forming a hierarchical policy for a specific task.
Notably, for Terran-7, the skills used by our algorithms are
discovered from Terran-3 and Terran-5 and remain fixed dur-
ing hierarchical policy learning, whereas HMASD develops
specific skills for Terran-7. Despite this, our algorithm still
achieves superior performance. As discussed in Appendix A,
HMASD discovers only single-agent and team skills, rather
than multi-agent skills for subgroups of varying sizes. Team
skills can be less flexible to use, particularly when the team
composition randomly changes (as in SMACv2).

4.3 Performance in MARL with Sparse Rewards
With pretrained skills, only a high-level policy πω for skill
selection needs to be trained for downstream task learning,
as detailed in Alg 1, and the decision horizon of πω is re-
duced to the original one divided by the skill length H . Thus,
learning with skills (i.e., hierarchical learning) is particularly
advantageous for long-horizon tasks with sparse and delayed
reward signals. To testify this, we modify the reward setups
of the unseen tasks: 7m, 10m, MMM2, to be sparse, where
agents receive a reward of 20 only upon eliminating all ene-
mies; otherwise, they receive a reward 0. These three tasks,
with maximum episode horizons of 110, 120, and 180 respec-
tively, are particularly challenging.

We apply two online MARL algorithms: MAPPO [Yu
et al., 2022a] and QMIX [Rashid et al., 2018], to these
tasks, and they consistently fail with all-zero win rates. Al-

though they have been proposed for years, MAPPO and
QMIX remain the most robust algorithms in online MARL,
as verified by extensive empirical studies [Yu et al., 2022a;
Hu et al., 2023]. In contrast, with skills discovered us-
ing our algorithms: VO-MASD-3D, VO-MASD-Mixed, VO-
MASD-Hier, the performance can be greatly improved, as
shown in Figure 6. Note that (1) skills are discovered from
source tasks (rather than 7m, 10m, or MMM2) and (2) only
sparse rewards are adopted for downstream online MARL.
This highlights the effectiveness of hierarchical MARL when
employing the multi-agent, multi-task skills discovered by
our algorithms. As in Figure 4, VO-MASD-Hier achieves
the best overall performance, followed by VO-MASD-Mixed.
Further, we compare our methods with HMASD, which dis-
covers skills through interaction with the environment and
has proven effective in sparse reward settings. However,
HMASD fails in all three tasks, highlighting the superiority
of the skills learned with our methods, even though they are
discovered from offline data of different tasks.

5 Conclusion
In this work, we propose novel algorithms for discovering co-
ordination patterns among agents as multi-agent skills from
offline multi-task data. The key challenge lies in abstract-
ing agents’ behaviors at both the temporal and agent levels in
a fully automatic manner. We address this challenge by de-
veloping novel encoder-decoder architectures and co-training
the encoder-decoder with a grouping function that dynami-
cally groups agents. Empirical results demonstrate that multi-
agent skills discovered using our methods significantly en-
hance learning in downstream MARL tasks, particularly in
scenarios with sparse reward signals.
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