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Abstract
Detecting Out-of-Distribution (OOD) inputs is cru-
cial for improving the reliability of deep neural net-
works in the real-world deployment. In this paper,
inspired by the inherent distribution shift between
in-distribution (ID) and OOD data, we propose a
novel method that leverages optimal transport to
measure the distribution discrepancy between test
inputs and ID prototypes. The resulting transport
costs are used to quantify the individual contribu-
tion of each test input to the overall discrepancy,
serving as a desirable measure for OOD detection.
To address the issue that solely relying on the trans-
port costs to ID prototypes is inadequate for iden-
tifying OOD inputs closer to ID data, we gener-
ate virtual outliers to approximate the OOD region
via linear extrapolation. By combining the trans-
port costs to ID prototypes with the costs to vir-
tual outliers, the detection of OOD data near ID
data is emphasized, thereby enhancing the distinc-
tion between ID and OOD inputs. Extensive eval-
uations demonstrate the superiority of our method
over state-of-the-art methods.

1 Introduction
Deep neural networks (DNNs) deployed in real-world sce-
narios often encounter out-of-distribution (OOD) inputs, such
as inputs not belonging to one of the DNN’s known classes.
Ideally, reliable DNNs should be aware of what they do not
know. However, they typically make overconfident predic-
tions on OOD data [Nalisnick et al., 2018]. This notorious
behavior undermines the credibility of DNNs and could pose
risks to involved users, particularly in safety-critical applica-
tions like autonomous driving [Filos et al., 2020] and biomet-
ric authentication [Wang and Deng, 2021]. This gives rise to
the importance of OOD detection, which identifies whether
an input is OOD and enables conservative rejection or trans-
ferring decision-making to humans for better handling.

The representations of ID data within the same class tend
to be gathered together after the training process, as shown in
Figure 1(a). In contrast, the representations of OOD data are
relatively far away from ID data, as they are not involved in
the training process. In other words, the distributions of ID
and OOD representations in the latent space exhibit a distinct
separation. Therefore, we can expect that the distribution dis-
crepancy between the representations of test inputs (i.e., a
mixture of ID and OOD data) and pure ID data is primar-
ily caused by the presence of OOD data. Such a distribution
discrepancy motivates us to differentiate OOD data from test
inputs by quantifying the individual contribution of each test
input to the overall distribution discrepancy.

In this way, a critical question arises: how to measure
the distribution discrepancy between test inputs and ID data,
while quantifying the contribution of each test input? To
this end, we utilize optimal transport (OT), a principled ap-
proach with rich geometric awareness for measuring the dis-
crepancy between distributions. Concretely, OT aims to min-
imize the total transport cost between two distributions to
measure the distribution discrepancy based on a predefined
cost function (typically the geometric distance between sam-
ples). The smaller the total cost is, the closer the two distribu-
tions are. Since the total cost comprises the sum of transport
costs between sample pairs, OT facilitates a fine-grained as-
sessment of individual sample contributions to the overall dis-
crepancy, making it particularly well-suited for OOD detec-
tion. Furthermore, the transport cost captures the geometric
differences between ID and OOD representations in the latent
space, providing a geometrically meaningful interpretation.

Based on the above intuition, in this paper, we propose a
novel OOD detection method called POT that utilizes the
Prototype-based Optimal Transport. Concretely, we first
construct ID prototypes with the class-wise average of train-
ing sample representations to represent the distribution of ID
data. We then apply OT between the representations of test
inputs and the ID prototypes, obtaining a transport cost ma-
trix where each entry indicates the transport cost between the
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corresponding pair of test input and prototype. As illustrated
in Figure 1(b), the total transport cost, calculated by sum-
ming all matrix entries, reflects the overall distribution dis-
crepancy. The transport cost from each test sample to all ID
prototypes (i.e., the row sum), serves as a measure of indi-
vidual contribution to the overall discrepancy, indicating the
likelihood of being OOD. However, the task of OOD detec-
tion remains inadequately addressed due to the presence of
OOD data with smaller distribution shifts. These OOD data
lie closer to ID data in the latent space, rendering the trans-
port costs to ID prototypes insufficient for detecting them.
To tackle this issue, we propose generating virtual outliers to
approximate the OOD region, particularly the areas near ID
prototypes, using linear extrapolation between ID prototypes
and the average representation of test inputs. By integrating
the transport costs from test inputs to ID prototypes with the
cost to virtual outliers, the detection of OOD samples with
smaller distribution shifts could be emphasized, thereby en-
hancing the overall distinction between ID and OOD data.

Our key contributions are as follows: (1) We present a
novel perspective for OOD detection by measuring distribu-
tion discrepancy and propose an effective detection method
using prototype-based optimal transport. (2) Extensive ex-
periments on various benchmark datasets demonstrate that
our proposed method achieves state-of-the-art (SOTA) perfor-
mance, outperforming 21 previous OOD detection methods.
Moreover, in the scenarios where training data is unavailable,
our method consistently beats the robust competitors by a
margin of 22.5% in FPR95 on the CIFAR-100 benchmark.

2 Related Work
2.1 OOD Detection
OOD detection has attracted growing research attention in re-
cent years. Existing approaches can generally be categorized
into two major lines:

(1) One line of work utilizes the outputs from pretrained
models to design scoring functions for differentiating OOD
samples. These post-hoc methods can be further divided into
three subcategories. 1) The confidence-based methods [Sun
et al., 2021; Song et al., 2022; Hendrycks et al., 2022;
Wang et al., 2022b; Liu et al., 2023] adjusts model outputs
to obtain the desired confidence, including maximum soft-
max probability [Hendrycks and Gimpel, 2017], energy [Liu
et al., 2020], and generalized entropy [Liu et al., 2023]. 2)
The density-based methods [Hendrycks et al., 2022; Sun and
Li, 2022; Zhang et al., 2023c; Liu et al., 2024] identifies cer-
tain properties or patterns of ID data, such as neuron cover-
age [Liu et al., 2024], by learning the corresponding density
functions, and the OOD samples that deviate from these prop-
erties or patterns tend to reside in low-density regions. 3) The
distance-based methods [Lee et al., 2018; Ren et al., 2021;
Sehwag et al., 2021; Sun et al., 2022] adopts distance met-
rics, e.g., Mahalanobis distance, between test input and ID
samples or centroids differentiate OOD samples, under the
assumption that OOD data lie relatively far away from ID
data. Different from these works, we introduce a novel per-
spective for OOD detection on measuring distribution dis-

crepancy. The most closely related work is dual divergence
estimation (DDE) [Garg et al., 2023], which estimates the
dual KL-Divergence between the test samples and ID sam-
ples. However, while DDE estimates divergence in a dual
space optimized by DNNs and relies heavily on the quality of
transformed sample representations, POT enables direct mea-
surement of distribution discrepancy in the latent space.

(2) Another line of work focuses on altering models
with training-time regularization to amplify the differences
between OOD and ID samples [Hendrycks et al., 2019a;
Ming et al., 2022; Zhang et al., 2023a; Wang et al., 2023;
Lu et al., 2023]. For example, by incorporating a suitable
loss, models are encouraged to produce predictions with uni-
form distributions [Hendrycks et al., 2019a] or higher en-
ergy [Liu et al., 2020] for OOD data. Building on this, some
approaches investigate refining or synthesizing outliers to im-
prove the model performance. For instance, [Ming et al.,
2022] utilizes a posterior sampling-based technique to select
the most informative OOD samples from a large outlier set,
while [Wang et al., 2023] implicitly expands the auxiliary
outliers by perturbing model parameters. However, the cost
of model retraining can be prohibitive, especially when the
parameter scale is large. Additionally, modifying models may
also have side effects of degrading model performance on the
original task. In contrast, this paper focus on post-hoc meth-
ods, which are easy to implement and generally applicable
across different models. Such properties are highly practical
for adopting OOD detection methods in real-world applica-
tions.

2.2 Optimal Transport
As a mathematical tool for comparing distributions, optimal
transport (OT) has been successfully employed in diverse ma-
chine learning tasks, including domain adaptation [Turrisi et
al., 2022], generative adversarial training [Arjovsky et al.,
2017], object detection [Ge et al., 2021], and partial-label
learning [Wang et al., 2022a]. The most related one to our
work is [Lu et al., 2023], which also applies OT for the OOD
detection problem. By assuming both an unlabeled and a la-
beled training set, [Lu et al., 2023] uses OT to guide the
clustering of samples for label assignment to the unlabeled
samples, thereby augmenting the training data and facilitat-
ing the model retraining for OOD detection. In contrast, our
work operates in a post-hoc manner without the requirement
of extra training data or model retraining.

3 The Proposed Method
3.1 Problem Setting
In the context of supervised multi-class classification, we de-
note the data space as X and the corresponding label space as
Y = {1, 2, · · · , C}. The training dataset with in-distribution
(ID) samples Dtr = {(xi, yi)}ni=1 is sampled from the joint
distribution PXY . The marginal distribution on X is denoted
as P in

X . The model trained on training data typically consists
of a feature encoder g : X → Rd, mapping the input x ∈ X
to a d-dimensional representation, and a linear classification
layer f : Rd → RC , producing a logit vector containing
classification confidence for each class. Given the test inputs
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Figure 1: Illustration of our method for OOD detection. In (a), the representation distribution of OOD inputs is distinctly separated from
ID inputs, visualized via t-SNE. The model is ResNet18 [He et al., 2016]. The ID/OOD data is CIFAR-10 [Krizhevsky, 2009] and SVHN
[Netzer et al., 2011]. (b) shows a slice of the transport cost matrix, which is derived from the optimal transport between test inputs and ID
prototypes (depicted as triangles). The row sum of a test input (labelled from A to L) represents the transport cost from it to all ID prototypes.
Darker colors indicate higher transport costs. It is evident that the ID inputs (depicted as orange circles) generally incur lower transport costs
compared to the OOD inputs (depicted as blue circles).

Dte = {xj}mj=1, the goal of OOD detection is to identify
whether xj is out-of-distribution w.r.t P in

X .

3.2 Prototype-based Optimal Transport for OOD
Detection

Constructing Class Prototypes The key idea of our method
is to use OT to measure the distribution discrepancy between
test inputs and ID data while quantifying the individual con-
tribution of each test input. A straightforward approach in-
volves applying OT between test inputs and the training data.
However, the standard OT is essentially a linear program-
ming problem, suffering from cubic time complexity and in-
curring prohibitive computational cost when applied to large-
scale training sets [Peyré et al., 2019]. An alternative is to
sample a smaller subset of the training set for efficiency, but
this can result in missing classes, leading to mismatches in
ID inputs. Such mismatches can exaggerate the contribution
of ID inputs to the distribution discrepancy, thus incorrectly
identifying them as OOD. To overcome this, we propose to
characterize each class with a prototype and align test inputs
to these prototypes. Specifically, given the training dataset
Dtr = {(xi, yi)}ni=1, we construct prototype for each class
as the average representation for that class extracted from the
feature encoder g:

ηc =
1

Nc

∑n

i=1
g(xi)1{yi = c}, (1)

where Nc is the number of samples in class c. The utiliza-
tion of prototypes offers two key benefits: it reduces com-
putational overhead by reducing the data scale and ensures
all classes are represented, mitigating the risk of mismatches
caused by missing classes.

OOD Detection Using Prototype-based Optimal Transport
By formalizing an optimal transport problem between the

representations of test inputs {zj = g(xj)}mj=1 and ID proto-
types {ηi}Ci=1, we search for the minimal transport cost that
represents the distribution discrepancy, while subject to the
mass conservation constraint:

min
γ∈Π(µ,ν)

⟨E,γ⟩F = min
γ∈Π(µ,ν)

∑C

i=1

∑m

j=1
Eijγij

s.t. Π(µ,ν) = {γ ∈ RC×m
+ |γ1m = µ,γT1C = ν},

(2)

where ⟨·, ·⟩F stands for the Frobenius dot-product. µ and ν
are the probability simplexes of ID prototypes and test sam-
ples:

µ =
∑C

i=1
piδηi and ν =

∑m

j=1
qjδzj , (3)

where pi = Ni∑n
i=1 Ni

, qj = 1
m , and δηi

is the Dirac at posi-
tion ηi. γ is a transport plan, essentially a joint probability
matrix, with an entry γij describing the amount of probabil-
ity mass transported from prototype ηi to test input zj . All
feasible transport plans constitute the transportation polytope
Π(µ,ν) [Cuturi, 2013]. E is the ground cost matrix, where
the entry Eij denotes the point-to-point moving cost between
ηi and zj , which is defined with the Euclidean distance as
Eij = ||ηi − zj ||2.

To efficiently resolve Equation 2, we introduce the entropic
regularization term H(γ) and write the optimization problem
as:

min
γ∈Π(µ,ν)

⟨E,γ⟩F − λH(γ), (4)

where λ > 0 and H(γ) =
∑

i,j γij(log γij − 1) [Peyré et
al., 2019]. In this way, the optimal transport plan γ can be
written as:

γ = Diag(a)KDiag(b), where K = exp(−E/λ). (5)
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Here, a ∈ RC and b ∈ Rm are known as scaling vari-
ables. This formulation can be solved much faster using the
Sinkhorn-Knopp algorithm [Cuturi, 2013]:

a← µ⊘ (Kb), b← ν ⊘ (K⊤a), (6)

where ⊘ denotes element-wise division. Detailed derivations
are provided in Appendix 6.1. With the λ-strong convex-
ity [Peyré et al., 2019], the entropic regularized OT could
be solved in quadratic time complexity O(nm), where n and
m denote the number of data points in the two distributions,
respectively. Since the ID distribution is represented with a
fixed number of prototypes, the prototype-based OT has lin-
ear time complexity O(Cm).

To evaluate whether an input sample xj ∈ Dte is OOD or
not, we derive the cost of moving it to all ID prototypes Tj by
decomposing the total transport cost:

⟨E,γ⟩F =
∑m

j=1

∑C

i=1
Eijγij :=

∑m

j=1
Tj . (7)

As the total transport cost serves as a measure of distribu-
tional discrepancy between ID and test data, a higher trans-
port cost T for a test sample indicates a greater deviation from
the ID data, suggesting the sample is more likely to be OOD.
We emphasize that, while the solution of OT is the transport
plan γ, which is often the focus in many applications [Caron
et al., 2020; Wang et al., 2022a], our concentration lies on
the transport costs between sample pairs. Specifically, it is
the product of transport plan and ground cost, serving as a
desirable and interpretable measure for OOD detection.

Data Augmentation via Linear Extrapolation As described
above, the transport cost can serve as a measure for OOD de-
tection. However, relying solely on the cost to ID prototypes
is insufficient for discerning OOD data with smaller distri-
bution shifts from ID data. It is because such OOD data are
located closer to ID data in the latent space and tend to incur
lower transport costs to ID prototypes. Meanwhile, the mass
conservation constraint inherent in OT may exacerbate this
issue by enforcing transportation between OOD data and pro-
totypes when ID inputs are sparse. To address this issue, we
propose to generate virtual outliers to approximate the OOD
region using linear extrapolation. By integrating the transport
costs from test inputs to both virtual outliers and ID proto-
types, we introduce a contrastive transport cost, which en-
hances the detection performance, particularly for the OOD
inputs with smaller distribution shifts.

Given two representations zi and zj , the linear extrapola-
tion between them is defined as:

z∗ = zi + ω(zj − zi), s.t. ω > 1 ∨ ω < 0. (8)

Instead of generating outliers aimlessly by enumerating avail-
able sample pairs, we construct virtual outliers P∗ by com-
bining the prototypes P and the average of test inputsM:

P∗ = {η∗
i = ηi + ω(M− ηi) + ηi ∈ P}, (9)

where ω > 1 ensures that the generated pointsP∗ lies beyond
M. The underlying intuition is thatM can be expressed as
a linear interpolation of the average representations of test ID
samplesMin and test OOD samplesMout:

M :=
Nin

N
Min +

N −Nin

N
Mout, (10)

Prototypes

𝑴𝒊𝒏 𝑴𝒐𝒖𝒕𝑴Input Average Virtual
Outliers

Figure 2: Illustration of virtual outlier generation. The average rep-
resentation of test inputs M lies between the average of ID inputs
Min and average of OOD inputs Mout. We generate virtual outliers
to approximate the OOD region using linear extrapolation between
M and ID prototypes.

where Nin and Nout denote the number of test ID samples and
total test samples, respectively. As illustrated in Figure 2, the
pointM resides between ID and OOD data, guiding the di-
rection for outlier generation in response to distribution shifts.
As parameter ω increases, the generated virtual outliers pro-
gressively move away from the ID prototypes towards the
OOD region in the latent space. By choosing an appropri-
ate parameter, we can control the location of generated vir-
tual outliers to emphasize the detection of OOD inputs with
smaller distributions shifts. In contrast to the method [Zhu
et al., 2023] that conducts informative extrapolation to syn-
thesize numerous outliers during training with assumed aux-
iliary outliers, the linear extrapolation is a lightweight opera-
tion that does not require training or auxiliary outliers.

Likewise, after generating the virtual outliers P∗, we apply
the entropic regularized OT between P∗ and the test inputs to
obtain the corresponding transport cost T ∗. By taking the dif-
ference of transport costs from test inputs to the ID prototypes
and to the virtual outliers, we derive the contrastive transport
cost T −T ∗ as the final OOD score. Given the opposite trends
of T and T ∗ in indicating whether a sample is ID or OOD, a
higher contrastive transport cost denotes a higher likelihood
of the test input being OOD.

4 Experiments
In this section, we preform extensive experiments over OOD
detection benchmarks. All the experimental setup adheres to
the latest version of OpenOOD, an open repository for bench-
marking generalized OOD detection1 [Zhang et al., 2023b].

4.1 Common Setup
Datasets We assess the performance of our proposed POT
on the widely used CIFAR-100 benchmark and ImageNet-
1k benchmark, which regard CIFAR-100 and ImageNet-
1k as ID datasets, respectively. For CIFAR-100, we use
the standard split, with 50,000 training images and 10,000
test images. For ImageNet-1k, we utilize 50,000 images
from the validation set as ID test set. For each bench-
mark, OpenOOD splits OOD data to Far-OOD and Near-
OOD based on their degrees of the semantic similarity with
ID data. Specifically, the CIFAR-100 benchmark utilizes
four Far-OOD datasets: MNIST [Deng, 2012], SVHN [Net-
zer et al., 2011], Textures [Cimpoi et al., 2014], and
Places365 [Zhou et al., 2018], along with two Near-OOD
datasets: CIFAR-10 and Tiny Imagenet [Le and Yang, 2015].
For the large-scale ImageNet-1k benchmark, it considers

1https://github.com/Jingkang50/OpenOOD
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Method
MINIST SVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OpenMax 53.97±4.71 75.89±1.40 52.81±1.89 82.05±1.55 56.16±1.86 80.46±0.10 54.99±1.42 79.22±0.41 54.48±0.63 79.40±0.41

MSP 57.24±4.67 76.08±1.86 58.43±2.61 78.68±0.95 61.79±1.31 77.32±0.71 56.64±0.87 79.22±0.29 58.52±1.12 77.83±0.45

ODIN 45.93±3.24 83.79±1.30 67.21±3.95 74.72±0.77 62.39±2.87 79.34±1.08 59.73±0.86 79.45±0.25 58.81±0.78 79.32±0.22

MDS 71.70±2.89 67.47±0.81 67.72±6.05 70.20±6.52 70.55±2.50 76.23±0.69 79.57±0.34 63.17±0.50 72.38±1.53 69.27±1.41

MDSEns 2.86±0.85 98.20±0.78 82.57±2.57 53.74±1.62 84.91±0.87 69.75±1.14 96.58±0.19 42.32±0.74 66.73±1.05 66.00±0.69

RMDS 51.99±6.34 79.78±2.50 51.10±3.62 85.09±1.09 54.06±1.02 83.61±0.52 53.58±0.33 83.39±0.47 52.68±0.65 82.97±0.42

Gram 53.35±7.51 80.78±4.14 20.40±1.69 95.47±0.58 89.84±2.87 70.61±1.44 95.03±0.63 46.09±1.28 64.66±2.30 73.24±1.05

EBO 52.62±3.83 79.18±1.36 53.19±3.25 82.28±1.78 62.38±2.08 78.35±0.84 57.70±0.87 79.50±0.23 56.47±1.41 79.83±0.62

GradNorm 86.96±1.45 65.35±1.12 69.38±8.40 77.23±4.88 92.37±0.58 64.58±0.13 85.41±0.39 69.66±0.17 83.53±2.01 69.20±1.08

ReAct 56.03±5.67 78.37±1.59 49.89±1.95 83.25±1.00 55.02±0.81 80.15±0.46 55.34±0.49 80.01±0.11 54.07±1.57 80.45±0.50

MLS 52.94±3.83 78.91±1.47 53.43±3.22 81.90±1.53 62.37±2.16 78.39±0.84 57.64±0.92 79.74±0.24 56.60±1.41 79.73±0.58

KLM 72.88±6.56 74.15±2.60 50.32±7.06 79.49±0.47 81.88±5.87 75.75±0.48 81.60±1.37 75.68±0.26 71.67±2.07 76.27±0.53

VIM 48.34±1.03 81.84±1.03 46.28±5.52 82.89±3.78 46.84±2.28 85.90±0.79 61.64±0.70 75.85±0.36 50.77±0.98 81.62±0.62

KNN 48.59±4.66 82.36±1.54 51.43±3.15 84.26±1.11 53.56±2.35 83.66±0.84 60.80±0.92 79.42±0.47 53.59±0.25 82.43±0.17

DICE 51.80±3.68 79.86±1.89 48.96±3.34 84.45±2.04 64.23±1.59 77.63±0.34 59.43±1.20 78.31±0.66 56.10±0.62 80.06±0.19

RankFeat 75.02±5.82 63.03±3.85 58.17±2.07 72.37±1.51 66.90±3.79 69.40±3.09 77.42±1.93 63.81±1.83 69.38±1.10 67.15±1.49

ASH 66.60±3.88 77.23±0.46 45.51±2.82 85.76±1.38 61.34±2.83 80.72±0.71 62.89±1.08 78.75±0.16 59.09±2.53 80.61±0.66

SHE 58.82±2.75 76.72±1.08 58.60±7.63 81.22±4.05 73.34±3.35 73.65±1.29 65.23±0.86 76.29±0.52 64.00±2.73 76.97±1.17

GEN 54.81±4.80 78.09±1.82 56.14±2.17 81.24±1.05 61.13±1.49 78.70±0.80 56.07±0.78 80.31±0.22 57.04±1.01 79.59±0.54

DDE 0.01±0.01 99.93±0.02 0.23±0.03 99.31±0.09 40.30±1.24 93.13±0.29 52.34±0.61 88.21±0.23 23.22±0.45 95.14±0.15

NAC-UE 21.44±5.22 93.24±1.33 24.23±3.88 92.43±1.03 40.19±1.97 89.34±0.56 73.93±1.52 72.92±0.78 39.95±1.36 86.98±0.26

POT 0.98±0.08 99.73±0.02 2.13±0.21 99.39±0.03 25.56±3.93 95.28±0.44 28.74±0.22 92.42±0.12 14.35±1.06 96.70±0.08

Table 1: Far-OOD detection performance on CIFAR-100 benchmark. ↑ denotes the higher value is better, while ↓ indicates lower values are
better. We format first and second results.

Method CIFAR-10 Tiny ImageNet Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OpenMax 60.19±0.87 74.34±0.33 52.79±0.43 78.48±0.09 56.49±0.58 76.41±0.20

MSP 58.90±0.93 78.47±0.07 50.78±0.57 81.96±0.20 54.84±0.58 80.21±0.13

ODIN 60.61±0.52 78.18±0.14 55.28±0.45 81.53±0.10 57.95±0.45 79.86±0.11

MDS 88.01±0.51 55.89±0.22 78.68±1.48 61.83±0.19 83.35±0.76 58.86±0.09

MDSEns 95.94±0.15 43.85±0.31 95.76±0.13 49.14±0.22 95.85±0.05 46.49±0.25

RMDS 61.36±0.23 77.77±0.21 49.50±0.58 82.58±0.02 55.43±0.29 80.18±0.10

Gram 92.69±0.58 49.41±0.54 92.34±0.84 53.12±1.66 92.51±0.39 51.26±0.80

EBO 59.19±0.74 79.05±0.10 52.36±0.59 82.58±0.08 55.77±0.64 80.82±0.09

GradNorm 84.30±0.38 70.32±0.20 87.30±0.59 69.58±0.79 85.80±0.46 69.95±0.47

ReAct 61.29±0.43 78.65±0.05 51.64±0.41 82.72±0.08 56.47±0.42 80.69±0.06

MLS 59.10±0.63 79.21±0.10 52.19±0.42 82.74±0.08 55.64±0.52 80.97±0.09

KLM 84.77±2.99 73.92±0.23 71.59±0.79 79.16±0.30 78.18±1.30 76.54±0.24

VIM 70.63±0.44 72.21±0.42 54.54±0.31 77.87±0.13 62.59±0.26 75.04±0.14

KNN 72.82±0.50 77.01±0.26 49.63±0.61 83.31±0.16 61.22±0.15 80.16±0.15

DICE 60.98±1.10 78.04±0.32 55.36±0.59 80.50±0.25 58.17±0.50 79.27±0.22

RankFeat 82.78±1.56 58.04±2.36 78.37±1.09 65.63±0.24 80.57±1.11 61.84±1.29

ASH 68.06±0.41 76.47±0.30 63.47±1.10 79.79±0.24 65.77±0.49 78.13±0.17

SHE 60.47±0.58 78.13±0.02 58.42±0.76 79.52±0.33 59.45±0.34 78.83±0.17

GEN 58.65±0.92 79.40±0.06 49.82±0.29 83.15±0.15 54.23±0.54 81.27±0.10

DDE 62.35±2.12 81.32±0.28 61.20±2.11 80.34±0.95 61.78±2.11 80.83±0.60

NAC-UE 80.84±1.38 71.92±0.77 62.78±1.69 79.43±0.45 71.81±1.51 75.67±0.56

POT 41.63±2.28 87.51±0.44 46.94±0.43 85.50±0.04 44.28±1.26 86.51±0.20

Table 2: Near-OOD detection performance on CIFAR-100 bench-
mark. ↑ denotes the higher value is better, while ↓ indicates lower
values are better.

iNaturalist [Horn et al., 2018], Textures [Cimpoi
et al., 2014], and OpenImage-O [Wang et al., 2022b]
as Far-OOD datasets. In terms of Near-OOD datasets,
SSB-hard [Vaze et al., 2022] and NINCO [Bitterwolf et al.,
2023] are included.

Models For the CIFAR-100 benchmark, we utilize
ResNet18 [He et al., 2016] as the model backbone, which
is trained on the ID training samples for 100 epochs. We
evaluate OOD detection methods over three checkpoints.
For the ImageNet-1k benchmark, we employ ResNet50 and
ViT-b16 [Dosovitskiy and et al, 2021] models pretrained on

ImageNet-1k and use the official checkpoints from PyTorch.
For more training details, please refer to OpenOOD.

Baselines Since POT performs in a post-hoc manner,
we primarily compare against 21 post-hoc OOD detection
methods, including OpenMax [Bendale and Boult, 2016],
MSP [Hendrycks and Gimpel, 2017], ODIN [Liang et al.,
2018], MDS [Lee et al., 2018], MDSEns [Lee et al.,
2018], RMDS [Ren et al., 2021], Gram [Sastry and Oore,
2020], EBO [Liu et al., 2020], GradNorm [Huang et al.,
2021], ReAct [Sun et al., 2021], MLS [Hendrycks et al.,
2022], KLM [Hendrycks et al., 2022], VIM [Wang et
al., 2022b], KNN [Sun et al., 2022], DICE [Sun and Li,
2022], RankFeat [Song et al., 2022], ASH [Djurisic et al.,
2023], SHE [Zhang et al., 2023c], GEN [Liu et al., 2023],
DDE [Garg et al., 2023], NAC-UE [Liu et al., 2024]. The
results for DDE are reproduced using the official codebase 2

while the results for the remaining methods are sourced from
the implementations in OpenOOD.

Hyperparameter tuning In line with OpenOOD, we use
ID and OOD validation sets for hyperparameter selection.
Specifically, for the CIFAR-100 benchmark, 1,000 images are
held out from the ID test set as the ID validation set, and 1,000
images spanning 20 categories from Tiny ImageNet [Le and
Yang, 2015] are reserved as the OOD validation set. For the
ImageNet-1k benchmark, 5,000 images from the ID test set
and 1,763 images from OpenImage-O are held out for the ID
and OOD validation sets, respectively. Please note that all
the validation samples are disjoint with the test samples. The
validation sets are used to tune hyperparameters, including
the entropic regularization coefficient λ and the linear extrap-
olation parameter ω for POT. Please refer to the Appendix 6.2

2https://github.com/morganstanley/MSML/tree/main/papers/
OOD Detection via Dual Divergence Estimation

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/morganstanley/MSML/tree/main/papers/OOD_Detection_via_Dual_Divergence_Estimation
https://github.com/morganstanley/MSML/tree/main/papers/OOD_Detection_via_Dual_Divergence_Estimation


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Backbone Datasets ASH SHE GEN DDE NAC-UE POT

ViT-b16

iNaturalist 50.47 93.56 93.53 97.10 93.69 99.38
Openimage-O 55.45 91.03 90.25 88.97 91.54 95.60
Textures 47.87 92.67 90.25 88.96 94.17 95.36
Average (Far-OOD) 51.26 92.42 91.34 91.68 93.13 96.78
SSB-hard 54.12 68.11 70.19 76.29 68.04 80.39
NINCO 53.07 84.16 82.47 81.32 82.45 87.51
Average (Near-OOD) 53.59 76.13 76.33 78.81 75.25 83.95

ResNet-50

iNaturalist 97.04 92.58 92.44 83.64 96.43 99.45
Openimage-O 93.31 86.70 89.35 71.38 91.61 93.45
Textures 96.91 93.63 87.63 86.84 97.77 95.58
Average (Far-OOD) 95.76 90.97 89.81 80.62 95.27 96.16
SSB-hard 73.11 71.83 72.11 56.52 68.21 83.37
NINCO 83.37 76.42 81.71 62.93 81.16 78.13
Average (Near-OOD) 78.24 74.12 76.91 59.73 74.68 80.75

Table 3: OOD detection performance (AUROC↑) on ImageNet-1k.
See Table 7 and Table 8 for full results.

for more details.
Evaluation metrics We report the following widely adopted

metrics: (1) area under the receiver operating characteristic
curve (AUROC); (2) false positive rate of OOD samples when
the true positive rate of ID samples is equal to 95% (FPR95).

Implementation details During the test phase, the test set
comprises samples from both the ID test set and OOD dataset.
We consider the assumption of having access to the entire test
set to be overly restrictive. To this end, we relax the assump-
tion by allowing test inputs arriving in batches, where random
batch division is applied to the test set. The default test batch
size is set to 512 and we also include ablation studies with
varying batch sizes. For each test batch, we employ POT
to calculate transport cost scores for the samples. After ag-
gregating the scores across all test samples, we calculate the
evaluation metrics for comparison.

4.2 Empirical Results and Analysis
Main results The results for Far-OOD and Near-OOD de-
tection on the CIFAR-100 benchmark are presented in Ta-
ble 1 and Table 2, respectively. Our proposed POT consis-
tently obtains either the best or second-best results across all
datasets and OOD detection metrics. Specifically, on the Far-
OOD track, POT achieves significant reductions in average
FPR95, with decreases of 25.6% and 8.87% compared to the
previous leading baselines NAC-UE and DDE, respectively.
While Near-OOD samples are considered more intractable to
detect due to their similarity in semantic and style with ID
samples, POT demonstrates an even greater performance ad-
vantage in detecting them, as shown in Table 2. For instance,
POT surpasses the next best method, GEN, by 9.96% in av-
erage FPR95 and 5.22% in average AUROC. The results of
the large-scale ImageNet-1k benchmark are shown in Table 3,
where only the AUROC values are reported due to space lim-
itation. As can be seen, POT also consistently outperforms
all baseline methods in terms of average performance across
different backbones and OOD datasets.

Integration with training methods In the other line of
work for OOD detection, training methods employ retrain-
ing strategies with training-time regularization to provide a
modified model. A important property of post-hoc meth-
ods is that they are applicable to different model architec-

Baseline ASH NAC-UE POT
Training FPR95↓AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓AUROC↑

CE - - 19.67 95.76 22.67 95.27 19.89 96.16

ConfBranch 51.17 83.97 78.77 72.64 32.21 93.63 20.34 95.90
∆ - - (+59.1) (-23.12) (+9.54) (-1.64) (+0.45) (-0.26)

RotPred 36.39 90.03 68.61 78.99 38.50 92.23 19.55 95.93
∆ - - (+48.94) (-16.77) (+15.83) (-3.04) (-0.34) (-0.23)

GODIN 51.03 85.50 57.06 88.07 29.44 93.99 22.74 95.25
∆ - - (+37.39) (-7.69) (+6.77) (-1.28) (+2.85) (-0.91)

Table 4: Results on the ImageNet-1k with different training meth-
ods. ∆ represents the subtraction results between the default CE
scheme and other training schemes.

tures and training losses. To this end, we examine the per-
formance of post-hoc methods when integrated with estab-
lished training methods. We evaluate on the Far-OOD track
of the ImageNet-1k benchmark using ResNet-50 as the back-
bone, comparing POT with ASH and NAC-UE, which have
achieved top results on this benchmark (see Table 3). Consis-
tent with the experimental setup of NAC-UE, we utilize three
training schemes: ConfBranch [DeVries and Taylor, 2018],
RotPred [Hendrycks et al., 2019b], and GODIN [Hsu et al.,
2020], with softmax cross-entropy (CE) loss as the default
training scheme for comparison. We report the average re-
sults in Table 4, where Baseline refers to the detection method
employed in the original paper and ∆ denotes the subtrac-
tion results between the default CE scheme and other train-
ing schemes. According to the results, POT has remarkable
improvements on the baseline methods, while outperforming
ASH and NAC-UE. Importantly, POT maintains stable per-
formance across three training schemes, whereas ASH and
NAC-UE both exhibit notable performance degradation com-
pared to the default CE training scheme. Such results demon-
strates that POT is generic to be seamlessly integrated with
different training methods.

What if training data is unavailable Although existing post-
hoc methods can be applied to pre-trained models without
cumbersome retraining, many require access to at least a por-
tion of training data [Liu et al., 2023]. Considering the sce-
narios where training data is unavailable, such as commer-
cial data involving privacy, some approaches further explore
OOD detection without the requirement for training data such
as ASH and GEN. To make POT applicable to such scenarios,
we draw inspiration from the work [Tanwisuth et al., 2021]
and construct the class prototypes with the neural network
weights W ∈ Rd×C of the classification layer f . Each col-
umn of the weight matrix W corresponds to a d-dimensional
class prototype. The underlying idea is that the process of
learning class prototypes with learnable parameters in the la-
tent space, is closely similar to the training process of the lin-
ear classification layer. In other words, obtaining prototypes
in this way does not require any training data and additional
parameters. To verify the effectiveness of POT in such sce-
narios, we compare it to the baseline methods not requiring
access to the training dataset. We report the average AUROC
for both Far-OOD and Near-OOD datasets in Table 5. The
results show that POT continues to outperform all the com-
petitors across all metrics. Notably, compared to GEN, POT
significantly reduces the average FPR95 by 35.78% on the
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CIFAR-100 ImageNet-1k

Far-OOD Near-OOD Far-OOD Near-OODMethod
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 58.53 77.83 54.84 80.21 51.77 86.03 81.56 73.56
ODIN 58.81 79.32 57.95 79.86 86.04 76.08 90.76 64.45
EBO 56.47 79.83 55.77 80.82 85.34 78.99 93.09 62.60
GradNorm 83.53 69.20 85.80 69.95 92.60 41.75 94.68 39.45
ReAct 54.07 80.45 56.47 80.69 53.96 85.68 84.42 69.34
MLS 56.60 79.73 55.64 80.97 78.91 83.55 92.06 68.42
RankFeat 69.38 67.15 80.57 61.84 / / / /
ASH 59.09 80.61 65.77 78.13 96.69 51.26 95.07 53.60
GEN 57.04 79.59 54.23 81.27 32.16 91.34 70.66 76.33
POT 21.26 94.27 45.02 84.76 29.40 93.35 65.82 80.42

Table 5: OOD detection performance of methods without the re-
quirement for training data.

(a) FPR95: 9.06 (b) FPR95: 0.89

(c) FPR95: 34.48 (d) FPR95: 0.67

Transport cost score Contrastive transport cost score

Transport cost score Contrastive transport cost score

Figure 3: Ablation study on the effect of virtual outliers. We contrast
the distribution for the transport cost score without virtual outliers (a
& c) and the contrastive transport cost score with virtual outliers (b
& d). The used models are ResNet-18 for CIFAR-100 and ViT-b16
for ImageNet-1k, respectively.

Far-OOD datasets and by 9.21% on the Near-OOD datasets
of the CIFAR-100 benchmark.

4.3 Ablation Study and Analysis
Ablation on virtual outliers We compare the OOD detec-
tion performance of POT with and without virtual outliers,
which are generated to approximate the OOD region using
linear representation extrapolation. Figure 3 displays the re-
sults, where we visualize the data distribution in the CIFAR-
100 and ImageNet-1k benchmarks. Using the virtual outliers
leads to clearer separability between ID and OOD samples,
whereas the transport cost score without virtual outliers ex-
hibits larger overlap. The results show that the introduction
of virtual outliers enhances the distinguishability between ID
and OOD, resulting in more effective OOD detection.

Parameter analysis We ablate along individual parameters
with ImageNet-1k as ID data, shown in Figure 6.4 in Ap-
pendix 6.4 , where the ViT-b16 is utilized as the backbone
for analysis. In Figure 6.4 (a), we find that increasing the
test batch size is beneficial for OOD detection. We hypoth-
esize that this improvement is due to larger batch sizes pro-
viding a better empirical approximation of the true test data
distribution, thereby enabling more accurate measurement of

Logits Penultimate
Benchmarks OOD FPR95↓ AUROC↑ FPR95↓ AUROC↑

Far 18.86 95.58 14.35 96.70CIFAR-100 Near 45.68 85.38 44.28 86.51
Far 20.26 95.49 15.59 96.78ImageNet-1k Near 67.97 80.45 60.15 83.95

Table 6: Comparison of OOD detection performance from the
penultimate and logits layers.

distributional discrepancies and improving detection perfor-
mance. Although POT faces a performance degradation with
the decrease of test batch size, its performance of lower batch
sizes still hold superiority over the baseline methods. For in-
stance, POT already achieves 93.18% average AUROC with
the test batch size of 32, which outperforms the competitive
rival NAC-UE (see Table 1). In Figure 6.4 (b), we can observe
that as the regularization coefficient λ increases, AUROC un-
dergoes an ascending interval followed by a decrease interval,
ultimately leading to convergence. This convergence occurs
because the entropy term becomes increasingly influential in
the optimization of OT as λ increases, eventually leading to a
uniform transport plan with maximum entropy, thereby stabi-
lizing OOD detection performance. In Figure 6.4 (c), we find
that POT works better with a moderate ω. This is intuitive
as a lower ω may lead the generated virtual outliers close to
ID samples, while a higher ω can generate virtual outliers far
away both ID and OOD samples, leading the transport costs
to virtual outliers indistinguishable.

Penultimate layer vs. logit layer In this paper, we follow
the convention in feature-based methods by using the repre-
sentations from the penultimate layer of neural network, as it
is believed to preserve more information than the output from
the top layer, also referred to as logits. To investigate the im-
pact of layer selection, we provide evaluation on POT using
representations from the penultimate layer or logits, with the
average results presented in Table 6. From the results, using
the representations from the penultimate layer achieves better
performance than using the logits.

5 Conclusion
In this paper, we tackle the problem of OOD detection from
a new perspective of measuring distribution discrepancy and
quantifying the individual contribution of each test input. To
this end, we propose a novel method named POT, which uti-
lizes the prototype-based OT to assess the discrepancy be-
tween test inputs and ID prototypes and use the obtaining
transport costs for OOD detection. By generating virtual out-
liers to approximate the OOD region, we combine the trans-
port costs to ID prototypes with the costs to virtual outliers,
resulting in a more effective contrastive transport cost for
identifying OOD inputs. Experimental results demonstrate
that POT achieves better performance than 21 current meth-
ods. Moreover, we show that POT is pluggable with existing
training methods for OOD detection and is applicable to the
scenarios where the training data is unavailable, highlighting
its generic nature and high practicality.
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