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Abstract

Deep learning-based speech enhancement (SE)
methods focus on reconstructing speech from the
time or frequency domain. However, these domains
cannot provide enough information to capture the
dynamics of non-stationary signals accurately. To
enrich information, this work proposes a multi-
view fusion SE method (MFSE). Specifically,
MFSE extends the representation space of speech
to the dynamic domain (also called fractional do-
main) between the time and frequency domains
by using the short-time fractional Fourier trans-
form (STFrFT). Subsequently, we construct inputs
as modes of the primary short-time Fourier trans-
form (STFT) spectrum and the auxiliary STFrFT
spectrum views and adaptively identify the opti-
mal fractional STFrFT spectrum from the infinitely
continuous fractional domain by leveraging the av-
erage spectral centroids. The framework extracts
potential features through multiple designed con-
volutional modules and captures the correlation be-
tween different speech frequencies through multi-
granularity attention. Experimental results show
that the proposed method significantly improves
performance in several metrics compared to exist-
ing single-channel SE methods based on time and
frequency domains. Furthermore, the results of
its generalizability evaluation show that the multi-
view method outperforms the single-view method
under a wide range of SNR conditions.

1 Introduction

Speech enhancement (SE), commonly applied in various sce-
narios, aims to improve the intelligibility and quality of
speech signals degraded by noise or other forms of distor-
tion. It is a crucial task in modern communication and ac-
cessibility technologies, helping people with hearing impair-
ments by filtering background noise in hearing aids, improv-
ing speech clarity for accurate recognition in voice-controlled
systems, and improving call quality by reducing ambient
noise in telecommunications [Li et al., 2022].

*Corresponding author: jinchengqyh@ 126.com

The speech representation space plays a key role in SE
base on deep learning [Yu et al., 2020; Tian et al., 2024].
The existing methods mainly depend on time-domain and
frequency-domain. (1) 7ime domain methods take raw speech
signals as input and apply deep neural network architectures
for processing. Some approaches [Défossez er al., 2020;
Strauss and Edler, 2021; Kong et al., 2022] leverage UNet
architectures to extract multiscale features, while RNNs or
LSTMs capture long-term dependencies in the time-domain
signals. These methods preserve the time-domain charac-
teristics of speech, which is beneficial for enhancing the
speech SNR [Luo and Mesgarani, 2019]. (2) Frequency-
domain methods, such as the Short-Time Fourier Transform
(STFT), provide flexible signal representations for speech and
noise separation. The models learn how to extract speech
components from the noise spectrum while suppressing the
noise. The enhanced spectrum is converted back to a time
domain signal by the Inverse STFT (ISTFT) [Hu et al., 2020;
Fu et al., 2021; Shin et al., 2023]. These methods can sup-
press noise in a finer space than the time domain, which is
advantageous for improving speech intelligibility.

Recent works argue that relying solely on time or fre-
quency domain information only captures partial features of
the audio, thus limiting the comprehensiveness of the data
analysis [Tang et al., 2021; Lin et al., 2024]. To take full ad-
vantage of the information in both domains and to integrate
their representation spaces, recent approaches have focused
on joint optimization of the time and frequency domains as
multi-view inputs. These methods [Nareddula et al., 2021;
Dang er al., 2023] utilize different networks to map time and
frequency domain views to the same underlying representa-
tion thus fusing them, extending the representation space of
speech and noise to improve the performance of speech en-
hancement. Some recent work such as [Liang et al., 2024,
Guo et al., 2024a] have carried out some architectural inno-
vations for multi-view convergence. There are also works
such as [Liang et al., 2022; Liang et al., 2025] that utilize
associative relationships and trusted fusion to enhance the in-
terpretability of multi-view fusion.

However, these approaches still focus on analyzing sig-
nals from only two perspectives, time and frequency, and they
have a fixed resolution for time and frequency, making it dif-
ficult to achieve a fine-grained representation of speech and
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Figure 1: Visualize STFT, and STFrFT of the sample speech, re-
spectively.

noise. Coupled with the fact that the STFT originally con-
tained time variations, the effect of optimizing the two jointly
is not obvious. The key to improving SE is to find a more flex-
ible auxiliary view for STFT that extends the representation
space to better decouple speech and noise. The short-time
fractional order Fourier transform (STFrFT), on the other
hand, allows the adjustment of time and frequency resolution
by introducing a fractional order parameter, resulting in bet-
ter time resolution in the high-frequency bands and better fre-
quency resolution in the low-frequency bands, which can be
adapted to the characteristics of different signals. This flexi-
ble resolution adjustment capability allows the model to cap-
ture richer time-frequency information, thus improving the
effectiveness of SE. As shown in Figure 1, STFrFT spectrum
is capable of obtaining a more focused spectral representa-
tion, which serves as an auxiliary view to direct the STFT
spectrum to focus on important information at the same time
frame (red and orange box).

In this paper, we present a novel multi-view single-channel
SE method that employs the short-time fractional Fourier
transform (STFrFT), which provides a richer representation
space than methods that use only the time and frequency do-
mains.

The main contributions of this work include:

* We extend speech to the dynamic domain by STFrFT.
Determining the best auxiliary STFrFT view from the
dynamic domain using spectral centroids makes STFT
more focused on useful frequency information.

* We propose a lightweight framework containing a fea-
ture extraction module and an attention module for bet-
ter separation of speech and noise.

* In VoiceBank+Demand dataset, our proposed algorithm
has significant advantages over other advanced algo-
rithms.

2 Related Work

The current inputs for deep learning-based single-channel SE
are mainly classified into three cases: (i) Time domain based
inputs. (ii) Frequency domain based inputs. (iii) Multi-view

inputs optimized jointly in both the time and frequency do-
mains. Inputs based on STFT variations are commonly re-
ferred to as the time-frequency (T-F) domain in the field of
SE, which is abbreviated as the frequency domain in this pa-
per to better distinguish it from multi-view inputs.

Time domain based SE models operate directly on
time domain waveforms without domain transformation.
SEGAN [Pascual et al., 2017] is a model that transforms
noisy speech into clear speech, with its generator handling
the transformation and its discriminator distinguishing be-
tween synthetic and real clear speech. Building on this idea,
DSEGAN [Phan et al., 2020] introduces multiple generator
chains to perform multi-stage augmented mapping, which en-
hances the coherence of the representation space compared
to SEGAN. In contrast, SEflow [Strauss and Edler, 2021]
proposes a normalized flow framework that directly models
the enhancement process by estimating the density of clean
speech utterances. Additionally, DEMUCS [Défossez er al.,
2020] and CleanUNet [Kong ef al., 2022] both introduce
causal SE models that operate directly on raw waveforms, fur-
ther advancing the capabilities of speech enhancement tech-
nologies.

STFT domain based SE methods process speech signals
in the frequency domain, where the input signals are typi-
cally amplitude spectrum, complex spectrum, and phase spec-
trum. MMSEGAN [Soni ef al., 2018] integrates GAN within
an augmented framework, using STFT domain masks to im-
plicitly learn and predict clean STFT domain representa-
tions. In a similar vein, PSMGAN [Routray and Mao, 2022]
tackles the challenge of phase information by designing a
phase-sensitive speech enhancement technique, employing
conditionally generated adversarial networks. Meanwhile,
PR-WaveGlow [Maiti and Mandel, 2020] and Glance [Li
et al., 2022] take a different approach, using the UNet ar-
chitecture to enhance the representation space of the infor-
mation flow through specialized modules developed in each
of their frameworks. On the other hand, S4ND [P-J et
al., 2023] and Dual-S4D [Sun et al., 2024] employ Struc-
tured State Spaces for Sequences, a linear time-invariant sys-
tem, to provide more granular continuous characterizations
of long sequences. In contrast, these works [Lu et al., 2021;
Tai et al., 2023a; Tai et al., 2023b; Guo et al., 2024b] pro-
pose a different approach by modeling natural images and
raw audio waveforms through paired diffusion and inversion
processes, offering a novel method for both image and audio
enhancement.

Multi-view based SE models typically combine time
and frequency domain features to expand the representation
space. In an effort to unify the feature spaces in both the
time and frequency domains, [Wang e al., 2024] introduces a
feature-fused two-branch SE method, which leverages the en-
coder from [Luo and Mesgarani, 2019]. Building on this idea,
[Tang er al., 2021] proposes a two-channel attention spanning
framework called TFTNet, designed to fully exploit the cor-
relation between the time and frequency axes. TFTNet takes
time-frequency spectrograms as inputs and produces time-
domain waveforms as outputs, enhancing the overall perfor-
mance of speech enhancement tasks by more effectively cap-
turing cross-domain dependencies.
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Figure 2: MFSE framework. (a) Multi-view Construction: The original speech signal is reconstructed by STFT as Y;,,, Y;, and Y; denoted
as the magnitude, real, and imaginary parts of the STFT spectrum, respectively. Similarly, the original signal is converted into multiple
STFrFT spectrum by STFrFT with p from 0 to 0.9 in steps of 0.1, and then Y,$, ¥;7, and Yif , corresponding to the optimal order, are
selected. (b) UNet-like Architecture: Contains a UNet network and MaskDecoder and ComplexDecoder. (c) Down-Up Block: consists of

two convolutional modules and Low-High frequency fusion (LHFF).

3 Methodology

This section describes how to convert speech signals into
STFrFT spectrum and how to pick the optimal frac-
tional counterpart STFrFT spectrum for constructing speech-
enhanced multiviews. Finally, we illustrate the design prin-
ciples and loss functions of the network architecture. The
MEFSE is described in Figure 2.

3.1 Short-time Fractional Fourier Transform

The Fractional Fourier Transform (FrFT) generalizes the clas-
sical Fourier transform by introducing a fractional parameter
that allows continuous interpolation between time and fre-
quency domains, offering greater flexibility in adjusting the
time-frequency balance and making it especially effective for
analyzing signals with complex, non-stationary behaviors.

The STFrFT extends this concept by combining the advan-
tages of the FrFT with the short-time analysis of the signal,
allowing for a localized time-frequency representation. In
the STFrFT, the signal is segmented into short-time intervals,
with the fractional transform applied to each segment, allow-
ing for more precise and adaptive feature extraction from non-
stationary signals. This enables SE models to better capture
the intricate, non-stationary characteristics of speech, enhanc-
ing performance in complex acoustic environments.

FRFT is based on the mathematical properties of the clas-
sical Fourier transform, and the fractional rotation of a signal
in the time-frequency domain is achieved by introducing frac-
tional powers of order. The definition of the FRFT for a signal

(a) (b)

Figure 3: Visualization of the time, frequency and fractional do-
mains: (a) STFT, (b) STFrFT.

x(t) is given by
Fu(u) = F* {2(t)} (u) /R (Kl t)dt, (1)

where « is the angle, and when the a # cm (¢ € Z), for the
transformation kernel IC,, (u, t) is defined as follows

Kalu.1) = /T~ jcota) 2med+* @

In this paper, the proposed method uses an order range of
a € [0, %], and we utilize a order p € [0, 1] to control the
size of the ar so that - = a € [0, §]. FFT is a special form
of FrFT when p = 1 1i.e. o = 7. For the characterization of
Ko (u,t) in FrFT, IFrFT can be obtained by transforming F,,

by F~ again, and the definition is given below

£(t) = F~* (Fa(w)} (t) /R Fo(w)C(u e (3)
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Analogous to the STFT, the mathematical form of STFrFT is
given by

STFrFT,(t,u) = /OO x(1)g(t — ) Ko(m,u)dr, (4)

—00

where ¢(7) denotes the chosen window function centered
around the origin, e.g., Hamming Window or Hanning Win-
dow.

As can be visualized in Figure 3, u is able to dynamically
display the entire time-frequency space by changing the size
of alpha by adjusting the order p, which is STFT whenp = 7.

In practice, it is also necessary to interpolate discrete sig-
nals to ensure accurate computation, and in this paper, sinc in-
terpolation is used to recover continuous signals from discrete
samples. It has the unique property of being the "perfect” in-
terpolation kernel, as it perfectly reconstructs a bandlimited
signal from its samples in the context of the Shannon-Nyquist
theorem. The sinc function is given by:

sin(mwx)

sine(x) = 5)

T

The following section describes the process of how to select
an STFrFT spectrum corresponding to the optimal order from
the candidate views as an auxiliary view with the STFT to
form the multi-view input.

3.2 Order Selection

Selecting the optimal fractional order in SE algorithms is cru-
cial because it allows for a precise balance between time and
frequency domain representation, enhancing the signal’s clar-
ity and intelligibility. By adjusting the fractional order, the
algorithm can better suppress noise while preserving impor-
tant speech features such as pitch and formants, thus im-
proving the SNR and overall speech quality. The optimal
fractional order adapts to different noise types, environmen-
tal conditions, and speech signal characteristics, ensuring
both effective noise reduction and the preservation of natural
speech. This selection also ensures computational efficiency
by avoiding unnecessary complexity, leading to a more ro-
bust and effective enhancement process. In order to select
the optimal order, we devised a method of selection using the
spectral centroid. The calculating spectral centroid is defined
as follows:

_ Sl e X ()]
ey [ X (f)]

where C' is the spectral centroid, N is the number of dis-
crete frequency points in the spectrum, fj, is the k — th fre-
quency point, X (fi) is the complex spectrum of the signal
at the frequency point fi (usually the result of the Fourier
transform), and | X ( fx)| is its modulus, which represents the
amplitude at that frequency point.

We calculated the spectral centers C7_, - -- ClL_
candidate STFrFTs time lengths of 7.

ZZO pz
P )

) (6)
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Algorithm 1 Compute the spectral centroid

Input: STErFT spectrum a:g:XOF , x?j{ 1

Tx F

Output: cent
1: Initialize set cent.
2: fori =0to0 0.9 do

TxF . _
Tp_g.9> SLZE =

3:  Initialize set centroids, freq = FFT frequencies
4. fort=1toTdo

5 Initialize centroid, mag = |xt><F |

6: centroid = sum(freq x mag) / sum(mag)

7 centroids < centroid

8 end for

9:  cent < sum(centroids)

10: end for

11: return cent

where M is the number of order and C’I’,T is the distance from
Cg to average spectral centroid. Finally, based on the C’ T of

each order, the order p corresponding to the maximum C’T’fm,
average C/;L and minimum C;7; are obtained.

After selecting the STFrFT spectrum corresponding to the
completed optimal fractional order, we connect it to the STFT
spectrum in the channel dimension as a multiview input, and
the advantages of this to construct a multiview will be dis-

cussed later.

3.3 Multi-view Construction

The most direct way to utilize the multi-view idea for SE
is to utilize the combination of time domain and frequency
domain. However, the time-domain and frequency-domain
features are heterogeneous, requiring fusion through feature
mapping that projects both into the same high-dimensional
space. This introduces a non-consistency factor between the
views, making the fusion dependent on the quality of the fea-
ture mapping and the design of the loss function [Xue et al.,
2024; Zheng et al., 2024]. In multi-view fusion, keeping con-
sistency between views helps to describe the consistent target
more accurately [Son er al., 2024; Wu et al., 2025], and if the
consistency between two views is low, it often can broaden
the feature space to some extent, but it does not help much in
feature extraction of the target itself. The STFT is a special
case of the STFrFT, differing only in the order p of the trans-
form kernel, while remaining consistent in the time dimen-
sion. This consistency allows both to simultaneously charac-
terize the distributions of speech and noise within the same
time frame, enabling them to be input into the network as a
whole and mitigating, to some extent, the conflicting nature
of the viewpoints.

In deep learning, especially in SE networks, the instability
of spectral resolution affect the performance of the SE model,
and retaining fixed input features helps to maintain stability
during the training process [Shi et al., 2023]. STFrFT dynam-
ically adjusts the degree of time-frequency localization of the
signal by introducing a fractional parameter p, which allows
STFrFT to provide more flexible time-frequency resolution
theoretically, but also increases the computational complex-
ity. Selecting different fractional order parameters will have
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different effects on the time-frequency localization of the sig-
nal, which may lead to fluctuations in the time-frequency res-
olution, especially when the selected fractional order is large
or small. The instability of the spectral resolution may af-
fect the performance of the enhanced model. STFT as a fixed
mode involved in training can provide stable time-frequency
representation, thus yes the model can be maintained to a
certain extent stable training, the introduction of the optimal
short-time fractional view can be utilized to exploit the com-
plementary nature of the multiview network.

3.4 Multi-view Fusion SE Framework

In this paper, we design the Multi-view Fusion SE Framework
(MFSE) architecture and the overall architecture is shown in
Figure 2, and we follow [Sun ef al., 2024; Chen et al., 2024]
using a UNet architecture. The encoder consists of three con-
volutional layers, two downsampling layers, and three Down-
Up Blocks. The first convolution fuses multi-view informa-
tion and expands it to a specified dimension, while the next
two convolutions use depth-separable convolutions to inte-
grate downsampled information for better compatibility with
the Down-Up Block module. The decoder includes a UNet
upsampling module, a mask deconstructor, and a complex
domain deconstructor. The UNet upsampling module mirrors
the encoder, with three upsampling layers and three Down-Up
Blocks. The UNet encoder and decoder parts of the corre-
sponding layers utilize the fusion module for fusing the con-
duction information flow. The mask deconstructor is used to
decode the features into a frequency domain mask, which is
used to identify the noise components in the frequency do-
main and mask them out, and then combine them with the
phase information to transform them into the real and imag-
inary parts of the frequency domain, where M ASK is the
output of the mask deconstructor and Y;,, and Y}, represent the
amplitude spectrum and phase of the input main view STFT,
respectively.

Y, = (MASK xYy,)cosY, ®)
Y; = (MASK x Y,,)sinY,
The complex domain deconstructor is used to decode the fea-
tures into real and imaginary parts in the frequency domain
and finally the final output is weighted and fused with the
real and imaginary parts converted by the mask deconstructor
as shown by

Y/ =aY, + (1-a))Y/

. 9
}/i//:a}/;+(1_a>}/»il ()

Through experimentation, we finally set a to 0.75.

Down-Up Block, the main feature extraction module of
MESE, consists of three parts: (i) TF-DenseBlock (ii) TF-
ConvBlock (iii) Low-High Frequency Fusion (LHFF) based
on multi-granularity attention block. The details of the three
modules are shown in Figure 2(c).

TF-DenseBlock uses depth-separable expansion convolu-
tion combined with the residual structure of DenseNet, where
larger sensory fields tend to give better results in speech tasks.
Under the premise of ensuring lightweight, TF-DenseBlock

performs feature extraction and fusion of features at different
scales, expanding the sensory ability of the extractor on the
features.

TF-ConvBlock utilizes depth-separable convolution for
feature extraction in the time and frequency dimensions re-
spectively after TF-DenseBlock extracts multiscale features,
keeping the extractor’s ability in the time and frequency di-
mensions dynamically balanced to improve the stability and
performance of model training.

The multi-granularity attention block leverages multi-
granularity features to perform stagewise fusion of symmetric
UNet features at the same stage. It employs channel and spa-
tial attention mechanisms for coarse-grained feature extrac-
tion, followed by a 7x7 convolution and sigmoid activation
to compute fine-grained attention for each spectral feature.
The symmetric features are then weighted and fused. To ad-
dress the neglect of the correlation between low-frequency
and high-frequency information in previous SE methods, we
designed the LHFF module. The LHFF module divides
the spectral features into four equal parts along the fre-
quency axis. It passes the low-frequency features in sequence
with other frequency bands through a multi-granularity at-
tention block and then splices them in the frequency dimen-
sion. LHFF progressively maps from coarse-grained to fine-
grained features, using the well-recovered low-frequency in-
formation to guide the optimization of high-frequency com-
ponents, which are strongly affected by noise.

3.5 Loss Function

The loss function is used in this paper as a weighted fusion
of the magnitude spectrum with three weighted fusions of the
complex spectrum and the time-domain loss. The magnitude
spectrum is defined as follows:

Lrtag. = By 30 Mym _y

m

2
} ; (10)

where Y, = 4/Y2 4 Y2 In order to more accurately por-

tray the degree of spectral reduction, we optimize using the
complex spectral loss, which is defined by

o2
Cri = By 5. U Y, -V

2
+E}/i7f/‘” D :|
Utilizing time loss enables a greater focus on the metric
SSNR is given by
Ltime = Bz 2 [[|lz — 2[11] (12)

where & = ISTFT(Y,,Y/), x is clean speech lable. The
final loss is formulated as follows:
Liotat = Lmag. + (1 — ) Lr1 + BLTime (13)

where we assign the value of & to 0.9 and /3 to 0.2.

A } (11
Y; — v/

7

4 Experiments

In order to verify the noise reduction performance and gen-
eralization ability of the proposed method, we conducted a
series of experiments.
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Methods Pub/Year Params Input PESQ1 CISGT CBAK{ COVL{ SSNR{ STOIt
Noisy - - - 1.97 33 2.44 2.63 1.68 0.91
SEGAN arvix/2017 - T 2.16 3.48 2.94 2.80 7.73 0.92
MMSEGAN ICASSP/2018 - T-F 2.53 3.80 3.12 3.14 - 0.93
MetricGAN ICML/2019 - T 2.86 3.99 3.18 3.42 - -
DSEGAN SPL/2020 - T 2.39 3.46 3.11 2.90 8.72 0.932
MetricGAN+ Interspeech/2021 - T-F 3.15 4.14 3.16 3.64 - -
PSMGAN CSL/2022 - T-F 2.92 3.88 3.45 3.62 - -
MetricGAN-OKDv2 ICML/2023 0.82M T-F 3.12 4.17 3.13 3.64 - -
PR-WaveGlow ICASSP/2020 - T-F - 3.80 2.40 3.10 - 0.91
DEMUCS Interspeech/2020 1887M T 2.93 4.22 3.25 3.52 - -
TFT-Net IJCAIL/2020 - T-T-F  2.75 3.93 3.44 3.34 - -
SE-Flow ICASSP/2021 - T 2.28 3.70 3.03 2.97 7.93 -
CleanUNet ICASSP/2022 39.77M T 2.88 4.32 3.41 3.63 - -
GaGNet Appl Acoust/2022  5.94M  T-F 2.94 4.26 3.45 3.59 - -
S4ND UNet Interspeech/2023  0.75M  T-F 2.99 4.37 3.56 3.70 - -
Dual-S4D TASLP/2024 10.8M  T-F 2.55 3.94 3.00 3.23 - 0.934
DiffuSE APSIPA ASC/2021 - T 2.44 3.66 2.83 3.03 - -
CDiffuSE ICASSP/2022 - T 2.52 3.72 291 3.10 5.28 0.914
DR-DifuSE AAAL/2023 355M  T-F 3.09 4.38 3.57 3.76 9.52 0.949
DOSE NeurIPS/2023 - T-F 2.56 3.83 3.27 3.19 - 0.936
VPIDM TASLP/2024 - T-F 3.16 4.23 3.53 3.70 - -
MFSE(Ours) - 29M T-F-F 317 4.46 3.79 3.89 10.63  0.952

Table 1: Comparing with state-of-the-art models on VoiceBank+Demand dataset for PESQ, CISG , CBAK, COVL , SSNR , STOI metrics,
our approach achieves well results. “-” denotes the result is not provided in the original paper. ”T” indicates that the input is time domain.
”T-F” indicates that the input is frequency domain STFT, "T-T-F” indicates that the input contains both time and frequency domains, and

”T-F-F” indicates that the input is frequency domain STFT and STFrFT.

4.1 Datasets

VoiceBank+DEMAND is widely used for SE benchmarking.
It includes recordings from 30 speakers and 10 noise types,
divided into training and test sets with 28 and 2 speakers, re-
spectively. Training uses four signal-to-noise ratios (SNRs)
of [0, 5, 10, 15] dB, while testing uses [2.5, 7.5, 12.5, 17.5]
dB. The pristine audio is sourced from the VoiceBank cor-
pus, consisting of 11,572 speech instances from 28 speakers
in the training set, and 824 utterances from 2 unseen speakers
in the test set. The dataset covers a wide range of noisy en-
vironments, including public spaces (cafeterias, restaurants,
offices), domestic settings (kitchens, living rooms), and ur-
ban transport hubs (cars, metros, buses, and subway stations).
For our experiments, all speech samples were down-sampled
to 16 kHz.

DNS Challenge corpus consists of over 500 hours of clean
audio data recorded by 2150 distinct speakers, alongside
more than 180 hours of diverse noise recordings. We syn-
thesize 30s long clips by augmenting clean speech utterances
and noise. Four signal-to-noise level bands were used to gen-
erate the generalization performance test samples, namely [-
5-0dB,0-5dB, 5-10dB, 10-15dB] to establish 10,000 speech
samples each, and after that, 100 random samples of noisy
each were used to evaluate the model’s ability to generalize.

We follow [Défossez et al., 2020; Lu et al., 2021; Lu et
al., 2022; Sun et al., 2024; Guo et al., 2024b] using Per-
ceptual Evaluation of Speech Quality (PSEQ), prediction of

the signal distortion (CSIG), prediction of the background in-
trusiveness (CBAK), prediction of the overall speech quality
(COVL), segmental signal-to-noisy ratio (SSNR) and Short-
Time Objective Intelligibility (STOI) these indicators to eval-
uate our methodology.

Order select PESQ CISG CBAK COVL SSNR STOI

SC-min 315 443 378 386 10.50 0.951
SC-avg 317 446 379 389 10.63 0.952
SC-max 316 445 377 388 10.44 0.952

Table 2: Evaluation metrics of different orders under the Voice-
Bank+Demand dataset.

4.2 Trainning Setup

Throughout the training process, the speech data was uni-
formly partitioned into 51,040 points, using an FFT size of
510, a window length of 510, a hop length of 160, and a sam-
pling rate of 16kHz. The training configuration included a
batch size of 4, a learning rate of 5e-4, with learning rate de-
cay occurring every 30 epochs and a decay coefficient of 0.5.
The model architecture used a base channel size of 64. All
models were trained for 120 epochs using the AdamW opti-
mizer. Training was performed on a single 46GB NVIDIA
L40 GPU.
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Model Params PESQ CISG CBAK COVL

MEFSE 29M 3.17 446 3.79 3.89

Single-Spectrum 29M 3.05 438 3.72 3.79
w/o TF-DenseBlock 2.9M 3.10 441 374 3.83
w/o TF-ConvBlock 2.2M 3.04 441 3.71 3.78
w/o LHfreqFusion 2.3M 3.12 442 375 3.80

Table 3: Conduct ablation experiments on major design options

4.3 Performance on VoiceBank+Demand

Compared with other comparative methods on the Voice
Bank+Demand dataset, the algorithm proposed in this pa-
per has a good performance on all the metrics, as shown in
Table 1, where it can be seen that the MFSE improves on
CISG, CBAK, COVL and SSNR by 5%-11.7% over the sec-
ond place metrics in the table.

In order to analyze the effect of the optimal order on the
model performance, we also performed the experiments in
Table 2 according to from the max spectral centroid (SC-
max), the min spectral centroid (SC-min), and the average
spectral centroid (SC-avg), and the experiments found that
the SC-avg chosen to have the best metrics of the order voice
enhancement.

4.4 Generalizability Performance on DNS

Challenge

0.8
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Figure 4: Training on VoiceBank+Demand dataset followed by gen-
eralizability test on DNS challenge dataset.

After the model training was completed, to test the dif-
ference in generalization ability using the single view model
(BASE) and the multi-view model (MFSE), we tested it us-
ing the DNS challenge dataset. We evaluated the model
trained using the BASE model and the model trained using
SC-avg on four different signal-to-noise ratio distributions
and showed the improvement in various metrics as shown in
the figure 4, which suggests that the approach using multiple
views has better generalization ability.

4.5 Ablation Study

We conducted ablation experiments by separately us-
ing only the STFT instead of the multi-view method

(Single-Spectrum), without the TF-DenseBlock (w/o
TF-DenseBlock), without the TF-ConvBlock (w/o TF-
ConvBlock), and without the LHFF (w/o LHFF). The
experimental results after ablation are shown in Table 3. The
analysis of the ablation experiments yielded that the number
of model parameters remained basically unchanged after
the addition of STFrFT as the multiview input, and PESQ,
CISG, CBAK, and COVL were improved by 0.12, 0.07,
0.07, and 0.1, respectively, which verified the validity of the
multiview input based on STFrFT as SE at the experimental
level. When the TF-DenseBlock is omitted, the number of
parameters remains largely unaffected, but all metrics show
a degradation, with PESQ experiencing the most significant
decline. When the TF-ConvBlock is not used, both PESQ
and COVL metrics deteriorate more noticeably. The absence
of LHFF leads to an even greater reduction in the PESQ and
COVL scores.

We visualized the spectra obtained from the ablation ex-
periments, as shown in Figure 5. In the figure, the yellow
boxed region in “w/o TF-ConvBlock™ shows poorer recov-
ery compared to MFSE, the green boxed region in "w/o TF-
DenseBlock™ is less well-recovered than MFSE, and the blue
boxed region in “w/o LHFF” also exhibits worse recovery
than MFSE.

w/o TE-ConvBlock

Figure 5: Visualization of ablation experiment results. The green,
blue and yellow boxes are used to mark the significantly different
locations of the enhanced speech after the ablation experiment.

5 Conclusion

We propose a multi-view SE approach based on short-time
fractional Fourier transform. Specifically, it is divided into
two parts: multi-view construction and enhanced network.
The former uses STFrFT and STFT to construct multi-view
input to expand the representation space for speech and noise
separation, while the latter uses the UNet architecture to com-
bine the correlation between the low-frequency and high-
frequency information of speech to reconstruct speech. Ex-
periments show that our proposed method performs well in
the benchmark test VoiceBank+Demand and has some gen-
eralization ability under multiple signal-to-noise ratios in an-
other benchmark test DNS challenge.
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