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Abstract

Incomplete multi-view clustering (IMC) has gar-
nered substantial attention due to its capacity to
handle unlabeled data. Existing methods predomi-
nantly explore pairwise consistency between every
two views. However, such consistency is highly
susceptible to missing samples and outliers within
a certain view and thus deviates from the true clus-
tering distribution. Moreover, dual-view interac-
tion neglects the collaboration effects of multiple
views, making it challenging to capture the holis-
tic characteristics across views. In response to
these issues, we propose a novel Consensus-Guided
Incomplete Multi-view Clustering via Cross-view
Affinities Learning (CAL). Specifically, CAL re-
constructs views with available instances to mine
sample-wise affinities and harness comprehensive
content information within views. Subsequently, to
extract clean structural information, CAL imposes
a structured sparse constraint on the representation
tensor to eliminate biased errors. Furthermore, by
integrating the consensus representation into a rep-
resentation tensor, CAL can employ high-order in-
teraction of multiple views to depict the semantic
correlation between views while acquiring a unified
structural graph across multiple views. Extensive
experiments on seven benchmark datasets demon-
strate that CAL outperforms some state-of-the-art
methods in clustering performance. The code is
available at https://github.com/whbdmu/CAL.

1 Introduction

In the wake of the ongoing progression of information tech-
nology, the same object can be observed from multiple
sources and engender multi-view data [Wang, 2021], [Fang
etal.,2023], [Wang et al., 2023]. The consistent and comple-
mentary information embedded within such data is customar-
ily harnessed to tackle the multi-view clustering (MVC) [Su
et al., 2024], [Tan et al., 2024], [Long et al., 2024a] task.
However, in practical applications, it is often intractable to
ensure the completeness of multi-view data [Wu er al., 2024].
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Figure 1: Comparison between traditional strategy and our strategy.
(a) The traditional strategy focuses on pairwise interaction between
the current view and others. (b) Our strategy fully considers the
collaborative effects among multiple views and leverages consensus
representation to regulate the learning of high-order consistency.

As a result, incomplete multi-view clustering (IMC) [Wang
et al., 2024a], [Long et al., 2024b], [Yao et al., 2025] has at-
tracted considerable attention for its ability to partition miss-
ing data into their corresponding classes.

Owing to the remarkable success of multi-view subspace
clustering (MVSC) as described in [Cao et al., 2015], [Kang
et al., 20201, [Huang et al., 20221, most IMC approaches [Li
et al., 2022], [Gu et al., 2024] follow a pipeline similar to
MVSC with a two-step strategy: constructing a unified affin-
ity graph followed by applying spectral clustering, in which
the construction of the affinity graph plays a pivotal role in
the IMC process.

According to the way of affinity graph construction,
existing IMC methods can be categorized into subspace
clustering-based methods [Liang et al., 20241, [Liu er al.,
2024a] and graph learning-based methods [Wang et al.,
2024b], [Chen et al., 2025]. For instance, in [Wen et al.,
20201, missing view inference and the semantic consistency
constraint were incorporated into MVSC to learn complete
pairwise consistency between views. [Zhao er al., 2023] ap-
plies the between-view consistency constraint to establish a
joint graph completion framework and achieve pairwise con-
sistency learning. The mentioned IMC methods prioritize
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Figure 2: The framework of our proposed CAL, which learns a unified structural graph through the high-order interaction between content
and structural information across multiple views, under the guidance of a consensus representation.

the recovery of missing instances to enhance the accuracy
of affinity graphs, a principle that our method also follows.
While these methods have achieved outstanding performance
in the IMC task, they often rely on simple dual-view inter-
action to explore pairwise consistency, as depicted in Fig-
ure 1(a). This reliance may restrict the comprehensive ex-
ploration of holistic characteristics and clustering structure
information across multiple views. Meanwhile, the pairwise
consistency calculation between views tends to diverge from
the true data clustering distribution affected by various noises.

To surmount the above weakness, this paper puts forward
a novel cross-view affinities learning (CAL) framework for
IMC, which learns a unified structural graph through the
high-order interaction between content and structural infor-
mation across multiple views, under the guidance of a con-
sensus representation. Specifically, two padding matrices are
introduced to extract comprehensive content information for
each view and capture sample-wise affinities. Following this,
CAL applies the structured sparsity constraint on acquired
affinity representations to filter out erroneous connections be-
tween clusters arising from reconstruction errors and inherent
noise. Furthermore, CAL decomposes view-specific affinity
representations into a consensus representation and diverse
representations with linear relationships. Unlike prior meth-
ods that rely on dual-view interaction, CAL stacks the con-
sensus representation together with affinity representations
into a tensor, making full use of the collaborative effects
across multiple views to excavate and learn a structural graph
with high-order semantic consistency. Eventually, to preserve
the distinctiveness of each view, the view-specific representa-
tions and the learned structural graph jointly contribute to the
computation to yield a unified structural graph. In summary,
the flowchart of CAL is illustrated in Figure 2, and its main
contributions can be encapsulated as follows:

* We propose a novel cross-view affinity learning method,
which stacks the consensus representation and the affin-
ity representations into a high-order tensor. It can ef-
ficiently learn a unified structural graph by considering
collaborative effects across multiple views.

* By recovering missing instances and applying a struc-
tured sparse constraint to the representation tensor, CAL

enhances the learning of comprehensive and precise
content and structural information in each view, which
facilitates the acquisition of a unified structural graph.

* To substantiate the superiority of high-order interac-
tion over dual-view interaction, extensive experiments
were conducted on seven benchmark datasets, and the
comparison results demonstrated that our approach can
achieve state-of-the-art performances in most cases.

2 The Proposed Method

In this section, we will delve into the details of the proposed
CAL. As shown in Figure. 2, CAL aims to learn a unified
structural graph based on the complete content information
and clean structural information within each view via high-
order interaction across multiple views.

Suppose {X(")}™  denote incomplete multi-view data
with m views and can be divided into an existing instance set

() .. (v)
Xg) € R%w*Ng” and missing instance set XE\;}) € RbwxNy'

ie., X® = [Xg), XE\Z)], where the feature dimension is de-
noted by d,,, and N represents the total number of instances,

which is equivalent to the sum of N g) and N, ](;;).

Sample-wise Affinities Learning: In order to exploit the
complete semantic information of each view to enhance the
expressive ability of affinity representations, CAL introduces
two padding matrices F{) € RV:"*N and F(}) € RN’ *N
that map existing and missing instances to respective posi-
tions in the complete feature matrix to reconstruct incomplete
views, such that the v-th feature matrix can be rewritten as:

X® = xXPFPY + xR (1)

(v)

where F;’ is constructed by iteratively substituting the

. ' () .
columns of the zero matrix Og) € RNe >N which cor-
respond to the indices of existing data in view v with the

o . OISO NI
columns of the identity matrix 1) & R¥z"*N5” Simi-
larly, FEC}) is constructed by substituting the columns of the

. (v) . o
zero matrix OE&) € RVu XN corresponding to the indices of
missing data in view v with the columns of the identity matrix

1Y) e RN *NL
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Then, adhering to the principle that each data point is
amenable to linear representation by others, we carry out view
reconstruction involving missing instances and formulate the
objective function for sample-wise affinities learning as

min HX(”) xz —BO| + |Bl”
(v) Z) Y 1 F ! 1
s.t. X( 9 =XWFY + XF),

Z™ > 0,21 = 1, diag(Z2") = 0.

@)
where Z(") € RV*N and Bgv) € RI*N are an affinity
representation and error matrix for v-th view, respectively. In
the above ways, CAL can effectively impute the missing data
to mitigate the deviation caused by data imperfections. Build-
ing upon this, CAL further captures the richer content infor-
mation for each view and explores the sample-wise affinities.

Intrinsic Representation learning: We regard the harm-
ful information, induced by reconstruction error, outliers, and
inherent noise concealed within views, as biased error. The
affinity structure in Z(*) is vulnerable to being compromised
by such biased error, giving rise to erroneous inter-cluster
connections. Directly utilizing these damaged affinity rep-
resentations to learn consistency between views could lead to
a divergence from the realistic clustering distribution of the
data. To this end, we stack {Z(*)}" | into a tensor Z and
subsequently separate the biased error by decomposing Z as
follows:

Z=L+S 3)
where the intrinsic tensor £ encodes the real relationships
among all samples, including available and absent instances
in each view. The biased tensor S is utilized to describe the
harmful information and the ¢ ;-norm is employed to capture
the biased error among views as

m
min E )qHBé“)
Z.5 1
B(" L)L, "

st. Z=0(ZM, 23 [ ZW), Z2=L+S,

L= ({Lw}” {8} )

where @ is an operator used to construct a third-order ten-
sor by aggregating all affinity representations. Moreover, the
purified view-specific affinity representations {L(")}™ , are
decomposed into linearly related consensus representation L,

+ 2|55,

“

and diverse representation Bg)).

Multiple View Interaction Learning: Upon the success-
ful acquisition of comprehensive content information and
clean structural information, we prefer to conduct high-order
interaction among multiple views under the guidance of con-
sensus representation rather than dual-view interaction. The
dual-view interaction typically concentrates solely on the as-
sociations between two views at a time and there are signifi-
cant limitations in mining the holistic characteristics of multi-
view data. In contrast, high-order interaction can fully lever-
age the collaborative effects of multiple views and effectively
break through the information barriers formed by dual-view

interaction. Based on the above description, we can arrive at
the overall objective function of our method CAL as follows:
m

5 e

Xz _g®|?
L F

X2, Z(U) B,
L<“>L S
A B+ 2als g
+; 1 T A28l HIT &
) _xOp®) L x@p©) @ _
st. X =XPFY + XPFEY, 20 >0, 201 =1,

diag(Z™) =0, 2 = ®(ZzM, 2?3, ... ZM),
Z= £+87 Lc — j ({L(v) vmzla{B(v v= 1)

B® —[B".B"), T = & (L<v>;”=17LC)

&)
where \; and A5 are the trade-off parameters of the corre-
sponding terms in the model. The tensor 7~ € RN x(m+1)xN
is a rotated tensor stacked with the affinity representations
L(") and the consensus representation L.. Within this ten-
sor, the consensus representation acts as a coefficient of con-
sistency and is enforced by the weighted tensor Schatten p-
norm constraint, it effectively promotes the exploration and
reinforcement of consistent information across all views and
we can acquire a consistent structural graph L.. After learn-
ing the optimal L. and L), the unified structural graph R
considering consistency and specificity can be calculated by

LA B O] L 1]

5 5 ©

v=1
and then the final clustering result is gained by performing
spectral clustering on R.

3 Optimization
3.1 Optimization Algorithm

By introducing an auxiliary tensor variable A, the augmented
Lagrangian function of problem (5) can be formulated as:

0=3[x

+A2||Sll2,1 + *IIZ L—=5+ 7||F AN, g

_xWgz _ B(u) Jr)\ HB(’U I

m (v)
v C

> 2w -1, - BY + =}
v=1 2 P
(N
where ¢ = {{X'7,Z® B® L™ | L. 8, A} repre-
sents the set of variables to be optimized, p > 0 is a penalty
parameter, ), C; and Cév) are Lagrange multipliers. We will

iteratively optimize each variable with the following details.
(1) XEC}) Step: Fixing other variables and considering the
constraint X(*) = Xg)Fg) + XE\Z)FS\Z), we can derive the
optimal solution by setting the partial derivatives of the min-

imization problem to zero:

1
X = (-X§FYPORYT) (FPOFST) ®)
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where P®) = (I — Z®)(1 — 2.
VAR Step: When all the other variables are fixed, Z®
can be obtained by solving the following sub-problem:

2
L(Z™) = me —xXWz® _gW® .
v 112
+B Hz(v) _L® _g® + & 9
2 P g

st.ZW >0, ZW1 =1, diag(Zz™) =0

By setting the partial derivative 0L (Z(“)) / 0Z") =0, we
can obtain that:

~ -1
Z(v) _ (X(U)TX(v) + pI)

(10)
(Xw)TX(v) ~XOTBM 4 5L™ 4 ps™) - ng)
Then, the optional Z(*) is obtained by solving
~ 2
7™ = arg min HZ(U) -z (11
z(M >0, z(M1=1, F
diag(z(¥))=0
The optional solution is [Nie ef al., 2016]:
z." p ‘= 12
o = (Z”+n) i i
withn = - — L Z Z(v)
n—1 n—1
Jj=1,j7#i

3 B(”)-Step: The solution for B(*) can be divided into
the following two parts for solving:
2
)

)

where E{"”) = X —X®)Z®) and E{") = L) —

Eq. (13) is a sparsity constraint optimization problem and has
the following two closed-form solutions [Wen et al., 2019]:

min Z ()\1HB<1U>

B<v) v=1

min Z ()\1HB;U)

B(v o=

et

Eév) _ Bgv)

+£
1 2

B = 9, (X — X(“)Z(”))
(:) (v) 14
B," =195/ ( (v>_Lc+sz/P>

where ¥ represents the shrinkage operator.

@) L(“)-Step: Similar to Xx}), we can obtain the updat-
ing rule of L,, by taking the derivative of corresponding min-
imization problem and setting it to zero as:

L® — (D(U) + D(U) + D(U))/g (15)

where D{") = Z(*) — s<”) +92 DY — 1,4+ By +
v)

and D) = A — Y

5) S Step: Removmg the unrelated variables, S can be
obtained by optimizing the following problem

p

§* = agmin 2], + 5 IS-KIE (16

Algorithm 1 CAL Algorithm

Input: Incomplete multi-view data {X(v w1, padding ma-

trix {F(U)}U , and {FS\I/})}v:l, clustering number k;
Parameter: \i, Ao, p, n and praz;
Initialize: Let Z(*), B, L") L,

and C; to be all zero;

1: while not converged do

2:  Update the variables XS\Z) s Z@) B® and LM of each
view by Eqs. (8, 12, 14, 15).

3:  Update the variables S, A, L. and Lagrange multipli-
ers by Egs. (16, 17, 18, 19).

4: end while

Output: L™, L;
5: Derive R by Eq. 6 and perform spectral clustering on it.

AU) (anU’Sy

where K = Z2 — L + %1_ It can be resolved with the aid of

lemma 4.1 in [Liu et al., 2013].

(6) A-Step: Fixing other variables, the objective function
of auxiliary variable A is formulated as:
2

A" = argmin 417 g + 5[ 7= A+ 2| an

F
It can be resolved using Theorem 4 in [Gao et al., 2020].

7 Lgv)—Step: Similar to the process of solving for L("),
the optional solution of L, is given by

= (pHY” + 3 pH{")/(pm + p) (18)
v=1
where L(¥) — B(") + and H(U) A(") Y(v+1>

(8) Lagrange multlpllers Step: The updating rules of all
Lagrangian multipliers are listed below.

C=C+p(Z2-L-S5),
08 = O 4 p (L ~ L — BY”), (1
Y=Y+p(T-A),

where p = min (p1, pmax). In summary, the whole opti-
mization procedure is presented in Algorithm 1.

3.2 Computational Complexity Analysis
In detail, the complexity of matrix inverse operation for
variables {X, ) m . and {Z(”)}m 1 in each iteration is de-

noted as O(Z (N-N (E”)) ) and O(mN?®) respectively.

v=1
For updating rotated tensor A € RN*(m+1DxN_ the ma-
jor computational costs lie in calculating the 3D FFT and
the 3D inverse FFT, each of which has a complexity of
O(2N?(m + 1) log(N)). Besides, the N SVDs operation
of N x (m + 1) matrices in the Fourier domain takes
O(N2%(m + 1)®). Considering the other steps involve only
fundamental matrix operations, we disregard their compu-
tational costs. Thus, the total computational complexity
of Algorithm 1 is about O(¢( > (N — Ngj))3 + mN?® +
v=1

IN2(m + 1) log(N) + N2(m + 1)%)).
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" , ACC(%) NMI(%) Purity(%)
Dataset Method\Rate 0T 03 05 07 [ 01 03 05 07 01 03 05 07

EE-RIMVC [Liueral, 20211 | 57.76 5631 5420 4741 | 3545 3347 3126 2595 | 4769 4531 4516 54.32

GIMC_FLSD [Wen eral., 2021a] | 8138 7638 7000 4664 | 7301 6443 5654 22.89 | 9000 8552 8052 54.83

IMVTSC-MVI [Wen et al, 2021b] | 7638 74.14 7190 67.50 | 7496 7181 69.55 51.80 | 8672 8417 8310 77.41

TCIMC [Xia eral, 20221 | 7776 7569 7241 48.19 | 7404 6944 6094 29.53 | 8776 8603 7983 56.64

w | SAGFIMC [Liangeral,2023] | 74.14 7345 67.84 4302 | 6604 63.11 5326 2480 | 8172 7957 7190 4672

% LSIMVC [Liu eral, 20231 | 80.69 7879 7207 38.10 | 73.57 6771 5865 14.53 | 8983 §7.76 80.17 41.64

2 PIMVC [Deng eral., 20231 | 7940 7534 7009 5543 | 70.62 6581 5631 3196 | 8845 8483 77.67 6181

2 | HCLS.CGL[Weneral, 20231 | 9224 8707 7931 5086 | 8181 7154 6123 2506 | 9224 8879 80.17 5086

PSIMVC-PC [Li eral., 2024] | 8155 7491 7362 72.67 | 7771 7024 6947 68.63 | 8871 8500 8491 8448

SCSL [Liu et al., 2024b] 6543 5690 4871 4448 | 5149 4096 2962 1970 | 7328 6431 5457 49.20

CAL(Ours) 9483 9267 9138 9112 | 9337 9021 8827 8627 | 95.69 9440 9138 92.93

EE-RIMVC [Liueral, 20211 | 8324 7991 7757 7361 | 70.63 6788 6580 6039 | 8324 8038 78.14 7467

GIMC FLSD [Wen eral., 2021a] | 7990 7929 6657 44.19 | 71.61 6901 5244 3211 | 8124 8029 67.62 4571

IMVTSC-MVI [Wen et al, 2021b] | 9479 9312 9143 7273 | 8957 8721 8566 6795 | 9479 9312 9143 7348

TCIMC [Xia eral,2022] | 86.67 90.19 89.01 5726 | 7781 8235 8032 49.89 | 86.67 9019 8901 6072

SAGF.IMC [Liang er al.,2023] | 8262 7548 6914 5076 | 7262 66.10 5815 3943 | 8262 7633 7081 52.19

= LSIMVC [Liueral, 20231 | 7386 6848 60.86 42.57 | 6329 5585 4562 29.64 | 7424 6890 6138 4443

2 PIMVC [Deng eral. 20231 | 8771 8324 7738 6367 | 7833 7270 6568 4843 | 8771 7343 7848 6457

& | HCLSCGL [Weneral,2023] |8333 8238 7524 4000 | 7300 7014 6126 27.57 | 8333 8238 7524 4000

PSIMVC-PC [Licral, 2024] | 8333 8243 8005 6533 | 7654 7304 71.19 5551 | 8400 8386 8081 67.19

SCSL [Liu et al., 2024b] 7276 7024 6462 4452 | 6391 6238 5397 3467 | 7433 7233 6448 46.86

CAL(Ours) 9938 99.05 98.57 96.67 | 98.69 97.83 9677 9273 | 9938 99.05 98.57 96.67

EE-R-IMVC [Liu eral, 20211 | 7150 5550 39.00 2525 | 8157 69.09 5499 4495 | 7400 5775 4050 2575

GIMC_FLSD [Wen eral., 2021a] | 7320 6095 5150 3120 | 8512 7336 6503 47.50 | 7695 64.05 5480 34.05

IMVTSC-MVI [Wen et al, 2021b] | 9375 87.00 8475 8350 | 9671 9235 9228 8854 | 9475 8725 8675 8500

TCIMC [Xia eral., 20221 | 7685 7590 7590 4620 | 8739 8698 8513 66.51 | 7945 7895 77.80 49.75

SAGF IMC [Liang er al.,2023] | 5125 4925 4950 31.50 | 7505 7418 69.61 51.78 | 58.00 57.00 5375 34.00

- LSIMVC [Liu eral, 20231 | 77.25 6950 59.00 3925 | 86.66 7853 7201 57.97 | 7875 7125 6175 42.25

= PIMVC [Deng eral. 20231 | 7400 7325 6775 4500 | 8480 8325 7826 6291 | 7775 7725 7075 4825

HCLS_CGL [Wen eral. 20231 | 7525 7425 6725 41.00 | 8427 8356 7672 6325 | 7750 7675 7075 46.00

PSIMVC-PC [Li eral., 2024] | 6436 6376 5624 38.13 | 79.87 78.63 7303 61.17 | 6708 6583 59.09 4088

SCSL [Liu et al., 2024b] 7914 7380 6133 3865 | 8972 8634 7877 5979 | 8191 7809 6721 43.69

CAL(Ours) 98.53 96.63 9623 9375 | 9752 9854 97.56 95.68 | 98.53 9723 9569 94.05

EE-RIMVC [Liueral, 20211 | 73.68 7001 6692 6267 | 5331 5085 4776 4744 | 7485 7336 71.60 7124

GIMC FLSD [Wen eral., 2021a] | 80.12 8254 8076 60.76 | 61.87 6403 5797 3838 | 80.12 8254 80.76 66.09

IMVTSC-MVI [Wen ef al, 2021b] | 7771 8403 8380 7631 | 7045 7529 7574 59.67 | 80.85 8403 8380 79.15

TCIMC [Xiaeral,2022] | 86.64 86.13 8196 7234 | 7143 6830 59.89 47.60 | 8745 8658 8239 7438

SAGF.IMC [Liang er al., 2023] | 8292 79.02 7784 60.66 | 6688 61.18 5660 3820 | 8292 79.02 7784 61.02

= LSIMVC [Liueral., 20231 | 7007 6655 5921 48.63 | 5848 5586 4797 4333 | 7597 69.08 6390 5499

% PIMVC [Deng eral. 2023] | 87.81 8460 83.66 7387 | 7141 66.14 6273 4826 | 87.81 8460 8366 74.04

HCLS CGL [Wen eral, 20231 | 83.07 8292 7854 5650 | 61.85 5863 5192 27.44 | 8307 8292 7854 56.50

PSIMVC-PC [Lieral, 20241 | 7074 6870 6804 6667 | 6030 6113 63.15 6509 | 7680 7734 7937 80.86

SCSL [Liu et al., 2024b] 8512 8423 8296 7260 | 70.63 6640 6562 4736|9283 9409 90.98 79.05

CAL(Ours) 9835 97.88 97.50 9562 | 9432 94.17 9183 87.66 | 98.35 97.88 97.50 95.62

Table 1: Clustering results (%) w.r.t. three metrics on BBCSport, MSRC, ORL and BBC datasets with different missing rates.

4 Experiment

Dataset \ Sample View Cluster Feature

BBCSport 116 4 5 1991, 2063, 2113, 2158
MSRC 210 5 7 24,576,512, 256, 254
ORL 400 4 40 4096, 3304, 6750, 1024
BBC 685 4 5 4659, 4633, 4665, 4684
Flower 1360 7 17 1360, 1360, ..., 1360
Caltech101-7 | 1474 6 7 48,40, 254,1984, 512,928
Handwritten | 2000 5 10 240, 76,216,47,64

Table 2: General statistics of datasets.

4.1 Experimental Settings

Datasets: We evaluate our method on seven popular multi-
view datasets, including BBCSport, MSRC, ORL, BBC,

Caltech101-7, Flower and Handwritten datasets. Table 2 lists
the general statistics.

Compared methods: We compare CAL with the following
ten state-of-the-art methods: EE-E-IMVC [Liu et al., 20211,
GIMC_FLSD [Wen et al., 2021al, IMVTSC-MVI [Wen et al.,
2021b], PSIMVC-PC [Li et al., 2024], SAGF_IMC [Liang
et al., 2023], TCIMC [Xia et al., 2022], LSIMVC [Liu et
al., 2023], PIMVC [Deng et al., 2023], HCLS_CGL [Wen et
al., 2023], SCSL [Liu et al., 2024b], among which IMVTSC-
MVI and TCIMC are also tensor-based methods.
Incomplete data construction: For each dataset, we arbi-
trarily remove 10%, 30%, 50%, and 70% samples from each
view to construct incomplete multi-view data, while ensuring
that each sample exists in at least one view.

Implementation Details: For the comparative methods, we
have sought their optimal hyper-parameters following the rec-
ommendations in the original papers. For our CAL, we select
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N ACC(%) NMI(%) Purity(%)
Dataset Method\Rate 0T 03 05 07 [0l 03 05 0701 03 05 07

EE-R-IMVC [Liueral, 20211 | 50.88 39.56 2566 1662 [ 4600 30.01 1692 1115|5206 4096 2699 17.06

GIMC FLSD [Wen eral, 2021al | 4524 4151 3474 2349 | 4617 4249 3529 2491 | 4663 4299 3571 2463

IMVTSC-MVI [Wen et al, 2021b] | 92.13 8721 8647 82.13 | 8733 8745 8083 80.64 | 9291 §9.04 8647 82.13

TCIMC [Xia et al., 2022] 5365 5057 4737 3696 | 5096 4935 4339 3330 | 5647 5250 4929 38.19

SAGF IMC [Liang eral.,2023] | 5118 4985 37.87 3037 | 5184 5027 3787 29.16 | 5279 8154 3934 3140

e LSIMVC [Liueral,2023] | 5081 4632 3838 3287 | 5237 4580 3822 3255 | 51.54 4728 30.04 3404

2 PIMVC [Deng eral.2023] | 6250 60.81 5463 4978 | 59.72 5656 5009 4166 | 6353 6221 5625 50.37

g HCLS CGL [Wen eral,2023] | 4750 4279 3551 2897 | 4519 40.18 3255 27.31 | 4787 4294 3640 3029

PSIMVC-PC [Lieral,2024] | 3792 3627 3194 2550 | 4222 3740 3260 2576 | 3936 37.05 3332 26.62

SCSL [Liu ef al., 2024b] 4654 4396 3150 2754 | 4707 4183 3233 27.60 | 4767 4492 4492 2921

CAL(Ours) 9853 9801 97.03 96.03 | 97.52 9667 9578 9381 | 98.53 9801 97.03 96.03

EE-RIMVC [Liueral, 20211 | 4166 4037 3507 27.95 | 2833 1962 1661 879 | 7578 7110 6601 63.09

GIMC FLSD [Wen eral., 2021a] | 5856 5224 5200 4659 | 1495 1606 1795 1881 | 6624 6540 6734 68.70

IMVTSC-MVI [Wen et al, 2021b] | 6337 6248 6194 4634 | 5439 5302 5167 3242 | 87.38 8691 87.52 79.17

TCIMC [Xia et al., 2022] 6486 6403 6168 6028 | 5240 4691 4728 4138 | 8623 8482 8360 8256

O | SAGFIMC[Liangeral,2023] | 7164 6683 6255 5678 | 64.59 58.67 4925 3625 | 8799 8609 8304 79.38

= LSIMVC [Liueral,2023] | 7144 7028 6370 6031 | 61.12 5182 5001 3572|9077 8433 8474 80.05

s PIMVC [Deng eral, 20231 | 7062 6642 6628 6533 | 5634 5243 5217 4894 | 88.60 8582 8616 8507

S | HCLSCGL[Weneral,2023] | 72.66 6777 6526 6398 | 5195 50.97 5216 4563 | 8494 8643 8446 83.99

4 PSIMVC-PC [Lieral,2024] | 5021 5000 4837 4920 | 4726 4296 3948 3052 | 8263 80.60 79.17 7491

SCSL [Liu ef al., 2024b] 6635 5821 5693 5638 | 5022 5095 2185 16.11 | 8223 8312 7043 6676

CAL(Ours) 7178 6739 67.03 6567 | 70.06 6613 66.14 64.27 | 95.12 9489 9491 9437

EE-R-IMVC [Liueral, 20211 | 88.60 8523 7670 5174 | 78.64 7330 6226 4021 | 8860 8523 7670 51.74

GIMC FLSD [Wen eral., 2021a] | 8865 8789 8685 8635 | 8001 7844 7623 7533 | 8865 8745 86.56 86.55

IMVTSC-MVI [Wen et al, 2021b] | 9643 9521 01.83 §7.15 | 9244 8995 8407 77.39 | 9643 9521 9183 87.15

TCIMC [Xia et al., 2022] 8333 8372 8260 8415 | 8639 8508 7989 8088 | 8593 8585 8297 8427

T | SAGFIMCILiangeral,2023] | 8440 8412 8361 8119|8949 §771 8563 73.06 | 86.99 8642 8570 8201

3 LSIMVC [Liueral,2023] | 9197 9363 8742 8575 | 8563 8801 8275 7646 | 9197 9663 88.10 8575

z PIMVC [Deng eral,2023] | 9480 9379 9123 8861 8974 87.71 8388 7956 | 9488 9379 9123 8861

= | HCLSCGLIWeneral.2023] | 85.60 8505 8135 8100|8850 88.18 8126 76.96 | 87.70 87.50 8340 8150

g PSIMVC-PC [Lieral,2024] | 8679 8515 7912 7509 | 8308 81.61 77.01 69.50 | 87.09 8563 79.83 7547

SCSL [Liu ef al., 2024b] 9466 9244 8530 80.53 | 8828 8267 78.15 7882 | 96.89 9406 §7.07 8296

CAL(Ours) 100.00 100.00 99.95 99.25 | 9995 9995 99.86 98.24 | 99.95 99.95 9995 9925

Table 3: Clustering results (%) w.r.t. three metrics on Flower, Caltech101-7 and Handwritten datasets with different missing rates.
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Figure 3: Visualization of the unified structural graph on MSRC, ORL, Flower, and Caltech101-7 datasets with a 50% missing rate.

Al and A2 within the range of [107°,10%] and evaluate our
method using three popular metrics: accuracy (ACC), nor-
malized mutual information (NMI), and purity.

4.2 Experimental Results and Analysis

All experimental results on seven datasets w.r.t. three metrics
are illustrated in table 1 and table 3, where the best results
are in red and the second-best are highlighted in blue. From
the experimental results, we can reach the following obser-
vations: (1) Our method almost achieves the best perfor-
mance on all datasets and exhibits significant improvements
in cases of high missing rates. For instance, on BBCSport
dataset with a missing rate of 70%, our algorithm achieves ad-
vancement of 18.45%-53.02%, 17.64%-71.74%, and 8.45%-

51.29% in terms of three respective metrics. (2) Compared
with the second-best performing method IMVTSC-MVI) on
most datasets, our method shows a substantial enhancement
in the NMI metric under equal or lower ACC, which not
only illustrates the superiority of high-order interaction across
multiple views over dual-view interaction but also validates
that consensus guidance can boost the ability to learn con-
sistency. (3) We employ heatmaps and t-SNE to visualize
the unified structural graph R and show in Figure 3, that
the structural graph exhibits a distinct block diagonal struc-
ture and compact clusters, indicating that our method more
effectively explores the data clustering structure. (4) From
the perspective of interaction mechanisms, CAL establishes
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‘ ACC(%) NMI(%) Purity(%)
Dataset | Method\Rate | — 5357 [ 01 03 05 07 [ 01 03 05 07
CAL1 | 8845 8638 8362 7681 | 7428 7213 7021 66.16 | 8845 8724 8483 8198

BBCSport | CAL-Il | 90.17 8724 8517 8164|8682 80.16 7627 6260 | 9328 90.60 90.43 82.33
CAL | 9483 9267 9138 9112 | 9337 9021 8827 8627 | 95.69 9440 9138 9293

CAL1 | 9328 9310 9278 9163 | 97.06 9688 9553 9339 | 9443 9415 9335 O1.82

ORL CALI | 90.65 9025 8995 7828 | 9526 9447 9376 8623 | 9185 9113 90.88 79.95
CAL | 9853 9663 9623 9375 | 9752 98.54 97.56 9568 | 9853 97.23 95.69 94.05

Table 4: The ablation experiments on BBCSport and ORL datasets with different missing rates.
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Figure 4: Parameter analysis of CAL w.r.t. A1, A2 and p on BBC-
Sport and ORL datasets with a 30% missing rate.

consensus-aware interactions based on existing tensor rank
constraints compared with other methods, which can opti-
mize the interaction process through consensus structure and
achieve dynamic fusion between specific and consensus rep-
resentation. Additionally, CAL can retain complete and ac-
curate data clustering relationships through the dual affin-
ity constraint mechanism composed of sample-wise affinities
learning and intrinsic representation learning.

Parameter sensitivity analysis: In this subsection, we ana-
lyze the impact of model parameters A1 and A2 on cluster-
ing performance. Figure 4(a) and (c) illustrates the variation
in ACC for different combinations of A1 and A2 on BBC-
Sport and ORL datasets with a 30% missing rate. It can be
observed that satisfactory performance is achieved when A1l
varies within the range [1072,10%]. The clustering results
for BBCSport and ORL datasets are insensitive to relatively
large and small values of A2, respectively. Furthermore, we
also investigate the influence of power parameter p in Figure
4(b) and (d). Generally, CAL obtains ideal clustering results
when p is selected from [0.8, 0.9].

Convergence analysis: This paper develops an alternative
optimization algorithm for solving the proposed CAL model.
By iteratively optimizing each sub-problem and obtaining a
closed-form solution, we ensure that the algorithm is bounded

5 -3 -
1510 Flower 100 1210 Caltech101-7 80
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12 85 . 70/\
o
Q 9 —— Loss 70 5 —— Loss [60
—_ —_ QO
Se AcCC . AcCC 502
3 S 40
0 0
0 10 20 30 %0 0 10 20 30 20

Iteration number Iteration number

Figure 5: Convergence curves on Flower and Caltech101-7 datasets
with a 30% missing rate.

below. Additionally, convergence curves on Flower and
Caltech101-7 datasets with a 30% missing rate are plotted in
Figure 5, depicting the evolution of algorithm loss and ACC
throughout iterations. It is evident that the algorithm loss de-
clines promptly and has a lower bound of 0.

Ablation study: We conduct the ablation study to validate
the effectiveness of each submodel and record the results on
BBCSport and ORL datasets ith different missing rates. In
specific, based on Eq. (5), we establish the below two degen-
erate methods: CAL without structured sparsity constraint
(CAL-]) and high-order interaction without consensus guid-
ance (CAL-II). From the results in table 4, it is evident that
the clustering results of both variants are inferior to the origi-
nal method. Moreover, in most cases, the performance degra-
dation of CAL-II from the missing rate of 0.1 to 0.7 across
the three metrics is greater than that of CAL-I. Large fluctua-
tions in the performance of CAL-II underscores the substan-
tial role of consensus representation in advancing consistency
learning among multiple views in high-order interaction.

5 Conclusion

In this paper, we propose a cross-view affinity learning
method named CAL for incomplete multi-view clustering,
which effectively avoids the limitations posed by dual-view
interaction on information fusion. CAL integrates compre-
hensive content information and pure structural information
to acquire a unified structural graph for clustering under the
guidance of consensus representation through the high-order
interaction across multiple views. Moreover, an effective op-
timization algorithm for the CAL has been developed and ex-
tensive experiments have been carried out to validate its su-
periority over state-of-the-art methods.
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