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Abstract
Incomplete multi-view clustering (IMC) has gar-
nered substantial attention due to its capacity to
handle unlabeled data. Existing methods predomi-
nantly explore pairwise consistency between every
two views. However, such consistency is highly
susceptible to missing samples and outliers within
a certain view and thus deviates from the true clus-
tering distribution. Moreover, dual-view interac-
tion neglects the collaboration effects of multiple
views, making it challenging to capture the holis-
tic characteristics across views. In response to
these issues, we propose a novel Consensus-Guided
Incomplete Multi-view Clustering via Cross-view
Affinities Learning (CAL). Specifically, CAL re-
constructs views with available instances to mine
sample-wise affinities and harness comprehensive
content information within views. Subsequently, to
extract clean structural information, CAL imposes
a structured sparse constraint on the representation
tensor to eliminate biased errors. Furthermore, by
integrating the consensus representation into a rep-
resentation tensor, CAL can employ high-order in-
teraction of multiple views to depict the semantic
correlation between views while acquiring a unified
structural graph across multiple views. Extensive
experiments on seven benchmark datasets demon-
strate that CAL outperforms some state-of-the-art
methods in clustering performance. The code is
available at https://github.com/whbdmu/CAL.

1 Introduction
In the wake of the ongoing progression of information tech-
nology, the same object can be observed from multiple
sources and engender multi-view data [Wang, 2021], [Fang
et al., 2023], [Wang et al., 2023]. The consistent and comple-
mentary information embedded within such data is customar-
ily harnessed to tackle the multi-view clustering (MVC) [Su
et al., 2024], [Tan et al., 2024], [Long et al., 2024a] task.
However, in practical applications, it is often intractable to
ensure the completeness of multi-view data [Wu et al., 2024].

∗Corresponding Author.

(a) Dual-view interaction for consistency learning

(b) Multiple view interaction for consensus learning

Figure 1: Comparison between traditional strategy and our strategy.
(a) The traditional strategy focuses on pairwise interaction between
the current view and others. (b) Our strategy fully considers the
collaborative effects among multiple views and leverages consensus
representation to regulate the learning of high-order consistency.

As a result, incomplete multi-view clustering (IMC) [Wang
et al., 2024a], [Long et al., 2024b], [Yao et al., 2025] has at-
tracted considerable attention for its ability to partition miss-
ing data into their corresponding classes.

Owing to the remarkable success of multi-view subspace
clustering (MVSC) as described in [Cao et al., 2015], [Kang
et al., 2020], [Huang et al., 2022], most IMC approaches [Li
et al., 2022], [Gu et al., 2024] follow a pipeline similar to
MVSC with a two-step strategy: constructing a unified affin-
ity graph followed by applying spectral clustering, in which
the construction of the affinity graph plays a pivotal role in
the IMC process.

According to the way of affinity graph construction,
existing IMC methods can be categorized into subspace
clustering-based methods [Liang et al., 2024], [Liu et al.,
2024a] and graph learning-based methods [Wang et al.,
2024b], [Chen et al., 2025]. For instance, in [Wen et al.,
2020], missing view inference and the semantic consistency
constraint were incorporated into MVSC to learn complete
pairwise consistency between views. [Zhao et al., 2023] ap-
plies the between-view consistency constraint to establish a
joint graph completion framework and achieve pairwise con-
sistency learning. The mentioned IMC methods prioritize
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Figure 2: The framework of our proposed CAL, which learns a unified structural graph through the high-order interaction between content
and structural information across multiple views, under the guidance of a consensus representation.

the recovery of missing instances to enhance the accuracy
of affinity graphs, a principle that our method also follows.
While these methods have achieved outstanding performance
in the IMC task, they often rely on simple dual-view inter-
action to explore pairwise consistency, as depicted in Fig-
ure 1(a). This reliance may restrict the comprehensive ex-
ploration of holistic characteristics and clustering structure
information across multiple views. Meanwhile, the pairwise
consistency calculation between views tends to diverge from
the true data clustering distribution affected by various noises.

To surmount the above weakness, this paper puts forward
a novel cross-view affinities learning (CAL) framework for
IMC, which learns a unified structural graph through the
high-order interaction between content and structural infor-
mation across multiple views, under the guidance of a con-
sensus representation. Specifically, two padding matrices are
introduced to extract comprehensive content information for
each view and capture sample-wise affinities. Following this,
CAL applies the structured sparsity constraint on acquired
affinity representations to filter out erroneous connections be-
tween clusters arising from reconstruction errors and inherent
noise. Furthermore, CAL decomposes view-specific affinity
representations into a consensus representation and diverse
representations with linear relationships. Unlike prior meth-
ods that rely on dual-view interaction, CAL stacks the con-
sensus representation together with affinity representations
into a tensor, making full use of the collaborative effects
across multiple views to excavate and learn a structural graph
with high-order semantic consistency. Eventually, to preserve
the distinctiveness of each view, the view-specific representa-
tions and the learned structural graph jointly contribute to the
computation to yield a unified structural graph. In summary,
the flowchart of CAL is illustrated in Figure 2, and its main
contributions can be encapsulated as follows:

• We propose a novel cross-view affinity learning method,
which stacks the consensus representation and the affin-
ity representations into a high-order tensor. It can ef-
ficiently learn a unified structural graph by considering
collaborative effects across multiple views.

• By recovering missing instances and applying a struc-
tured sparse constraint to the representation tensor, CAL

enhances the learning of comprehensive and precise
content and structural information in each view, which
facilitates the acquisition of a unified structural graph.

• To substantiate the superiority of high-order interac-
tion over dual-view interaction, extensive experiments
were conducted on seven benchmark datasets, and the
comparison results demonstrated that our approach can
achieve state-of-the-art performances in most cases.

2 The Proposed Method
In this section, we will delve into the details of the proposed
CAL. As shown in Figure. 2, CAL aims to learn a unified
structural graph based on the complete content information
and clean structural information within each view via high-
order interaction across multiple views.

Suppose {X(v)}mv=1 denote incomplete multi-view data
with m views and can be divided into an existing instance set
X

(v)
E ∈ Rdv×N

(v)
E and missing instance set X(v)

M ∈ Rdv×N
(v)
M ,

i.e., X(v) = [X
(v)
E ,X

(v)
M ], where the feature dimension is de-

noted by dv , and N represents the total number of instances,
which is equivalent to the sum of N (v)

E and N
(v)
M .

Sample-wise Affinities Learning: In order to exploit the
complete semantic information of each view to enhance the
expressive ability of affinity representations, CAL introduces
two padding matrices F(v)

E ∈ RN
(v)
E ×N and F

(v)
M ∈ RN

(v)
M ×N

that map existing and missing instances to respective posi-
tions in the complete feature matrix to reconstruct incomplete
views, such that the v-th feature matrix can be rewritten as:

X(v) = X
(v)
E F

(v)
E +X

(v)
M F

(v)
M (1)

where F
(v)
E is constructed by iteratively substituting the

columns of the zero matrix O
(v)
E ∈ RN

(v)
E ×N , which cor-

respond to the indices of existing data in view v with the
columns of the identity matrix I

(v)
E ∈ RN

(v)
E ×N

(v)
E . Simi-

larly, F(v)
M is constructed by substituting the columns of the

zero matrix O
(v)
M ∈ RN

(v)
M ×N corresponding to the indices of

missing data in view v with the columns of the identity matrix
I
(v)
M ∈ RN

(v)
M ×N

(v)
M .
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Then, adhering to the principle that each data point is
amenable to linear representation by others, we carry out view
reconstruction involving missing instances and formulate the
objective function for sample-wise affinities learning as

min
X

(v)
M ,Z(v)

m∑
v=1

(∥∥∥X(v) −X(v)Z(v) −B
(v)
1

∥∥∥2
F
+
∥∥∥B(v)

1

∥∥∥
1

)
s.t. X(v) = X

(v)
E F

(v)
E +X

(v)
M F

(v)
M ,

Z(v) ≥ 0,Z(v)1 = 1, diag(Z(v)) = 0.
(2)

where Z(v) ∈ RN×N and B
(v)
1 ∈ Rd(v)×N are an affinity

representation and error matrix for v-th view, respectively. In
the above ways, CAL can effectively impute the missing data
to mitigate the deviation caused by data imperfections. Build-
ing upon this, CAL further captures the richer content infor-
mation for each view and explores the sample-wise affinities.

Intrinsic Representation learning: We regard the harm-
ful information, induced by reconstruction error, outliers, and
inherent noise concealed within views, as biased error. The
affinity structure in Z(v) is vulnerable to being compromised
by such biased error, giving rise to erroneous inter-cluster
connections. Directly utilizing these damaged affinity rep-
resentations to learn consistency between views could lead to
a divergence from the realistic clustering distribution of the
data. To this end, we stack {Z(v)}mv=1 into a tensor Z and
subsequently separate the biased error by decomposing Z as
follows:

Z = L+ S (3)
where the intrinsic tensor L encodes the real relationships
among all samples, including available and absent instances
in each view. The biased tensor S is utilized to describe the
harmful information and the ℓ2,1-norm is employed to capture
the biased error among views as

min
Z,S

B
(v)
2 ,L(v),Lc

m∑
v=1

λ1

∥∥∥B(v)
2

∥∥∥
1
+ λ2∥S∥2,1

s.t. Z = Φ(Z(1),Z(2), ...,Z(v)), Z = L+ S,

Lc = J
({

L(v)
}m

v=1
,
{
B

(v)
2

}m

v=1

) (4)

where Φ is an operator used to construct a third-order ten-
sor by aggregating all affinity representations. Moreover, the
purified view-specific affinity representations {L(v)}mv=1 are
decomposed into linearly related consensus representation Lc

and diverse representation B
(v)
2 .

Multiple View Interaction Learning: Upon the success-
ful acquisition of comprehensive content information and
clean structural information, we prefer to conduct high-order
interaction among multiple views under the guidance of con-
sensus representation rather than dual-view interaction. The
dual-view interaction typically concentrates solely on the as-
sociations between two views at a time and there are signifi-
cant limitations in mining the holistic characteristics of multi-
view data. In contrast, high-order interaction can fully lever-
age the collaborative effects of multiple views and effectively
break through the information barriers formed by dual-view

interaction. Based on the above description, we can arrive at
the overall objective function of our method CAL as follows:

min
Xv

M ,Z(v),B(v),

L(v),Lc,S

m∑
v=1

∥∥∥X(v) −X(v)Z(v) −B
(v)
1

∥∥∥2
F

+
m∑

v=1

λ1

∥∥∥B(v)
∥∥∥
1
+ λ2 ∥S∥2,1 + ∥T ∥p

ω,Sp⃝

s.t. X(v) =X
(v)
E F

(v)
E +X

(v)
M F

(v)
M , Z(v) ≥ 0, Z(v)1 = 1,

diag(Z(v)) = 0, Z = Φ(Z(1),Z(2), ...,Z(v)),

Z = L+ S, Lc = J
(
{L(v)}mv=1, {B

(v)
2 }mv=1

)
,

B(v) =[B
(v)
1 ;B

(v)
2 ], T = Φ

(
L(v)m

v=1,Lc

)
(5)

where λ1 and λ2 are the trade-off parameters of the corre-
sponding terms in the model. The tensor T ∈ RN×(m+1)×N

is a rotated tensor stacked with the affinity representations
L(v) and the consensus representation Lc. Within this ten-
sor, the consensus representation acts as a coefficient of con-
sistency and is enforced by the weighted tensor Schatten p-
norm constraint, it effectively promotes the exploration and
reinforcement of consistent information across all views and
we can acquire a consistent structural graph Lc. After learn-
ing the optimal Lc and L(v), the unified structural graph R
considering consistency and specificity can be calculated by

R =
1

m

m∑
v=1

∣∣L(v)
∣∣+ ∣∣L(v)T

∣∣
2

+
|Lc|+

∣∣LT
c

∣∣
2

, (6)

and then the final clustering result is gained by performing
spectral clustering on R.

3 Optimization
3.1 Optimization Algorithm
By introducing an auxiliary tensor variable A, the augmented
Lagrangian function of problem (5) can be formulated as:

L(φ) =

m∑
v=1

∥∥∥X(v) −X(v)Z(v) −B
(v)
1

∥∥∥2
F
+ λ1∥B(v)∥1

+λ2∥S∥2,1 +
ρ

2
∥Z − L − S +

C1
ρ
∥2F + ∥A∥ ∥p

ω,Sp⃝
m∑

v=1

ρ

2
∥L(v) − Lc −B

(v)
2 +

C
(v)
2

ρ
∥2F

(7)
where φ = {{X(v)

M ,Z(v),B(v),L(v)}mv=1,Lc,S,A} repre-
sents the set of variables to be optimized, ρ > 0 is a penalty
parameter, Y , C1 and C

(v)
2 are Lagrange multipliers. We will

iteratively optimize each variable with the following details.
(1) X(v)

M Step: Fixing other variables and considering the
constraint X(v) = X

(v)
E F

(v)
E + X

(v)
M F

(v)
M , we can derive the

optimal solution by setting the partial derivatives of the min-
imization problem to zero:

X
(v)
M =

(
−X

(v)
E F

(v)
E P(v)F

(v)T
M

)(
F

(v)
M P(v)F

(v)T
M

)−1

(8)
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where P(v) = (I− Z(v))(I− Z(v))
T

.
(2) Z(v) Step: When all the other variables are fixed, Z(v)

can be obtained by solving the following sub-problem:

L(Z(v)) =
∥∥∥X(v) −X(v)Z(v) −B

(v)
1

∥∥∥2

F

+
ρ

2

∥∥∥∥Z(v) − L(v) − S(v) +
Cv

1

ρ

∥∥∥∥2

F

s.t. Z(v) ≥ 0, Z(v)1 = 1, diag(Z(v)) = 0

(9)

By setting the partial derivative ∂L
(
Z(v)

)/
∂Z(v) = 0, we

can obtain that:

Z̃(v) =
(
X(v)TX(v) + ρI

)−1

(
X(v)TX(v) −X(v)TB

(v)
1 + ρL(v) + ρS(v) −C

(v)
1

) (10)

Then, the optional Z(v) is obtained by solving

Z(v) = argmin
Z(v)≥0, Z(v)1=1,

diag(Z(v))=0

∥∥∥Z(v) − Z̃(v)
∥∥∥2

F
(11)

The optional solution is [Nie et al., 2016]:

Z
(v)

i,j =

{
0, i = j(
Z̃

(v)

i,j + η
)
+
, i ̸= j (12)

with η = 1
n−1 − 1

n−1

N∑
j=1,j ̸=i

Z̃
(v)
i,j .

(3) B(v)-Step: The solution for B(v) can be divided into
the following two parts for solving:

min
B

(v)
1

m∑
v=1

(
λ1

∥∥∥B(v)
1

∥∥∥
1
+

∥∥∥E(v)
1 −B

(v)
1

∥∥∥2

F

)
min
B

(v)
2

m∑
v=1

(
λ1

∥∥∥B(v)
2

∥∥∥
1
+ ρ

2

∥∥∥E(v)
2 −B

(v)
2

∥∥∥2

F

) (13)

where E(v)
1 = X(v)−X(v)Z(v) and E

(v)
2 = L(v)−Lc+

C
(v)
2

ρ ,
Eq. (13) is a sparsity constraint optimization problem and has
the following two closed-form solutions [Wen et al., 2019]: B

(v)
1 = ϑλ1

(
X(v) −X(v)Z(v)

)
B

(v)
2 = ϑλ1/ρ

(
L(v) − Lc +C

(v)
2 /ρ

) (14)

where ϑ represents the shrinkage operator.
(4) L(v)-Step: Similar to X

(v)
M , we can obtain the updat-

ing rule of Lv by taking the derivative of corresponding min-
imization problem and setting it to zero as:

L(v) = (D
(v)
1 +D

(v)
2 +D

(v)
3 )/3 (15)

where D(v)
1 = Z(v)−S(v)+

C
(v)
1

ρ , D(v)
2 = Lc+B

(v)
2 +

C
(v)
2

ρ ,

and D
(v)
3 = A(v) − Y(v)

ρ .
(5) S-Step: Removing the unrelated variables, S can be

obtained by optimizing the following problem:

S∗ = argmin
S

λ2

ρ
∥S∥2,1 +

1

2
∥S − K∥2F (16)

Algorithm 1 CAL Algorithm

Input: Incomplete multi-view data {X(v)
E }mv=1, padding ma-

trix {F(v)
E }mv=1 and {F(v)

M }mv=1, clustering number k;
Parameter: λ1, λ2, ρ, η and ρmax;
Initialize: Let Z(v), B(v), L(v), Lc, A(v), Ac, C(v)

2 , S , Y
and C1 to be all zero;

1: while not converged do
2: Update the variables X(v)

M , Z(v), B(v) and L(v) of each
view by Eqs. (8, 12, 14, 15).

3: Update the variables S , A, Lc and Lagrange multipli-
ers by Eqs. (16, 17, 18, 19).

4: end while
Output: L(v), Lc;

5: Derive R by Eq. 6 and perform spectral clustering on it.

where K = Z − L + C1

ρ . It can be resolved with the aid of
lemma 4.1 in [Liu et al., 2013].

(6) A-Step: Fixing other variables, the objective function
of auxiliary variable A is formulated as:

A∗ = argmin
A

∥A∥p
ω,Sp⃝ +

ρ

2

∥∥∥∥T − A+
Y
ρ

∥∥∥∥2

F

(17)

It can be resolved using Theorem 4 in [Gao et al., 2020].
(7) L(v)

c -Step: Similar to the process of solving for L(v),
the optional solution of Lc is given by

Lc = (ρH
(v)
2 +

m∑
v=1

ρH
(v)
1 )/(ρm+ ρ) (18)

where L(v) −B
(v)
2 +

C
(v)
2

ρ and H
(v)
2 = A

(v)
c − Y(v+1)

ρ .
(8) Lagrange multipliers-Step: The updating rules of all

Lagrangian multipliers are listed below.
C1 = C1 + ρ (Z − L− S) ,

C
(v)
2 = C

(v)
2 + ρ

(
L(v) − Lc −B

(v)
2

)
,

Y = Y + ρ (T − A) ,

(19)

where ρ = min (ρη, ρmax). In summary, the whole opti-
mization procedure is presented in Algorithm 1.

3.2 Computational Complexity Analysis
In detail, the complexity of matrix inverse operation for
variables {X(v)

M }mv=1 and {Z(v)}mv=1 in each iteration is de-

noted as O(
m∑

v=1
(N −N

(v)
E )

3
) and O(mN3) respectively.

For updating rotated tensor A ∈ RN×(m+1)×N , the ma-
jor computational costs lie in calculating the 3D FFT and
the 3D inverse FFT, each of which has a complexity of
O(2N2(m+ 1) log(N)). Besides, the N SVDs operation
of N × (m + 1) matrices in the Fourier domain takes
O(N2(m+ 1)

2
). Considering the other steps involve only

fundamental matrix operations, we disregard their compu-
tational costs. Thus, the total computational complexity

of Algorithm 1 is about O(t(
m∑

v=1
(N −N

(v)
E )

3
+ mN3 +

2N2(m+ 1) log(N) +N2(m+ 1)
2
)).
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Dataset Method\Rate ACC(%) NMI(%) Purity(%)
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

B
B

C
Sport

EE-R-IMVC [Liu et al., 2021] 57.76 56.31 54.29 47.41 35.45 33.47 31.26 25.95 47.69 45.31 45.16 54.32
GIMC FLSD [Wen et al., 2021a] 81.38 76.38 70.00 46.64 73.01 64.43 56.54 22.89 90.00 85.52 80.52 54.83

IMVTSC-MVI [Wen et al., 2021b] 76.38 74.14 71.90 67.59 74.96 71.81 69.55 51.80 86.72 84.17 83.10 77.41
TCIMC [Xia et al., 2022] 77.76 75.69 72.41 48.19 74.04 69.44 60.94 29.53 87.76 86.03 79.83 56.64

SAGF IMC [Liang et al., 2023] 74.14 73.45 67.84 43.02 66.04 63.11 53.26 24.80 81.72 79.57 71.90 46.72
LSIMVC [Liu et al., 2023] 80.69 78.79 72.07 38.10 73.57 67.71 58.65 14.53 89.83 87.76 80.17 41.64
PIMVC [Deng et al., 2023] 79.40 75.34 70.09 55.43 70.62 65.81 56.31 31.96 88.45 84.83 77.67 61.81

HCLS CGL [Wen et al., 2023] 92.24 87.07 79.31 50.86 81.81 71.54 61.23 25.06 92.24 88.79 80.17 50.86
PSIMVC-PC [Li et al., 2024] 81.55 74.91 73.62 72.67 77.71 70.24 69.47 68.63 88.71 85.09 84.91 84.48

SCSL [Liu et al., 2024b] 65.43 56.90 48.71 44.48 51.49 40.96 29.62 19.70 73.28 64.31 54.57 49.20
CAL(Ours) 94.83 92.67 91.38 91.12 93.37 90.21 88.27 86.27 95.69 94.40 91.38 92.93

M
SR

C

EE-R-IMVC [Liu et al., 2021] 83.24 79.91 77.57 73.61 70.63 67.88 65.80 60.39 83.24 80.38 78.14 74.67
GIMC FLSD [Wen et al., 2021a] 79.90 79.29 66.57 44.19 71.61 69.01 52.44 32.11 81.24 80.29 67.62 45.71

IMVTSC-MVI [Wen et al., 2021b] 94.79 93.12 91.43 72.73 89.57 87.21 85.66 67.95 94.79 93.12 91.43 73.48
TCIMC [Xia et al., 2022] 86.67 90.19 89.01 57.26 77.81 82.35 80.32 49.89 86.67 90.19 89.01 60.72

SAGF IMC [Liang et al., 2023] 82.62 75.48 69.14 50.76 72.62 66.10 58.15 39.43 82.62 76.33 70.81 52.19
LSIMVC [Liu et al., 2023] 73.86 68.48 60.86 42.57 63.29 55.85 45.62 29.64 74.24 68.90 61.38 44.43
PIMVC [Deng et al., 2023] 87.71 83.24 77.38 63.67 78.33 72.70 65.68 48.43 87.71 73.43 78.48 64.57

HCLS CGL [Wen et al., 2023] 83.33 82.38 75.24 40.00 73.00 70.14 61.26 27.57 83.33 82.38 75.24 40.00
PSIMVC-PC [Li et al., 2024] 83.33 82.43 80.05 65.33 76.54 73.04 71.19 55.51 84.00 83.86 80.81 67.19

SCSL [Liu et al., 2024b] 72.76 70.24 64.62 44.52 63.91 62.38 53.97 34.67 74.33 72.33 64.48 46.86
CAL(Ours) 99.38 99.05 98.57 96.67 98.69 97.83 96.77 92.73 99.38 99.05 98.57 96.67

O
R

L

EE-R-IMVC [Liu et al., 2021] 71.50 55.50 39.00 25.25 81.57 69.09 54.99 44.95 74.00 57.75 40.50 25.75
GIMC FLSD [Wen et al., 2021a] 73.20 60.95 51.50 31.20 85.12 73.36 65.03 47.50 76.95 64.05 54.80 34.05

IMVTSC-MVI [Wen et al., 2021b] 93.75 87.00 84.75 83.50 96.71 92.35 92.28 88.54 94.75 87.25 86.75 85.00
TCIMC [Xia et al., 2022] 76.85 75.90 75.90 46.20 87.39 86.98 85.13 66.51 79.45 78.95 77.80 49.75

SAGF IMC [Liang et al., 2023] 51.25 49.25 49.50 31.50 75.05 74.18 69.61 51.78 58.00 57.00 53.75 34.00
LSIMVC [Liu et al., 2023] 77.25 69.50 59.00 39.25 86.66 78.53 72.01 57.97 78.75 71.25 61.75 42.25
PIMVC [Deng et al., 2023] 74.00 73.25 67.75 45.00 84.80 83.25 78.26 62.91 77.75 77.25 70.75 48.25

HCLS CGL [Wen et al., 2023] 75.25 74.25 67.25 41.00 84.27 83.56 76.72 63.25 77.50 76.75 70.75 46.00
PSIMVC-PC [Li et al., 2024] 64.36 63.76 56.24 38.18 79.87 78.63 73.03 61.17 67.08 65.83 59.09 40.88

SCSL [Liu et al., 2024b] 79.14 73.80 61.33 38.65 89.72 86.34 78.77 59.79 81.91 78.09 67.21 43.69
CAL(Ours) 98.53 96.63 96.23 93.75 97.52 98.54 97.56 95.68 98.53 97.23 95.69 94.05

B
B

C

EE-R-IMVC [Liu et al., 2021] 73.68 70.01 66.92 62.67 53.31 50.85 47.76 47.44 74.85 73.36 71.60 71.24
GIMC FLSD [Wen et al., 2021a] 80.12 82.54 80.76 60.76 61.87 64.03 57.97 38.38 80.12 82.54 80.76 66.09

IMVTSC-MVI [Wen et al., 2021b] 77.71 84.03 83.80 76.31 70.45 75.29 75.74 59.67 80.85 84.03 83.80 79.15
TCIMC [Xia et al., 2022] 86.64 86.13 81.96 72.34 71.43 68.30 59.89 47.60 87.45 86.58 82.39 74.38

SAGF IMC [Liang et al., 2023] 82.92 79.02 77.84 60.66 66.88 61.18 56.69 38.20 82.92 79.02 77.84 61.02
LSIMVC [Liu et al., 2023] 70.07 66.55 59.21 48.63 58.48 55.86 47.97 43.33 75.97 69.08 63.90 54.99
PIMVC [Deng et al., 2023] 87.81 84.60 83.66 73.87 71.41 66.14 62.73 48.26 87.81 84.60 83.66 74.04

HCLS CGL [Wen et al., 2023] 83.07 82.92 78.54 56.50 61.85 58.63 51.92 27.44 83.07 82.92 78.54 56.50
PSIMVC-PC [Li et al., 2024] 70.74 68.70 68.04 66.67 60.30 61.13 63.15 65.09 76.80 77.34 79.37 80.86

SCSL [Liu et al., 2024b] 85.12 84.23 82.96 72.69 70.63 66.40 65.62 47.36 92.88 94.09 90.98 79.05
CAL(Ours) 98.35 97.88 97.50 95.62 94.32 94.17 91.83 87.66 98.35 97.88 97.50 95.62

Table 1: Clustering results (%) w.r.t. three metrics on BBCSport, MSRC, ORL and BBC datasets with different missing rates.

4 Experiment

Dataset Sample View Cluster Feature

BBCSport 116 4 5 1991, 2063, 2113, 2158
MSRC 210 5 7 24, 576, 512, 256, 254
ORL 400 4 40 4096, 3304, 6750, 1024
BBC 685 4 5 4659, 4633, 4665, 4684
Flower 1360 7 17 1360, 1360, ..., 1360
Caltech101-7 1474 6 7 48, 40, 254, 1984, 512, 928
Handwritten 2000 5 10 240, 76, 216, 47, 64

Table 2: General statistics of datasets.

4.1 Experimental Settings
Datasets: We evaluate our method on seven popular multi-
view datasets, including BBCSport, MSRC, ORL, BBC,

Caltech101-7, Flower and Handwritten datasets. Table 2 lists
the general statistics.
Compared methods: We compare CAL with the following
ten state-of-the-art methods: EE-E-IMVC [Liu et al., 2021],
GIMC FLSD [Wen et al., 2021a], IMVTSC-MVI [Wen et al.,
2021b], PSIMVC-PC [Li et al., 2024], SAGF IMC [Liang
et al., 2023], TCIMC [Xia et al., 2022], LSIMVC [Liu et
al., 2023], PIMVC [Deng et al., 2023], HCLS CGL [Wen et
al., 2023], SCSL [Liu et al., 2024b], among which IMVTSC-
MVI and TCIMC are also tensor-based methods.
Incomplete data construction: For each dataset, we arbi-
trarily remove 10%, 30%, 50%, and 70% samples from each
view to construct incomplete multi-view data, while ensuring
that each sample exists in at least one view.
Implementation Details: For the comparative methods, we
have sought their optimal hyper-parameters following the rec-
ommendations in the original papers. For our CAL, we select
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Dataset Method\Rate ACC(%) NMI(%) Purity(%)
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

Flow
er

EE-R-IMVC [Liu et al., 2021] 50.88 39.56 25.66 16.62 46.00 30.01 16.92 11.15 52.06 40.96 26.99 17.06
GIMC FLSD [Wen et al., 2021a] 45.24 41.51 34.74 23.49 46.17 42.49 35.29 24.91 46.63 42.99 35.71 24.63

IMVTSC-MVI [Wen et al., 2021b] 92.13 87.21 86.47 82.13 87.33 87.45 80.83 80.64 92.91 89.04 86.47 82.13
TCIMC [Xia et al., 2022] 53.65 50.57 47.37 36.96 50.96 49.35 43.39 33.30 56.47 52.50 49.29 38.19

SAGF IMC [Liang et al., 2023] 51.18 49.85 37.87 30.37 51.84 50.27 37.87 29.16 52.79 81.54 39.34 31.40
LSIMVC [Liu et al., 2023] 50.81 46.32 38.38 32.87 52.37 45.80 38.22 32.55 51.54 47.28 39.04 34.04
PIMVC [Deng et al., 2023] 62.50 60.81 54.63 49.78 59.72 56.56 50.09 41.66 63.53 62.21 56.25 50.37

HCLS CGL [Wen et al., 2023] 47.50 42.79 35.51 28.97 45.19 40.18 32.55 27.31 47.87 42.94 36.40 30.29
PSIMVC-PC [Li et al., 2024] 37.92 36.27 31.94 25.50 42.22 37.40 32.60 25.76 39.36 37.05 33.32 26.62

SCSL [Liu et al., 2024b] 46.54 43.96 31.50 27.54 47.07 41.83 32.33 27.60 47.67 44.92 44.92 29.21
CAL(Ours) 98.53 98.01 97.03 96.03 97.52 96.67 95.78 93.81 98.53 98.01 97.03 96.03

C
altech101-7

EE-R-IMVC [Liu et al., 2021] 41.66 40.37 35.07 27.95 28.33 19.62 16.61 8.79 75.78 71.10 66.01 63.09
GIMC FLSD [Wen et al., 2021a] 58.56 52.24 52.09 46.59 14.95 16.06 17.95 18.81 66.24 65.40 67.34 68.70

IMVTSC-MVI [Wen et al., 2021b] 63.37 62.48 61.94 46.34 54.39 53.02 51.67 32.42 87.38 86.91 87.52 79.17
TCIMC [Xia et al., 2022] 64.86 64.03 61.68 60.28 52.40 46.91 47.28 41.38 86.23 84.82 83.60 82.56

SAGF IMC [Liang et al., 2023] 71.64 66.83 62.55 56.78 64.59 58.67 49.25 36.25 87.99 86.09 83.04 79.38
LSIMVC [Liu et al., 2023] 71.44 70.28 63.70 60.31 61.12 51.82 50.01 35.72 90.77 84.33 84.74 80.05
PIMVC [Deng et al., 2023] 70.62 66.42 66.28 65.33 56.34 52.43 52.17 48.94 88.60 85.82 86.16 85.07

HCLS CGL [Wen et al., 2023] 72.66 67.77 65.26 63.98 51.95 50.97 52.16 45.63 84.94 86.43 84.46 83.99
PSIMVC-PC [Li et al., 2024] 50.21 50.00 48.37 49.29 47.26 42.96 39.48 30.52 82.63 80.60 79.17 74.91

SCSL [Liu et al., 2024b] 66.35 58.21 56.93 56.38 50.22 50.95 21.85 16.11 82.23 83.12 70.43 66.76
CAL(Ours) 71.78 67.39 67.03 65.67 70.06 66.13 66.14 64.27 95.12 94.89 94.91 94.37

H
andw

ritten

EE-R-IMVC [Liu et al., 2021] 88.60 85.23 76.70 51.74 78.64 73.30 62.26 40.21 88.60 85.23 76.70 51.74
GIMC FLSD [Wen et al., 2021a] 88.65 87.89 86.85 86.35 80.01 78.44 76.23 75.33 88.65 87.45 86.56 86.55

IMVTSC-MVI [Wen et al., 2021b] 96.43 95.21 91.83 87.15 92.44 89.95 84.07 77.39 96.43 95.21 91.83 87.15
TCIMC [Xia et al., 2022] 83.33 83.72 82.69 84.15 86.39 85.08 79.89 80.88 85.93 85.85 82.97 84.27

SAGF IMC [Liang et al., 2023] 84.40 84.12 83.61 81.19 89.49 87.71 85.63 73.06 86.99 86.42 85.70 82.01
LSIMVC [Liu et al., 2023] 91.97 93.63 87.42 85.75 85.63 88.01 82.75 76.46 91.97 96.63 88.10 85.75
PIMVC [Deng et al., 2023] 94.80 93.79 91.23 88.61 89.74 87.71 83.88 79.56 94.88 93.79 91.23 88.61

HCLS CGL [Wen et al., 2023] 85.60 85.05 81.35 81.00 88.50 88.18 81.26 76.96 87.70 87.50 83.40 81.50
PSIMVC-PC [Li et al., 2024] 86.79 85.15 79.12 75.09 83.08 81.61 77.01 69.50 87.09 85.63 79.83 75.47

SCSL [Liu et al., 2024b] 94.66 92.44 85.30 80.53 88.28 82.67 78.15 78.82 96.89 94.06 87.07 82.96
CAL(Ours) 100.00 100.00 99.95 99.25 99.95 99.95 99.86 98.24 99.95 99.95 99.95 99.25

Table 3: Clustering results (%) w.r.t. three metrics on Flower, Caltech101-7 and Handwritten datasets with different missing rates.

(a) MSRC (b) ORL (c) Flower (d) Caltech01-7

Figure 3: Visualization of the unified structural graph on MSRC, ORL, Flower, and Caltech101-7 datasets with a 50% missing rate.

λ1 and λ2 within the range of [10−5, 103] and evaluate our
method using three popular metrics: accuracy (ACC), nor-
malized mutual information (NMI), and purity.

4.2 Experimental Results and Analysis
All experimental results on seven datasets w.r.t. three metrics
are illustrated in table 1 and table 3, where the best results
are in red and the second-best are highlighted in blue. From
the experimental results, we can reach the following obser-
vations: (1) Our method almost achieves the best perfor-
mance on all datasets and exhibits significant improvements
in cases of high missing rates. For instance, on BBCSport
dataset with a missing rate of 70%, our algorithm achieves ad-
vancement of 18.45%-53.02%, 17.64%-71.74%, and 8.45%-

51.29% in terms of three respective metrics. (2) Compared
with the second-best performing method (IMVTSC-MVI) on
most datasets, our method shows a substantial enhancement
in the NMI metric under equal or lower ACC, which not
only illustrates the superiority of high-order interaction across
multiple views over dual-view interaction but also validates
that consensus guidance can boost the ability to learn con-
sistency. (3) We employ heatmaps and t-SNE to visualize
the unified structural graph R and show in Figure 3, that
the structural graph exhibits a distinct block diagonal struc-
ture and compact clusters, indicating that our method more
effectively explores the data clustering structure. (4) From
the perspective of interaction mechanisms, CAL establishes
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Dataset Method\Rate ACC(%) NMI(%) Purity(%)
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

BBCSport
CAL-I 88.45 86.38 83.62 76.81 74.28 72.13 70.21 66.16 88.45 87.24 84.83 81.98
CAL-II 90.17 87.24 85.17 81.64 86.82 80.16 76.27 62.60 93.28 90.69 90.43 82.33
CAL 94.83 92.67 91.38 91.12 93.37 90.21 88.27 86.27 95.69 94.40 91.38 92.93

ORL
CAL-I 93.28 93.10 92.78 91.63 97.06 96.88 95.53 93.39 94.43 94.15 93.35 91.82
CAL-II 90.65 90.25 89.95 78.28 95.26 94.47 93.76 86.23 91.85 91.13 90.88 79.95
CAL 98.53 96.63 96.23 93.75 97.52 98.54 97.56 95.68 98.53 97.23 95.69 94.05

Table 4: The ablation experiments on BBCSport and ORL datasets with different missing rates.

(a) BBCSport (p=0.9) (b) λ1=10−2 and λ2=10−5

(c) ORL (p=0.9) (d) λ1=10 and λ2=10−1

Figure 4: Parameter analysis of CAL w.r.t. λ1, λ2 and p on BBC-
Sport and ORL datasets with a 30% missing rate.

consensus-aware interactions based on existing tensor rank
constraints compared with other methods, which can opti-
mize the interaction process through consensus structure and
achieve dynamic fusion between specific and consensus rep-
resentation. Additionally, CAL can retain complete and ac-
curate data clustering relationships through the dual affin-
ity constraint mechanism composed of sample-wise affinities
learning and intrinsic representation learning.
Parameter sensitivity analysis: In this subsection, we ana-
lyze the impact of model parameters λ1 and λ2 on cluster-
ing performance. Figure 4(a) and (c) illustrates the variation
in ACC for different combinations of λ1 and λ2 on BBC-
Sport and ORL datasets with a 30% missing rate. It can be
observed that satisfactory performance is achieved when λ1
varies within the range [10−2, 103]. The clustering results
for BBCSport and ORL datasets are insensitive to relatively
large and small values of λ2, respectively. Furthermore, we
also investigate the influence of power parameter p in Figure
4(b) and (d). Generally, CAL obtains ideal clustering results
when p is selected from [0.8, 0.9].
Convergence analysis: This paper develops an alternative
optimization algorithm for solving the proposed CAL model.
By iteratively optimizing each sub-problem and obtaining a
closed-form solution, we ensure that the algorithm is bounded

Figure 5: Convergence curves on Flower and Caltech101-7 datasets
with a 30% missing rate.

below. Additionally, convergence curves on Flower and
Caltech101-7 datasets with a 30% missing rate are plotted in
Figure 5, depicting the evolution of algorithm loss and ACC
throughout iterations. It is evident that the algorithm loss de-
clines promptly and has a lower bound of 0.

Ablation study: We conduct the ablation study to validate
the effectiveness of each submodel and record the results on
BBCSport and ORL datasets ith different missing rates. In
specific, based on Eq. (5), we establish the below two degen-
erate methods: CAL without structured sparsity constraint
(CAL-I) and high-order interaction without consensus guid-
ance (CAL-II). From the results in table 4, it is evident that
the clustering results of both variants are inferior to the origi-
nal method. Moreover, in most cases, the performance degra-
dation of CAL-II from the missing rate of 0.1 to 0.7 across
the three metrics is greater than that of CAL-I. Large fluctua-
tions in the performance of CAL-II underscores the substan-
tial role of consensus representation in advancing consistency
learning among multiple views in high-order interaction.

5 Conclusion

In this paper, we propose a cross-view affinity learning
method named CAL for incomplete multi-view clustering,
which effectively avoids the limitations posed by dual-view
interaction on information fusion. CAL integrates compre-
hensive content information and pure structural information
to acquire a unified structural graph for clustering under the
guidance of consensus representation through the high-order
interaction across multiple views. Moreover, an effective op-
timization algorithm for the CAL has been developed and ex-
tensive experiments have been carried out to validate its su-
periority over state-of-the-art methods.
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