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Abstract

In the medical field, treatment sequences signifi-
cantly influence future outcomes through complex
temporal interactions. Therefore, highlighting the
role of temporal treatments within the model is cru-
cial for accurate counterfactual estimation, which
is often overlooked in current methods. To address
this, we employ the Koopman operator, known for
its capability to model complex dynamic systems,
and introduce a novel model named the Counter-
factual Temporal Dynamics Network via Neural
Koopman Operators (CTD-NKO). This model uti-
lizes Koopman operators to encapsulate sequential
treatment data, aiming to capture the causal dynam-
ics within the system induced by temporal interac-
tions between treatments. Moreover, CTD-NKO
implements a weighting strategy that aligns joint
and marginal distributions of the system state and
the current treatment to mitigate time-varying con-
founding bias. This deviates from the balanced rep-
resentation strategy employed by existing methods,
as we demonstrate that such a strategy may suf-
fer from the potential information loss of histor-
ical treatments. These designs allow CTD-NKO
to exploit treatment information more thoroughly
and effectively, resulting in superior performance
on both synthetic and real-world datasets.

1 Introduction
Accurate estimation of counterfactuals over time is crucial for
evaluating the temporal effects of different treatment strate-
gies, which can optimize medical decision-making and sig-
nificantly impact healthcare [Yazdani and Boerwinkle, 2015].
While randomized controlled trials are the gold standard for
causal inference [Hariton and Locascio, 2018], estimating
counterfactuals from observational data is gaining attention
due to the high costs and ethical constraints associated with
conducting these trials in real-world settings.

Recent neural network techniques have advanced this field,
particularly by focusing on integrating treatments within net-
work architectures, supported by evidence in static causal in-
ference settings. For example, [Shalit et al., 2017] develop a

two-head network architecture for binary treatment observa-
tional data, influencing many subsequent studies [Shi et al.,
2019; Hassanpour and Greiner, 2020; Johansson et al., 2022].
For continuous treatments, [Nie et al., 2020] introduce the
Varying Coefficient Network (VCNet), enabling the predic-
tion network to function continuously with treatment, thus
strengthening the impact of treatment on predictions.

In longitudinal settings, current and historical treatments,
viewed as time series, often jointly influence future patient
outcomes through complex temporal interactions. For exam-
ple, understanding the intricate temporal interactions between
antibiotics is crucial for optimizing antibiotic usage and min-
imizing the development of antibiotic resistance [Roemhild
et al., 2022]. However, existing methods often overlook the
role of treatments in their model design. For example, Coun-
terfactual Recurrent Network (CRN) [Bica et al., 2020] and
Causal Transformer (CT) [Melnychuk et al., 2022] learn rep-
resentations from historical information and then concatenate
them with current treatments as input to a feedforward neu-
ral network for counterfactual estimation. This simple con-
catenation of current treatments with historical information
embedded in representations may overly simplify interactions
between temporal treatments, thus undermining the model’s
ability to capture the complex dynamics that evolve over time.

Another challenge in counterfactual estimation when ob-
servational data as time series is the complex confounding
bias introduced by time-varying confounders. CRN and CT
attempt to mitigate this issue by learning a balanced repre-
sentation that excludes current treatment assignment infor-
mation. However, in real-world applications, current treat-
ments are often closely related to historical treatments. Our
research demonstrates that adopting such a balanced repre-
sentation can lead to the loss of historical treatment informa-
tion, which may adversely affect counterfactual estimation.

The challenges identified make it difficult for existing
methods to effectively and comprehensively utilize temporal
treatment information. Our study models the evolution of pa-
tient states as a dynamical system. Subsequently, using the
Koopman operator [Koopman, 1931], which linearizes non-
linear systems to effectively model complex dynamics, we
propose a novel model named the Counterfactual Temporal
Dynamics Network via Neural Koopman Operators (CTD-
NKO). Figure 1 shows CTD-NKO’s integration of two Re-
current Neural Network (RNN) modules. One RNN is tasked
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Figure 1: The architectural diagram of CTD-NKO is illustrated as follows: An RNN utilizes historical information to learn the system state
(A0 is zero-padded); another RNN combines current treatment and historical information to learn the causal Koopman operator Kt

c, while
Ki is a trainable matrix. The symbol

⊗
represents operations within the Koopman space. Subsequently, the system employs feedforward

networks GX and GY to estimate counterfactuals based on the predicted next system state. CTD-NKO is trained utilizing observational data
from previous time points (1, · · · , t), and it employs an autoregressive strategy for inference at subsequent time points (t+ 1, · · · , t+ τ).

with learning the system state, while the other combines cur-
rent and historical treatment information to learn a causal
Koopman operator. This architecture capitalizes on the abil-
ity of Koopman operators to model complex nonlinear sys-
tems, thus enhancing the capacity of capturing causal dy-
namics induced by temporal treatments. Additionally, CTD-
NKO learns an intrinsic Koopman operator to capture inher-
ent system dynamics, such as the circadian rhythm of heart
rate [Massin et al., 2000].

Furthermore, CTD-NKO introduces a novel weighting
method to mitigate confounding bias by aligning the joint
and marginal distributions of the system state and the cur-
rent treatment. This approach avoids the loss of historical
treatment information caused by learning a balanced repre-
sentation that excludes current treatment assignment infor-
mation, further improving counterfactual estimation perfor-
mance. CTD-NKO offers several key advantages over ex-
isting methods, including unified treatment representation,
separation of causal and non-causal dynamics, and enhanced
expressiveness in modeling complex temporal dependencies
(see Appendix A for detailed discussion). Overall, our main
contributions are threefold:

• CTD-NKO improves the capability of counterfactual es-
timation over time by effectively learning complex inter-
actions among temporal treatment using Koopman oper-
ators.

• We theoretically point out that using treatment-invariant
balanced representations to mitigate confounding bias
may lead to the loss of historical treatment information.
To avoid this issue, we alternatively propose a novel
weighting method.

• Experimental results on both synthetic and real-world
datasets demonstrate that CTD-NKO achieves state-of-
the-art performance and efficiency.

2 Related Work
Counterfactual estimation over time. Current leading-
edge methodologies for analyzing time-varying outcomes uti-
lize advancements in deep neural networks. Notable exam-
ples include RMSN [Lim et al., 2018], CRN [Bica et al.,

2020], G-Net [Li et al., 2021], and CT [Melnychuk et al.,
2022]. RMSN incorporates two propensity networks and uses
a training approach based on Inverse Probability of Treatment
Weighting (IPTW) for its prediction models. G-Net enhances
the conventional G-computation technique via a deep learn-
ing framework. Both CT and CRN, on the other hand, focus
on creating balanced representations that effectively predict
outcomes while not being predictive of current treatment al-
locations. These methods often learn historical and current
treatment information separately, which is not conducive to
exploring complex dynamics, especially the causal dynamics
driven by temporal interactions between treatments. A recent
study [Kacprzyk et al., 2024] introduces a method based on
ordinary differential equations (ODE) rather than neural net-
works for estimating counterfactuals over time. This method
offers improved interpretability and the ability to handle ir-
regularly sampled data, opening new avenues for research.
However, its reliance on ODE discovery may impose limita-
tions due to strong assumptions, e.g., the functional form of
the ODE involved. A more comprehensive survey of relevant
literature on causal inference can be found in Appendix B.

Koopman operator. Koopman operator [Koop-
man, 1931] explores how nonlinear dynamics can be lin-
earized through an infinite-dimensional operator on Koop-
man space, often approximated by Dynamic Mode Decom-
position (DMD) [Brunton et al., 2016]. Recent advancements
in integrating Koopman operator with machine learning, par-
ticularly through the use of Deep Neural Networks (DNNs)
[Takeishi et al., 2017; Morton et al., 2019; Yeung et al., 2019;
Han et al., 2020; Fan et al., 2022], have greatly enhanced the
ability to directly derive measurement functions from data.
These innovations encompass the utilization of DNNs to con-
struct Koopman invariant subspaces and the dynamic adap-
tation of Koopman operators to accommodate evolving sys-
tem dynamics, marking a significant departure from conven-
tional static approaches. For example, [Takeishi et al., 2017]
propose a data-driven approach to learn Koopman invariant
subspaces (LKIS), enhancing the ability of DNNs for Koop-
man spectral analysis. [Brunton et al., 2022] explore various
methods, including data-driven techniques such as DNNs,
that utilize predefined functions to improve the Koopman op-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

erator’s ability to model and analyze nonlinear dynamical
systems by approximating their underlying linear structure.

However, our work differs from these studies in its fo-
cus. Rather than developing novel theories related to Koop-
man operator, we are more inclined towards its application.
This aligns with recent works that employ Koopman oper-
ators to address temporal domain adaptation. For instance,
KNF [Wang et al., 2023] employs predefined measurement
functions for learning a Koopman operator and an attention
map, targeting temporal distribution changes in forecasting.
Concurrently, Koopa [Liu et al., 2023] introduces an inven-
tive architecture, merging deep residual structures with Koop-
man operators to enhance efficiency and performance in man-
aging non-stationary time series. We observe that current
temporal counterfactual estimation methods often overlook
the interaction between treatments over time in their model
design. Our paper applies Koopman operators to encapsulate
sequential treatment data over time, distinguishing it from ex-
isting methods by effectively addressing this oversight.

3 Background
3.1 Problem Formulation
Consider an i.i.d. observational dataset D, which contains
detailed information of N patients. Mathematically, it can

be represented as D =

{
x
(i)
t ,a

(i)
t ,y

(i)
t

T (i)

t=1 ∪ v(i)

}N

i=1

. For

each patient indexed by i, the observations include time-
varying covariates X(i)

t ∈ X , treatments received A
(i)
t ∈ A,

and outcomes Y
(i)
t ∈ Y at discrete time steps T (i). Addi-

tionally, patients’ static covariates (e.g., gender and age) are
denoted as V(i) ∈ V . To simplify the notation, the patient-
specific superscript (i) will be omitted when it does not affect
the context understanding.

Based on the potential outcome framework proposed by
Robin [Rubin, 1978] and its extension to accommodate
time-varying treatments by Robins and Hernan [Robins and
Hernan, 2008], we aim to estimate time-varying counter-
factual outcomes, following previous studies [Bica et al.,
2020; Lim et al., 2018; Li et al., 2021]. Let the pa-
tient’s historical information be H̄t = (X̄t, Āt−1, Ȳt,V),
where X̄t = (X1, · · · ,Xt), Ȳt = (Y1, · · · ,Yt), and
Āt−1 = (A1, · · · ,At−1). Our goal is to estimate the poten-
tial outcome Yt+τ [āt:t+τ−1] after a sequence of treatments
āt:t+τ−1 = (at, · · · ,at+τ−1), given the patient’s historical
information H̄t, i.e.,

E[Yt+τ [āt:t+τ−1]|H̄t]. (1)

The identifiability of treatment effects from observational
data relies on assumptions outlined in prior research [Mel-
nychuk et al., 2022; Lim et al., 2018]: consistency, sequen-
tial ignorability, and sequential overlap. These are detailed in
Appendix C.

3.2 Koopman Operator
A discrete-time dynamical system is represented by ut+1 =
F(ut), where ut denotes the system state and F describes the
dynamics. Identifying direct transitions between states can be

challenging due to nonlinearity or noise [Eivazi et al., 2021;
Morton et al., 2018]. Koopman theory [Koopman, 1931],
however, allows for the projection of the state ut into a mea-
surement function space (a.k.a. Koopman space) g, managed
by an infinite-dimensional linear operator K, such that:

Kg(ut) = g(F(ut)) = g(ut+1). (2)

Koopman operators can effectively model complex nonlinear
dynamics [Koopman, 1931; Yeung et al., 2019; Li and Jiang,
2021], leveraging linear operators to advance understanding
of dynamical systems.

4 Methods
The CTD-NKO, illustrated in Figure 1, comprises two pri-
mary RNN modules. One RNN is tasked with learning
the system state, while the other is dedicated to learning
the Koopman operator that governs state evolution. Subse-
quently, the model employs the evolved state for counter-
factual prediction. We will next detail the problem mod-
eling and the specifics of our method. Code available at
https://github.com/wangxin0126/CTD-NKO IJCAI.

4.1 Modeling Patient State Dynamics via
Koopman Theory

In this study, we model patient state evolution as a dynamical
system, with transitions intricately linked to historical data,
especially prior treatments. These transitions usually display
complex dynamics due to temporal treatment interactions. To
capture this complexity, we utilize Koopman theory in our
modeling approach.

Inspired by the synergy between Koopman theory and ma-
chine learning [Takeishi et al., 2017; Morton et al., 2019;
Fan et al., 2022; Wang et al., 2023; Liu et al., 2023], we
employ DNNs alongside a set of measurement functions
G := [g1, · · · , gn], each mapping R → R, to learn the dy-
namics of complex systems. These functions include non-
linear mappings such as exponential functions, enhancing
the DNNs’ ability to capture the inherent nonlinearity of
dynamical systems [Wang et al., 2023; Kutz et al., 2016;
Brunton et al., 2022]. Specifically, an encoder Φr is used
to extract the latent state vector rt = Φr(H̄t) ∈ Rn from
historical data. We then apply these measurement functions
to project the learned state into the Koopman space:

G(rt) = [g1(r
1
t ), g2(r

2
t ), · · · , gn(rnt )], (3)

where upper indices indicate vector components. For clarity,
we denote the system state in the Koopman space by st =
Ψ(H̄t) = G(Φr(H̄t)) ∈ S , where Ψ is the composition of G
and Φr.

In counterfactual estimation for longitudinal data, the evo-
lution of a system can be naturally divided into two types:
causal and non-causal. Causal evolution primarily arises from
the interaction between the treatment sequence and other his-
torical information, while non-causal evolution reflects the
inherent patterns of the system itself. For instance, in the
absence of medication, a patient’s heart rate or blood pres-
sure typically exhibits periodic variations. As such, we de-
fine causal Kt

c and intrinsic Ki Koopman operators to capture
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these evolutionary processes, allowing us to describe the sys-
tem’s evolution in the Koopman space as follows:

st+1 = (Kt
c +Ki)st. (4)

4.2 Counterfactual Estimation
Consistent with prior studies [Wang et al., 2023; Liu et al.,
2023], we utilize DNNs to derive a matrix representation of
the Koopman operator. For causal evolution, we employ an
encoder Φc to generate the low-dimensional representation
Φc(H̄t,At), which is subsequently transformed as an n × n

matrix representing the causal Koopman operator K̂t
c. In our

implementation, both Φr and Φc are implemented using Long
Short-Term Memory units (LSTM), with the parameters de-
noted as θΦ. For non-causal dynamics, a separate matrix
forms the intrinsic Koopman operator K̂i. Given Equation 4,
we compute the estimated system state ŝt+1 in the Koopman
space for the next time step.

Subsequently, this allows for counterfactual predictions
based on ŝt+1. CTD-NKO adopts an autoregressive recursive
strategy [Chevillon, 2007; Taieb and Atiya, 2015] for multi-
step-ahead prediction, which is also employed in G-Net [Li
et al., 2021]. Therefore, during the training process, we need
to predict the output and time-varying covariates for the next
step. To perform output prediction, we define a feedforward
neural network GY , parameterized by θY , to decode the ex-
pected output from ŝt+1. We use the Mean Squared Error
(MSE) to define the following loss function:

LY (θY , θΦ, t) = ∥Yt+1 −GY (ŝt+1|θY )∥2. (5)

To predict the covariates, we design a module FX that con-
sists of two feedforward neural networks, GX and JX , with
parameters represented by θX . Similar to the output predic-
tion, we use GX to decode the expected covariates from ŝt+1.
Some covariates may change at a slower pace, such as choles-
terol levels. Inspired by the gating mechanism in GRUs, we
utilize JX to design a smoothing mechanism that adapts to
this change trend:

FX(θX , θΦ, t) = ρGX(ŝt+1) + (1− ρ)Xt, (6)

where ρ = Sigmoid(JX(ŝt+1)) is used to regulate the
smoothing degree, achieving a balance between historical ob-
servations and predicted values. Similarly, we define the fol-
lowing loss function:

LX(θX , θΦ, t) = ∥Xt+1 − FX(θX , θΦ, t)∥2. (7)

Furthermore, to encourage the model to learn Koopman
operators correctly, we define the following loss function
based on the ‘true’ st+1 learned by the encoder:

LK(θΦ, t) = ∥st+1 − ŝt+1∥2. (8)

4.3 Balancing via Weighted Factual Loss
The aforementioned modeling approach facilitates accurate
next-step outcome predictions. LetKt = Kt

c+Ki ∈ ΩK, and
let f : S × ΩK → Y and L represent the prediction function
and the loss function, respectively. The marginal error that
we aim to minimize is then defined as:

ϵM := EH̄t∼P (H̄t)[L(f(St,Kt),Yt+1(At))], (9)

which is consistent with the evaluation method proposed
by [Melnychuk et al., 2022] and reflects the model’s per-
formance in estimating counterfactual distributions. Given
the unobservability of counterfactual outcomes, we are con-
strained to estimate only the factual error ϵF from the ob-
served data:

ϵF := EH̄t∼P (H̄t|At)[L(f(St,Kt),Yt+1(At))]. (10)
However, due to confounding bias, the distribution during
counterfactual evaluation often diverges from the factual dis-
tribution, suggesting that using factual loss as a surrogate for
marginal loss could introduce biases. To address this issue,
[Bica et al., 2020] and [Melnychuk et al., 2022] propose
to learn a treatment-invariant balanced representation Φ(H̄t)
through an encoder Φ. This aims to equalize P (Φ(H̄t)) and
P (Φ(H̄t)|At), decoupling the representations of historical
data from current treatments, thereby reducing confounding.
However, this approach may compromise the precision of
counterfactual estimates, leading us to propose Lemma 4.1
for further clarification.
Lemma 4.1. Let Zt = Φ(H̄t), and let I(·; ·) denote the mu-
tual information. Suppose I(Āt−1;At) > 0. When com-
pletely eliminating the correlation between the representation
of the historical information and the current treatment, i.e.,
I(Zt;At) = 0, the information about Āt−1 contained in Zt

must be lossy relative to the historical information H̄t:
I(Āt−1;Zt) < I(Āt−1; H̄t). (11)

Lemma 4.1 suggests that using treatment-invariant bal-
anced representations leads to the loss of historical treatment
information, which may have a negative impact on accurately
predicting future treatment outcomes. To address this, we
propose an alternative approach to mitigate confounding bias,
allowing the weighted-adjusted ϵF to be used as an estimate
of ϵM. The key idea of our method is to minimize the distance
between the weighted joint distribution and the marginal dis-
tribution of the system state St and the current treatment At.
To achieve this, we introduce the Integral Probability Met-
ric (IPM), a measure of the distance between two probability
distributions Q and P :

IPMM(Q,P ) = sup
m∈M

∣∣∣∣∫ m(ζ)(Q(ζ)− P (ζ))dζ

∣∣∣∣ , (12)

where ζ is the concatenation of St and At, andM is a family
of functions m : S ×A → R.
Theorem 4.2. Assume Ψ be a one-to-one repre-
sentation function. When the weight w satisfies
IPM(Pw(St,At), P (St)P (At))=0, then w can equate
factual and marginal errors, i.e.,

EH̄t∼P (H̄t|At)[wL(f(St,Kt),Yt+1(At))] =

EH̄t∼P (H̄t)[L(f(St,Kt),Yt+1(At))]. (13)
Theorem 4.2 indicates that by minimizing the dis-

tance between the weighted distribution Pw(St,At) and
P (St)P (At), we can obtain a set of weights (over time) that
make the adjusted factual error close to the marginal error.
In this study, we choose the family of 1-Lipschitz functions,
where the employed IPM is known as the wasserstein dis-
tance [Villani and others, 2009]. For detailed proofs, please
see Appendix D.
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Algorithm 1 Pseudocode of Training CTD-NKO

Require: D =
{
{x(i)

t ,a
(i)
t ,y

(i)
t }T

(i)

t=1 ∪ {v(i)}
}N

i=1
, θ :=

{θΦ, θX , θY }, l, pmax, c, j = 0, λK, λX , β

1: Initialize θ0EMA, set weights
{
{w(i)

t }T
(i)

t=1

}N

i=1
uniformly

2: for p = 1 to pmax do
3: if p mod c = 0 then

4: Update weights
{
{w(i)

t }T
(i)

t=1

}N

i=1
5: end if
6: λKp

= λK

(
2

1+exp(−10·(p/pmax))
− 1

)
7: for each batch B do
8: LB

Y = 1
|B|

∑
i∈B

∑T (i)

t=1 w
(i)
t L(i)

Y (θY , θΦ, t)

9: LB
X = 1

|B|
∑

i∈B
∑T (i)

t=1 L
(i)
X (θX , θΦ, t)

10: LB
K = 1

|B|
∑

i∈B
∑T (i)

t=1 L
(i)
K (θΦ, t)

11: θΦ ← θΦ − l(
∂LB

Y

∂θΦ
+ λX

∂LB
X

∂θΦ
+ λKp

∂LB
K

∂θΦ
)

12: θY ← θY − l
∂LB

Y

∂θY

13: θX ← θX − lλX
∂LB

X

∂θX
14: j ← j + 1
15: θjEMA = βθj−1

EMA + (1− β)θ
16: end for
17: end for
Ensure: Optimized parameters θ, EMA parameters θEMA

4.4 Training and Inference

Algorithm 1 presents the pseudocode for the training pro-
cess of CTD-NKO, with inputs including the observed data
D and other necessary parameters, and outputs being the op-
timized model parameters. For detailed parameter settings,
please refer to Appendix H. During training, we adopt the
Exponential Moving Average (EMA) strategy [Tarvainen and
Valpola, 2017] to obtain more reliable results, following the
CT study [Melnychuk et al., 2022]. The first line of Algo-
rithm 1 initializes the EMA parameters θ0EMA, and in Line 15,
the parameters are iteratively updated as follows:

θjEMA = βθj−1
EMA + (1− β)θj , (14)

where j denotes the iteration number and β denotes the expo-
nential smoothing factor.

In Lines 3-5 of Algorithm 1, we update the weights every
c epochs. The weight calculation is based on Theorem 4.2,
which involves minimizing the IPM distance between the
weighted joint distribution and the marginal distribution of
the system state representation and the current treatment. We
obtain samples from the joint distribution and the marginal
distribution by applying the actual treatment and the shuffled
treatment to the observed data, respectively. Then, we learn
weights by minimizing the wasserstein distance between the
weighted joint distribution and the marginal distribution. For
specific details, please refer to Appendix G. The model pa-
rameters are updated in Lines 8-13 of Algorithm 1, with the

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN 5.18±0.12 10.01±0.27 10.96±0.71 11.64±1.35 12.34±2.01 13.02±2.63
CRN 4.82±0.11 9.13±0.17 9.75±0.16 10.08±0.18 10.33±0.21 10.54±0.23
G-Net 5.05±0.06 11.92±0.19 12.96±0.23 13.65±0.27 14.15±0.28 14.59±0.32
CT 4.62±0.08 9.02±0.21 9.60±0.21 9.92±0.23 10.15±0.25 10.35±0.29

CTD-NKO 4.57±0.10* 8.97±0.17* 9.55±0.18** 9.86±0.19** 10.08±0.21** 10.27±0.24*

Table 1: Performance comparison of CTD-NKO with baseline mod-
els on the RW-MIMIC dataset: RMSE reported as mean ± standard
deviation across five runs. Statistical significance was assessed us-
ing the Wilcoxon signed-rank test, with * and ** indicating p-values
< 0.1 and < 0.05, respectively.

aim of minimizing the following objective function:

L =
1

N

∑
i∈D

T (i)∑
t=1

(w(i)L(i)
Y (θY , θΦ, t)

+ λXL(i)
X (θX , θΦ, t) + λKp

LK(θΦ, t). (15)

Here, λX denotes a predefined weight coefficient, and λKp

denotes a weight coefficient that gradually increases with the
training epochs. This design takes into account that the learn-
ing of st may not be accurate enough in the early stages of
training; therefore, the importance of LK(θΦ, t) is reduced
during the early training phase. We implement CTD-NKO us-
ing the Pytorch Lightning framework and employ the Adam
algorithm [Kingma and Ba, 2014] for gradient optimization.
After training, CTD-NKO performs one-step-ahead predic-
tions and uses an autoregressive approach for multi-step-
ahead predictions.

5 Experiments
In this section, we conduct a series of experiments to validate
the effectiveness of the proposed CTD-NKO. Following the
standard workflow of the Counterfactual Estimation Bench-
mark [Melnychuk et al., 2022], we compare CTD-NKO with
existing models on both synthetic and real-world datasets. We
then analyze the efficiency of the baseline methods and CTD-
NKO on various data settings. Finally, we investigate the role
of different components of CTD-NKO through ablation stud-
ies.

In this study, we select several state-of-the-art models from
the recent literature on estimating time-varying counterfac-
tuals to serve as comparative baselines. These include neu-
ral network-based models like RMSN [Lim et al., 2018],
CRN [Bica et al., 2020], G-Net [Li et al., 2021], and CT
[Melnychuk et al., 2022], as well as the non-neural network-
based model INSITE [Kacprzyk et al., 2024]. To guarantee a
fair comparison, we perform hyperparameter tuning for these
baseline methods (refer to Appendix H for details).

5.1 Counterfactual Estimation Performance
Comparison

Experiments with FS-Tumor Dataset
Data. The FS-Tumor dataset has been widely adopted
in previous studies evaluating counterfactual estimation over
time, such as [Bica et al., 2020; Melnychuk et al., 2022;
Lim et al., 2018; Kacprzyk et al., 2024]. In the dataset, a
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(a) 2-step-ahead prediction (b) 4-step-ahead prediction (c) 6-step-ahead prediction

Figure 2: The performance comparison of CTD-NKO and other baselines on the Tumor dataset for 2-step, 4-step, and 6-step ahead predictions
under varying levels of time-varying confounders (γ) is conducted. The results are reported as the average RMSE over five runs.

parameter γ in the biomathematical model of tumor controls
the time-varying confounding factors. An increase in the pa-
rameter γ signifies a greater influence of historical data on
treatment allocation, implying a more pronounced presence
of confounding biases. For more details, please refer to Ap-
pendix F

Results. In this study, we select the range of γ from 0 to
4. It is worth noting that γ = 0 represents a scenario where
the treatment is assigned completely at random, indicating the
absence of confounding bias. Figure 2 illustrates the compar-
ison of τ -step-ahead prediction results, where τ ∈ {2, 4, 6}.
For more comprehensive experimental results, please refer to
Appendix F. The results in Figure 2 demonstrate that CTD-
NKO exhibits the best prediction accuracy in the majority of
cases, with the lowest Root Mean Square Error (RMSE). This
advantage becomes more pronounced as the confounding bias
increases, i.e., when γ is larger.

Experiments with MIMIC-III Datasets
Data. MIMIC-III is a comprehensive database that encom-
passes electronic health records of patients in the intensive
care unit and has been widely utilized to evaluate the per-
formance of various models in complex real-world medical
settings. In accordance with the related studies [Hatt and
Feuerriegel, 2021; ?; ?], we construct a Real-World MIMIC
(RW-MIMIC) dataset by selecting 25 dynamic patient covari-
ates and 3 static features from the MIMIC-III database. Our
primary focus was to investigate the impact of two common
treatments, i.e., vasopressors and mechanical ventilation, on
patients’ blood pressure.

As a real-world data source, MIMIC-III does not contain
information on counterfactual outcomes. To control for con-
founding bias and obtain counterfactuals for evaluation while
analyzing high-dimensional patient trajectories, we construct
a semi-synthetic dataset based on MIMIC-III, termed SS-
MIMIC, following the methodology described in [Melnychuk
et al., 2022]. This dataset is generated considering treatment
effects, endogenous dependencies, and exogenous dependen-
cies, building upon the research methods of [Schulam and
Saria, 2017]. For more details on these two datasets, please
refer to Appendix F

Results. Table 1 and Table 2 present the τ -step-ahead pre-
diction results on the RW-MIMIC and SS-MIMIC datasets,

respectively. The results demonstrate that CTD-NKO consis-
tently exhibits superior performance on both datasets, achiev-
ing the lowest RMSE and a relatively small standard devi-
ation. These experimental findings suggest that CTD-NKO
can effectively manage complex long-term dependencies and
may be well-suited for applications that closely mirror real-
world complexities. Notably, we do not compare INSITE
on the MIMIC-III dataset due to the challenges posed by its
high-dimensional, time-varying covariates. For more detailed
reasons, please refer to Appendix G.

5.2 Model Efficiency Analysis
In practical applications, both operational efficiency and pre-
dictive performance are crucial. Hence, we evaluate the
CTD-NKO against neural network-based models across sev-
eral datasets in three key aspects: the τmax-step-ahead pre-
diction RMSE, training speed, and peak GPU memory us-
age. The term ‘peak GPU memory usage’ refers to the max-
imum amount of memory utilized by a GPU during train-
ing. This metric is instrumental in assessing a model’s effi-
ciency and scalability [Ikuzawa et al., 2016; Nie et al., 2022;
Bergner et al., 2023], thereby enabling optimal hardware uti-
lization and cost-effectiveness in applications.

Figure 3 presents the comparative results: On the FS-
Tumor, RW-MIMIC, and SS-MIMIC datasets, compared to
the state-of-the-art model CT, CTD-NKO reduces training
time per epoch by 69.3%, 96.6%, and 89.1% respectively,
while the peak GPU memory usage is only 36.4%, 16.6%,
and 12.6% of that consumed by the CT model. The perfor-
mance advantage of the CT model stems from its adoption
of the more powerful Transformer architecture; however, this
also leads to larger memory consumption, particularly when
handling complex data. In contrast, models based on LSTM
architecture, while less demanding in terms of memory, tend
to exhibit slightly inferior predictive performance. The CTD-
NKO model, applying the Koopman theory and utilizing a
straightforward LSTM architecture, achieves a good balance
between performance and computational cost. Furthermore,
CTD-NKO, similar to G-Net, utilizes an autoregressive recur-
sive strategy for multi-step-ahead predictions. This strategy,
focusing solely on encoder training, boosts efficiency com-
pared to the CRN’s encoder-decoder method, which requires
training multiple components.
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(a) FS-Tumor dataset (γ = 0)
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Figure 3: Comparison of neural network-based model efficiency: Performance metrics are presented for τmax-step-ahead predictions on the
FS-Tumor, RW-MIMIC, and SS-MIMIC datasets, with respective τmax values of 6, 6, and 10. To facilitate an equitable comparison across
different model configurations, peak GPU memory usage is normalized based on batch size.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10

RMSN 0.23 ± 0.01 0.46 ± 0.01 0.59 ± 0.02 0.69 ± 0.03 0.77 ± 0.04 0.84 ± 0.06 0.90 ± 0.07 0.96 ± 0.07 0.99 ± 0.07 1.02 ± 0.07
CRN 0.29 ± 0.02 0.46 ± 0.01 0.57 ± 0.01 0.63 ± 0.01 0.66 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 0.73 ± 0.01 0.75 ± 0.01 0.77 ± 0.01
G-Net 0.35 ± 0.01 0.66 ± 0.02 0.82 ± 0.02 0.94 ± 0.03 1.03 ± 0.04 1.10 ± 0.04 1.16 ± 0.05 1.22 ± 0.05 1.27 ± 0.06 1.31 ± 0.06
CT 0.20 ± 0.01 0.37 ± 0.00 0.44 ± 0.00 0.49 ± 0.01 0.52 ± 0.01 0.54 ± 0.01 0.55 ± 0.01 0.57 ± 0.01 0.58 ± 0.01 0.59 ± 0.01

CTD-NKO 0.17 ± 0.01** 0.34 ± 0.00** 0.40 ± 0.01** 0.44 ± 0.01** 0.46 ± 0.01** 0.48 ± 0.01** 0.49 ± 0.01** 0.50 ± 0.01** 0.51 ± 0.01** 0.52 ± 0.02**

Table 2: Performance comparison of CTD-NKO with baseline models on the SS-MIMIC dataset: RMSE reported as mean ± standard
deviation across five runs. Statistical significance was assessed using the Wilcoxon signed-rank test, with ** indicating p-values < 0.05.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

CTD-NKO + CT 1.33±0.25 0.87±0.12 0.96±0.15 1.03±0.17 1.09±0.18 1.14±0.19
CTD-NKO + ours 1.32±0.21 0.86±0.09 0.93±0.12 1.00±0.16 1.05±0.19 1.10±0.21

Table 3: CTD-NKO with different balancing strategies: Results for
the FS-Tumor dataset with γ = 4.

γ = 2 γ = 4

τ = 1 τ = 6 τ = 1 τ = 6

CTD-NKO 0.88 ± 0.07 0.86 ± 0.06 1.32 ± 0.21 1.10 ± 0.21

w/o weighting 0.89 ± 0.09 0.88 ± 0.08 1.34 ± 0.20 1.16 ± 0.26
w/o global operator 0.86 ± 0.06 0.88 ± 0.12 1.33 ± 0.17 1.24 ± 0.25

Table 4: Ablation study results on various tumor datasets, with the
results presented as RMSE in the form of mean ± standard deviation
over five runs.

5.3 Ablation Study
To assess the significance of various components within the
CTD-NKO model, we conduct ablation studies to compare
the predictive performance of the full model against variants
lacking specific components across different γ settings on the
FS-Tumor dataset, as presented in Table 4. Specifically, ‘w/o
weighting’ denotes the model’s use of uniform weights by
omitting the weighting balancing module; ‘w/o global oper-
ator’ indicates that only the causal Koopman operator is uti-
lized for modeling the temporal state transitions.

When the time-varying confounding bias is larger, the dis-
parity between the counterfactual and factual distributions
increases. The experimental results demonstrate that under
these conditions, the learned balancing weights of CTD-NKO

can mitigate this issue, thus leading to a more pronounced
performance improvement. Additionally, the global Koop-
man operator enhances the model’s performance, with its im-
pact growing more substantial at farther prediction steps τ
and larger confounding bias levels. Finally, we compare the
proposed weighting method with the domain confusion loss
strategy introduced by CT on CTD-NKO and test it on FS-
Tumor (γ = 4). The results in Table 3 demonstrate that our
weighting strategy outperforms learning balanced representa-
tions, which is consistent with our theoretical analysis.

6 Conclusion
Our work emphasizes the importance of effectively model-
ing temporal treatment interactions and preserving historical
treatment information in counterfactual estimation over time.
We propose the Counterfactual Temporal Dynamics Network
via Neural Koopman Operators (CTD-NKO), which models
temporal counterfactual reasoning as an evolutionary process
of a nonlinear dynamical system, capturing complex temporal
treatment interactions and inherent rhythmic dynamics. Ad-
ditionally, we introduce a novel weighting method to miti-
gate confounding bias while reducing the loss of historical
treatment information. These designs enable CTD-NKO to
outperform state-of-the-art methods in terms of performance
and efficiency, providing a powerful tool for improving med-
ical decision-making and optimizing treatment strategies.
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