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Abstract

Despite efforts to better understand the constraints
that operate on single-step parallel (aka “package”,
“multiple”) revision, little work has been carried
out on how to extend the model to the iterated case.
A recent paper by Delgrande & Jin outlines a range
of relevant rationality postulates. While many of
these are plausible, they lack an underlying unify-
ing explanation. We draw on recent work on iter-
ated parallel contraction to offer a method for ex-
tending serial iterated belief revision operators to
handle parallel change. Based on a family of or-
der aggregators known as TeamQueue aggregators,
it provides a principled way to recover the indepen-
dently plausible properties that can be found in the
literature, without yielding the more dubious ones.

1 Introduction

The traditional operations of belief revision theory—revision
and contraction—were initially designed to take single sen-
tences as inputs, offering a model of “serial” change, in which
beliefs were incorporated into or excised from an agent’s
worldview one at a time. In more recent years, these oper-
ators have been generalised to handle entire sets of sentences
as inputs, yielding a model that can accommodate “parallel”
change, where multiple beliefs are simultaneously processed.

Until recently, existing work in this direction had focused
almost exclusively on single-step change, i.e. studying the ef-
fects of a single episode of change on an agent’s set of be-
liefs. With only a few exceptions, no research had been car-
ried out on the more general issue of iterated change, i.e.
studying the effects of a sequence of changes. In relation
to iterated parallel contraction, these exceptions include the
work of Spohn [2010], who offers a treatment in terms of his
ranking-theoretic construction, and a recent paper by Chan-
dler & Booth [2025] in which they propose an axiomatically
characterised construction based on a generalisation of their
“TeamQueue” method of order aggregation [2019]. Regard-
ing iterated parallel revision, the only discussions that we are
aware of are those of Zhang [2004] and Delgrande & Jin
[2012]. Zhang introduces generalisations to the parallel case
of a number of well-known principles for iterated serial re-
vision. Delgrande & Jin critique Zhang’s postulates, finding

fault in one key principle, and offer several new ones of their
own. As we shall see, however, at least one of the axioms that
Delgrande & Jin propose is not compelling, and those that are
have yet to be underpinned by a convincing construction.

We take cue from the TeamQueue approach to iterated par-
allel contraction to offer a similar constructive approach to
the case of revision. We find that this approach precisely al-
lows us to derive those principles of Delgrande & Jin that are
plausible, while failing to allow us to derive those that are not.

The remainder of the paper proceeds as follows. Section
2 briefly recapitulates existing work on serial belief revision,
while Section 3 does the same for parallel revision, focus-
ing on Delgrande & Jin’s contribution. Section 4 provides a
succinct summary of Chandler & Booth’s aggregation-based
proposal for parallel contraction. Section 5 offers a somewhat
similar aggregation-based solution to our problem of interest.
Finally, Section 6 summarises the discussion and makes sev-
eral suggestions for future research. Due to space limitations,
proofs are provided in a longer version of the paper, which
can be accessed online at https://arxiv.org/abs/2505.13914.

2 Background on Serial Belief Revision

In what follows, the state of mind of an agent will be rep-
resented by an abstract belief state ¥, which we do not as-
sume to have any particular internal structure. This state gives
rise to a belief set [¥] which contains all and only those sen-
tences that the agent takes to be true when in state ¥. Belief
sets are deductively closed and drawn from a propositional,
truth-functional, finitely-generated language L. We denote
by Cn(S) the set of classical logical consequences of S C L.
Where A € L, we write Cn(A) instead of Cn({A}). The set
of propositional worlds or valuations will be denoted by W,
and the set of models of a given sentence A by [A].

The standard “serial” model consists of two belief change
operations, serial revision * and contraction =-. These take a
state and a single input sentence and return a new state. Re-
vision captures how an agent incorporates the input into their
beliefs, while contraction captures the way in which they re-
move it from them. The model originally dealt with single-
step serial change—the change induced by a single application
of revision or contraction by a single sentence-but later re-
search turned to iterated serial change—the change induced by
a sequence of applications of serial revision or contraction.
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The AGM postulates for revision [Alchourrén et al., 1985]
provide rationality constraints on single-step serial revision:

(K1*)  Cn([¥* A]) C ¥ * A]

(K2*) A€V« 4]

(K37) [+ A]CCn([Y]u{A})

(K4*) If-A ¢ [V], then Cn([¥] U {A}) C [¥ * A]
(K5*)  If Ais consistent, then so too is [¥ * A]
(K6*) IfCn(A) = Cn(B), then [¥ x A] = [V * B]
(K7*) [¥xAAB]CCn([Vx*AU{B})

(K8*) If =B ¢ [U x A], then Cn([¥ * AU {B}) C

[U % AA B
They are derivable from an analogous set of postulates for
contraction by means of an equality known as the Levi Iden-
tity [Levi, 19771, given by:
(LI) [Ux A = Cn([¥ +-A4]U{A})
This principle is justified as follows: The simplest way to
modify [¥] to include A would be to take the closure of the
union of [¥] and {A}, i.e. Cn([¥]U{A}). Doing this, how-
ever, would lead to a violation of (K5*), since [¥] and A
needn’t be jointly consistent, even when A is. To ensure con-
sistency without jettisoning more beliefs than required, we
therefore consider the union of [¥ <+ —A] and {A} instead.

The Harper Identity [Harper, 1976] takes us in the other

direction, from single-step serial revision to contraction:
(HI) [T+ A] = [P] N [T * 4]
It has been shown that the single-step behaviour of a se-
rial revision operator * that satisfies the above postulates can
be represented by associating with each state U a reflexive,
complete and transitive binary relation (aka total preorder
or TPO) <y over W, such that [[¥]] = min(xy, W) and
min(xw«4, W) = min(xy, [A]) [Katsuno and Mendelzon,
1991]. We use x ~g¢ y when z <¢ y and y <y¢ =,
and x <g y when x <y y but y £y x. Equivalence
classes of worlds, i.e. sets of worlds closed under ~y, are
sometimes represented using curly brackets, so that we write
“r < {y,z}” instead of “ < y and y ~ z”. We take
the AGM postulates, and hence the TPO representability of
single-step change, for granted. We call an operator that sat-
isfies the AGM postulates an “AGM operator”.

This single-step behaviour can also be captured by (i) en-
riching the language with a conditional connective >, associ-
ating each state U with a conditional belief set [¥]s = {A >
B | B € [¥ x A} or (ii) associating ¥ with a nonmonotonic
consequence relation fog= {(A4,B) | A > B € [¥]-}.
In (ii), the AGM postulates ensure that |~ is “rational”
[Lehmann and Magidor, 1992] and “consistency preserving”
[Makinson and Girdenfors, 1991]. By abuse of notation,
since any TPO < determines a unique conditional belief set,
we will denote the latter by [x]~.

Many of the principles that follow can be presented in mul-
tiple equivalent ways. When this occurs, we use subscripts
to distinguish between these formulations, dropping the sub-
script to refer to the principle beyond specific presentation.
A principle framed in terms of TPOs is denoted using a sub-
script “<”. Occasionally, we may also want to express prin-
ciples via minimal sets, symbolizing the <-minimal subset of

S C W,defined as {z € S | Vy € S,z < y}, by min(x, 5).
The subscript “min” denotes presentation in this style. When
appropriate, the names of principles presented in terms of be-
lief sets will include the subscript “b”. Additionally, we use
superscripts to remind the reader of the nature of the opera-
tion constrained by the relevant principle, so that, for exam-
ple, some principles will carry the superscripts “*” or “+"".

In [Darwiche and Pearl, 1997], Darwiche & Pearl proposed
a set of postulates (henceforth the “DP postulates”) govern-
ing sequences of serial revisions. These can be presented ei-
ther “syntactically” in terms of belief sets or “semantically”
in terms of TPOs. In syntactic terms, we have:

(C1¥) If A€ Cn(B)then [(Vx* A)* B] = [¥x B
(C2¥) If-A e Cn(B)then [(¥ x A) * B] = [V * B]
(C3F) IfAe[UxDB]then A€ [(¥x*A)x B

(C4r) If—A¢& [V« B]then A ¢ [(Vx* A) * B]

Semantically, they are given by:

(C1%) Ifz,y e [A] thenz Sywn yiffz g y

(C2%) Ifz,yec[~A]thenx Sy.a yiff z S y

(C3%) Ifze[A],yc[-A]andz <y ythen z <y.a ¥y
(C4x) Iz e[A],yc[~A]and z <y y then = <Sgen ¥

We shall call an operator that satisfies the DP postulates a
“DP operator”.

Beyond these, [Booth and Meyer, 2006] introduced a
strengthening of both (C3;) and (C4;) which they called
“(P)” and which later appeared in [Jin and Thielscher, 2007]
under the name of “Independence’:

(Ind}) If—A¢ [V« B], then A € [(¥ x A) % B]

Its semantic counterpart is given by:

(IndY) Ifze[Al.y € [-A] and 2 Sy y, then 2 <y.a ¥y
In semantic terms, the previous postulates only constrain the
relation between the prior TPO and the TPO resulting from
revision by a given sentence. In [Booth and Chandler, 2020]
two further postulates, (81%) and (32 ), were introduced to
constrain the relation between different posterior TPOs re-
sulting from revisions by different sentences.

Constructive proposals premised on the idea that belief
states can be identified with TPOs have also been tabled
(though see [Booth and Chandler, 2017] for criticism). These
include most notably the operations of lexicographic (xr,),
restrained (xg) and natural (xy) revision (see, respectively,
[Nayak et al., 2003], [Booth and Meyer, 2006] and [Boutilier,
19961). They all satisfy the DP postulates, as well as (51%)
and (32%). Lexicographic and restrained revision addition-
ally satisfy (Ind}"). Natural revision does not.

Although (C1}), (C3}) and (C4;) are fairly uncontrover-
sial, (C2) has received criticism, which is relevant to the
discussion of parallel revision that follows. Here is an alleged
counterexample, due to Konieczny & Pino Pérez [2000].

Example 1 (Konieczny & Pino Pérez [Konieczny and
Pino Pérez, 20001). Consider a circuit containing an adder
and a multiplier. We initially have no information about the
condition of either component. We then come to believe of
each that they are working. We then change our mind again
and believe that the multiplier is not working after all. After
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this second change of mind, the thought goes, it should not be
the case that we also lose our belief that the adder is working.

Let A and B respectively stand for the claims that the adder
is in order and that the multiplier is. Let ¥ be the initial be-
lief state. If the initial change in view is to be modelled as a
revision by a single sentence, it would appear that we move
from W to state U« A A B and then (¥ * A A B) * ~B. Since
—(A A B) € Cn(—B) and A ¢ [¥], the alleged intuition
that A € [(V x A A B) * =B] would mean that Example 1
contradicts (C2).

Chopra et al, who take this kind of example to mean that
(C2f) is not acceptable, recommend replacing (C2) with:

(GR;) [(T*—A)x Al =[P« 4]
We return to Example 1 in the next section.

3 Background on Parallel Belief Revision

The limitations of the serial model have been highlighted in
several previous discussions, particularly its inability to fully
encompass the spectrum of potential alterations in belief. It
has been suggested that this model should be expanded to in-
clude the concepts of parallel revision and contraction, which
involve the simultaneous addition or removal of a finite set
S = {A1,...,A,} of sentences in L (with set of indices
I={1,...,n}.

We will use ® and @ to represent parallel revision and con-
traction, respectively, and assume that when the input is a
singleton, the single-step effects of these operations can be
expressed in terms of those of their serial equivalents, with
[T ® {A}] = [¥ *x A] and [¥ © {A}] = [¥ + A]. The
symbol A S will represent A1 A ... A A,, \/ S will represent
A1 V...V A,, and =S will represent {—A | A € S}.

3.1 Single-Step Parallel Revision

For single-step parallel revision, a plausible proposal, which
we endorse here, is to simply identify the belief set obtained
by parallel revision by S with the belief set obtained by serial
revision by the conjunction A S of the members of S:

(Conj®) [¥® S]=[¥a@{AS}

Given the AGM postulates for serial revision, this suggestion
is equivalent to a set of postulates for single-step parallel re-
vision given in [Peppas, 2004], where they are credited, with
minor differences, to a preliminary version of [Lindstrém,
2022], published in 1991:

(K1®) Cn([T®S])) C[¥® S|

(K2®) SC[¥®S9|

(K3®) [T ®S]CCn(P]Us)

(K4®) If [¥] U S is consistent, then Cn([¥] U S) C

[T @ S]

(K5%®) If S is consistent, then so is [¥ & ]

(K6%®) If Cn(S;) = Cn(S2), then [¥ ® S1] = [V ® Ss]
(K7®)  [¥® (S1US:)] CCn([¥®S1]USs)

(K8®) If [¥ ® S1] U Sy is consistent, then

Cn([¥ ® S1]USs) C[¥® (S1US:)]

Indeed, as is noted by Peppas [Peppas, 2004] and later Del-
grande & Jin [Delgrande and Jin, 2012], who all endorse
(Conj®), the latter is an immediate consequence of (K6®).
Similarly, assuming (Conj®), (K1%) to (K8®) are obviously
recoverable from the AGM postulates.

We noted in Section 2 that, in the single-step situation, a
correspondence exists between the AGM postulates for serial
revision and contraction, via the Levi and Harper Identities.
Since a similar set of postulates to (K1®)—(K8®), labelled
(K19)—(K89) in [Chandler and Booth, 2025], extends the
AGM postulates for serial contraction to the parallel case, it
is natural to ask whether a two-way correspondence can be
established here too. The picture, however, is much less sat-
isfactory here: in [Fuhrmann, 1988, Thm 19.1], Fuhrmann
showed that, if © satisfies (K19)—(K8%) and [¥ & 5] is de-
fined from [¥ & —.5] by the following straightforward gener-
alisation of the Levi Identity

(LI°) [ ®S]=Cn([¥e®-S|US)
then ® satisfies (K1%), (K2®), (K3®), (K49), (K7®), and
(K8®), as well as the following weakening of (K6%):

(K6—®) If, VA; € Sq,3A5 € Sy s.t. Cn(Al) = Cn(A2),
and vice versa, then [¥ ® S1] = [U ® Sy)

Importantly, Fuhrmann notes that (K5®) is not recoverable,
as it clashes with the following plausible principle of “Dis-
junctive Persistence”, which states that it is possible to per-
form a parallel contraction by a consistent set of sentences
without thereby removing the belief that at least one of the
members of that set is true:

(DiP®)  There exist ¥ and consistent S C L, s.t.
VSe[vas

Indeed, by this principle, even if .S is itself consistent, it may
fail to be consistent with [¥ & —.5], since we could still have
\ =S € [T©~S]. This leaves Cn([¥©-S]U.S) inconsistent
and hence, by (LI°), [¥ ® S] inconsistent as well. This is
prohibited by (K5%), which requires [¥ ® S] is inconsistent
only if S is. This is an important and problematic result, in
our view, and we take it to demonstrate the implausibility of
this seemingly natural way of extending the Levi Identity to
the parallel case.

The fact that one can perform a parallel contraction by a set
of sentences without removing the belief that at least one ele-
ment is true also poses a problem for the most straightforward
extension of the Harper Identity, namely:

(HI°) [T&S]=[9]N[T®-S]

Indeed, the fact that it may be the case that \/ S € [¥ © 5]
this time leads to a conflict with (K2®), i.e. the requirement
that =S C [T ®—.S]: from the latter, assuming (K19), (K5®)
and consistency of =5, we have \/ S ¢ [¥ ® —S] and so, by
(HI), VS ¢ [¥ @ 5].

To sum up, we take (Conj®) to be the correct way to han-
dle the single-step case, with (LI°) and (HI°) proving to be
implausible as generalisations of (LI) and (HI).

3.2 Iterated Parallel Revision

In the single-step case, we can plausibly reduce parallel revi-
sion by S to serial revision by A .S, As Delgrande & Jin ([Del-
grande and Jin, 2012]) have noted, this is not so in the iterated
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case: while we can identify [T ® {4, B}] and [¥ * A A B|,
differences can emerge in subsequent operations, so that there
may exist a sentence C, such that (¥ ® {A, B}) x C] and
[(Tx AN B)«* (] are distinct: the equality (¥ ® S) ® S'] =
[(T®{A S} ®S'] may fail. So the beliefs states ¥ ®{ A, B}
and ¥ x A A\ B cannot always be equated.

Interestingly, the example supporting this claim is none
other than Example 1 above, which was deployed in criti-
cism of (C2}). Delgrande & Jin argue that the first change
in belief in this example (i.e. coming to believe of each of
the adder and the multiplier that they are in working order) is
not appropriately modelled by revision by a conjunction (so
that we move to the state U x A A B) but rather by a revision
by the corresponding set of conjuncts (so that we move to
the state U ® { A, B}). If the former model was appropriate,
they claim, we would, after ultimately revising by the propo-
sition that the multiplier is not working, lose our belief that
the adder is functioning (following (C2}), which they find
appropriate). However, if we properly interpret the situation
as parallel revision, they tell us no such consequence follows:
intuitively A € [(V ® {4, B}) ® {—~B}].

This is plausible and, indeed, the kind of motivation given
for (C2) does not carry over to the parallel case. As we saw
earlier, the intuition there is that the effects of a serial revision
should be undone if it is immediately followed by a revision
that runs contrary to it. But in the parallel change modelling
of Example 1, the second step runs contrary to only a strict
subset of the initial parallel operations.

For the above reason, Delgrande & Jin reject a strong par-
allel version of (C2}), proposed by Zhang in [Zhang, 2004]:!

(SC22) 1If S1 U Sy is inconsistent, then [(T ® S7) ® Sa]
= [¥ ® So]

(5C22) Ifz,y ¢ [AS]thenz sves yiff v v y

since, given this principle, whenever A ¢ [¥ ® {-B}|,
it would follow that A ¢ [(U @ {A, B}) ® {—B}], since
{A, B} U {—B} is inconsistent, yielding the incorrect result
in the parallel revision interpretation of Example 1.

If the reductive proposal that we have seen does not plau-
sibly generalise to the iterated case, how exactly, then, are we
to handle iterated parallel revision? Delgrande & Jin endorse
the following generalisations of (C1%), (C3%) and (C4%):

(C12) Ifz,y € [AS], thenz Sygs yiff v <y ¥

(C32) Ifze[AS].y¢[AS]andz <y y, then
T <ves Y

(C42) Itz e [AS].y¢[AS]andz <y y, then
T Sves Y

They tell us (omitting the proof) that these correspond to the
following syntactic principles presented in [Zhang, 2004]:

(Clg) IfS; C CH(SQ), then [(\IJ ® 51) ® SQ] :[\If ® SQ]
(C3§) IfS; C [W@Sg],then S C [(‘I’@Sl) @SQ]
(C48) If S; U [P ® Sy is consistent, then so is

STU(P® S1) @ Ss]

'"The nomenclature is ours here, with the “S” standing for
“strong”, for contrast with a weaker version below.

Delgrande & Jin do not endorse any kind of parallel version
of (C2¥) and indeed do not actually consider the question
of whether a more plausible alternative to (SC2®) could be
found. Such a generalisation, however, is not hard to devise:

(C22)

A corresponding syntactic form can be given too:

Ifz,y € [\ —S], then z Sggs yiff x K¢ y

Proposition 1. Let ® be a parallel revision operator such
that, for some AGM serial revision operator x, ® and * jointly
satisfy (Conj®). Then (C2€) is equivalent to:

(CQ?) [f—\Sl - CD(SQ), then [(\I/ ® Sl) ® S2] Z[\IJ ® S2]

Unlike its stronger counterpart (SC2®), this principle doesn’t
get us into trouble in relation to Example 1. Indeed, this prin-
ciple is perfectly consistent with its being the case that both
A ¢ [W®{-B} and A € [(V® {A, B}) ® {—~B}|, since
we have {—~A,—B} ¢ Cn({—-B}) and hence the principle
doesn’t generate the equality [(U & S1) ® Sa] = [V ® Sa].

As it turns out, the entire set (C19)—(C4®) of parallel ver-
sions of of the DP postulates is derivable, from two further
—strong but plausible—principles that Delgrande & Jin tenta-
tively endorse. The syntactic versions of the latter are given
by:

(PC3?) If (i) S # @ and (ii), for all S C 57 s.t. S U Sy
is consistent, we have A € [¥ ® (S U S)], then
(iii) A € [(T ® S1) ® So]

(PC42) If (i) S2 # @ and (ii), for all S C S7 s.t. S U Sy
is consistent, we have =4 ¢ [¥ & (S U Ss)],
then (i) =A ¢ [(U ® S1) ® So]

While these principles are perhaps a little tricky to interpret,
their semantic versions, which are also provided in [Del-
grande and Jin, 2012], have a much more immediate appeal.
They are formulated using the following useful notation:

Definition 1. Where S C L, and x € W, (S| x) denotes the
subset of S that is true in x (i.e. (S|z) = {A € S|z = A}).

and are given by:

(PC3%) If (S|y) € (S|x) and & <y y then x <ygs ¥y
(PC4%) If (S|y) € (S|z) and x <y y then = Syps ¥

These principles essentially state the following: if x makes
true at least those sentences in S that y does, then revision
by S doesn’t improve the position of y with respect to z. By
contrast, (C32) and (C4€) only jointly stipulate that the posi-
tion of y with respect to  doesn’t improve in the special case
in which = makes all the sentences in .S true and y does not
make them all true. So, as Delgrande & Jin remark, (PC3%)
and (PC42) entail (C3¢) and (C4%). But note that princi-
ples (C19) and (C29) are also derivable from (PC3¢) and
(PC4¢). Indeed, it obviously follows from the latter that,
when (S | y) = (S| z), we have © <g¢ v iff 2 <v@s Y.
But clearly (S| y) = (S | ) holds true whenever the an-
tecedents of either (C1%) or (C2%) do, i.e. whenever either
z,y € [AS]orz,y € [\ =S]. So, to summarise, we have:

Proposition 2. Let ® be a parallel revision operator that sat-
isfies (PC3%) and (PCAS). Then ® satisfies (C1€)—(C4%).
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Notably, the problematic (SC2¢) does not follow from these
principles, however. We shall present a construction for
which (PC3%) and (PC4€) are sound but (SC2€) is not.
(Proposition 4 and Proposition 6 below.)

Besides (PC3¢) and (PC4€), Delgrande & Jin also en-
dorse this plausible postulate, which we give in terms of both
belief sets and minimal sets:

(S9)  [Te(5US)]=
(¥ ® (S1U~Ss)) ® (51U S2)]
(Spi)  min(<w, [A(S1US)]) =
min(<ye(s,u-sz) [A(S1 U S2)])
This mildly strengthens the parallel version of the principle
(GR~), mentioned in relation to Example 1 (set S; = @):

(GR?) [(T@-S)®S]=[¥®s]
(GR7,) min(swe-s, [AS]) = min(xw, [AS])
(GR®) is itself a special case of (C2®).

Beyond these, they also propose two further possibly more
controversial properties. First, since they endorse (Ind;) in
the serial case, they argue in favour of a corresponding gen-
eralisation to the parallel case, which strengthens (C3€) and
(C42), in the same way that (Ind;) strengthened (C3* ) and
(C47%). The formulation of this principle is obvious:

(Ind®) If Sy U[¥ @ S] is consistent, then S; C

[(\I/ ®51) ® SQ]
(Ind®) Ifz € [AS],y ¢ [AS] and z <y y, then
T <uves Y

Finally, they propose:

(P®) If S; U Sy is consistent, then S; C

(U ® (S; U~Sy)) ® So]
re., If 51 U S5 is consistent, then

min(<we(s;u-s): [A S2]) € [S1]?
Why endorse this principle? Delgrande & Jin provide two
reasons: (1) “[a]s a consequence [of endorsing it], problems
associated with the DP Postulate (C2) are sidestepped”. In
other words, it delivers the right result in relation to cases like
Example 1. It ensures that if we revise by a set of sentences .S
and then by the negation of a subset of these, the non-negated
remainder of S survives this second revision (if consistent
with its input). (2) “[It] reflects the intuition that, in revising
by S and after which some members of S are subsequently
disbelieved, then insofar as possible the remaining members
of S are still believed”.

Neither reason is persuasive. Regarding (1), as we shall
see, (P®) isn’t required to correctly handle Example 1. Fig.
2 demonstrates that an alternative approach, which invalidates
the principle, also delivers the right result. Regarding (2), the
intuition’s plausibility hinges on whether “insofar as possi-
ble” means (a) “insofar as is possible according to the rules of
logic” or (b) “insofar as is possible, according to the agent’s
prior evidential beliefs”. (P®) would be supported by the in-
tuition on reading (a), but not (b). We claim, however, that
the intuition in (2) is compelling on reading (b), not (a).

2(P®) and (S?) are formulated in a different, but logically
equivalent, manner in the original text.

Example 2. As in Example 1, except that we are initially
(i.e. prior to our sequence of changes in view) convinced that
our friend Bill has made sure that the functionalities of the
adder and multiplier are positively correlated, so that the
adder is working if and only if the multiplier is working too.

A and — B are jointly logically consistent. However, it seems
rationally permissible that A ¢ (Y ®{A, B}) ®{—B}| (con-
tradicting (P®)). This is because A and —B stand in opposi-
tion in the agent’s prior beliefs, with A being initially taken
as a reason to doubt =B and vice versa.

Delgrande & Jin show their properties are sound for a par-
ticular construction. This construction, however, is both by
their own admission, “somewhat complicated” and based on
the ranking function formalism of Spohn [1988], whose re-
cent axiomatic foundations remain poorly understood [Chan-
dler, 20171.

In this section, we’ve seen that Delgrande & Jin have
convincingly argued against Zhang’s strong generalisation of
Darwiche & Pearl’s second postulate ((SC2®)) and offered a
plausible strengthening of his generalisations of the remain-
ing three (his (C12), (C3?) and (C4¥)), via (PC3?) and
(PC4®). They have also introduced a promising postulate
(S9), and an appropriate generalisation of (Ind;) to the par-
allel case through (Ind®). On the negative side, their pro-
posal includes the implausible (P?) and lacks a compelling
constructive foundation.

‘We now propose a constructive approach to carry over con-
straints from iterated serial to iterated parallel revision. Un-
der mild assumptions, it validates the more plausible princi-
ples (e.g. (PC3?), (PC4?), and (S?)), while invalidating the
less plausible ones (e.g. (SC29) and (P®)). It draws from the
order aggregation-based approach to iterated parallel contrac-
tion of [Chandler and Booth, 2025]. Next, we recapitulate (i)
the “TeamQueue” aggregation method presented there, which
generalises the approach in [Booth and Chandler, 2019], and
(ii) its application to iterated parallel contraction.

4 TeamQueue Aggregation and Iterated
Parallel Contraction

Where I is an index set, a TeamQueue aggregator is a func-
tion @ taking as inputs tuples P = (<;);es of TPOs over W
known as “profiles” and returning single TPOs over W as out-
puts. When the identity of P is clear from context, we write
@P to denote &(P) and  <gp y to denote (z,y) € OP,
or simply x < y. The constructive definition makes use of
the representation of a TPO <; by means of an ordered par-
tition (7', T3, ... Ty, ) of W, defined inductively by setting,
for each ¢ > 1, T; = min(<;,( -, i), where T° is the
complement of 7'. This representation grounds the notion of
the absolute rank r; () of an alternative x, with respect to <;.
The absolute rank of an alternative is given by its position in
the ordered partition, so that 7;(x) is such that € T, (4).
The aggregation method is then defined inductively:

Definition 2. & is a TeamQueue (TQ) aggregator iff, for each
profile P = (X1, ... Xn), there exists a sequence {ap(i))ieN
such that ) # ap(i) C {1,...,n} for each i and the or-
dered partition (T, T, . .., T,,) of indifferences classes cor-
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Figure 1: Illustration of the @sTq aggregator, using 3 inputs. Boxes
represent TPOs, with lower case letters arranged such that a lower
letter corresponds to a lower world in the relevant ordering.

responding to < is constructed inductively as follows:

T= |J min(=; ()75

j€ap (i) k<i
T, =W.

In the initial step, this procedure cuts the minimal elements
from one or more of the input TPOs and then pastes them into
the lowest rank of the output TPO. Any remaining duplicates
of these minimal elements in the input TPOs are also deleted.
This operation is reiterated at each subsequent step until all
input TPOs have been fully processed.

One noteworthy member of the TQ aggregator family man-
ages the queues in a “synchronous” or again “concurrent”
manner. This implies that at every stage, the minimal ele-
ments from all TPOs are incorporated into the appropriate
output rank. This aggregator is defined as follows:

where m is minimal s.t. |J, <,

Definition 3. The Synchronous TeamQueue (STQ) aggrega-
tor &grq is the TeamQueue aggregator for which ap (i) =
{1,...,n} for all profiles P = (<1, ...,=<n) and all i.

In [Chandler and Booth, 2025], the family of TQ aggrega-
tors was shown to be characterisable in terms of the following
“factoring” property, which we give both in terms of minimal
sets and in terms of binary relations:

(FZ ) For all S C W, there exists X C I s.t.
min(<e, 5) = U;cx min(s;, S)
(Fia) Assume that x; to x,, are s.t. z; <; y. Then

there exists j € I's.t. (i) if x; <; y, then

z; <@ y,and () if z; <; y, then z; <g ¥
A characterisation of ®gTq can be achieved by supplement-
ing (F® ) with a principle of “Parity”:

min

(PARZ, ) Ifz <g yforallz € S¢ y e S, then
Uier min(<, §) € min(<e, 5)
(PARE)  Ifz <g y then for each i € I there exists z s.t.

T ~gzand 2 <; Y

It was shown that there exists a close connection between
@stq and the rational closure of a set of conditionals I'
([Lehmann and Magidor, 1992]), which represents the ratio-
nal set of conditionals that can be inferred from I'. More
specifically, it was shown that [<gq0]> = Clat();[S4]>)-

In the same paper, the authors make use of TeamQueue
aggregation to define iterated parallel contraction in terms of
iterated serial contraction. They assume the AGM postulates

for serial contraction, as well as the following analogues for
serial contraction of the DP postulates proposed by Chopra et
al [2008], given syntactically by:

(C17) If=A € Cn(B)then [T+ A) % B] = [¥ % B]
(C27) If A€ Cn(B) then [(¥ + A) ¥ B] (U % B]
(C37) If—-Ae[¥xB]then—Ac [(¥~+A)=xDB]
(C47) Ag[V*xB]thenA ¢ [(U+ A) B]

and semantically by:

(C1z) Ifz,ye[-A]thenz Sy yiffz <y y

(C27) Ifz,yec[A]thenz Sg-ayiffz <oy

(C3%) Ifze[-A],ye[A] and z <y y then
T<uvAY

(C4z) Ifze[-A],y € [A] and z <y y then
T<v+AY

They endorse the following principle:

(Age®) =<veiar,..a= D{<w=a, ..
and offer the following definition
Definition 4. © is a TeamQueue (resp. Synchronous
TeamQueue) parallel contraction operator if and only if it is
a parallel contraction operator such that there exists a serial
contraction operator + satisfying the AGM postulates and
the postulates of Chopra et al and a TeamQueue aggregator
@ (resp. Synchronous TeamQueue aggregator Ostq), such
that, for all ¥ and S C L, Swegs is defined from the Sy 4,
by (Aggf), using & (resp. Bsrq)-
If we impose the constraint that ap(1) = {1,...,n} on the
construction of @, as is the case in relation to ®stq, then
TeamQueue parallel contraction yield the “intersective” def-
inition of single-step parallel contraction, the principle ac-
cording to which the belief set obtained after contraction
by a set S is given by the intersection of the belief sets
obtained after contractions by each of the members of S
(¥ e {A1,.... An}] = Ni<icn[¥ + Ai]). This intersec-
tive definition was proven in [Chandler and Booth, 2025] to
entail a set of appealing generalisations to the parallel case of
the AGM postulates for serial contraction.

In [Chandler and Booth, 2025], it was also shown that the
TQ approach allows us to recover generalisations to the par-
allel case of the postulates of Chopra et al. These are:

5 .\<\II%A,L}

(C18) Ifz,y e [A-S]thenz <upes yiffz v y

(C22)  Ifz,y e [AS]then = <ves yiffz <v y

(C32) Txe[A-S]y¢I[A-S]andz <y ythen
T <yes Y

(C42) Ifz e [A-S].y ¢ [A-S]and 2z <y y then
T Sves Y

Syntactic counterparts for these are provided as follows:

(C18)  If =S; C Cn(Ss), then [(¥ @ S1) ® o]
= [\I/ ® SQ]
(C28) If S1 C Cn(S>), then [(¥© S1) & So]
= [\I/ ® 52]
(C32)  If =S, C [¥ ® o), then =S C[(T O S1) ® S
(C42)  If =S, U [¥ ® Sy is consistent, then

=S U[(T @ S;) ® So) is consistent
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Figure 2: Model of Example 1, using the TQ approach. The correct
result is obtained here: A, B ¢ [V] and A € [(V ® {A, B}) &
{~B}]. since min(<wea,5). [7B]) = {z} C {z,w} = [A].

5 Parallel Revision via TeamQueue
Aggregation

TQ aggregation also offers a promising, though less direct,
route to parallel revision. This approach requires two steps:

(i) Aggregate the TPOs obtained from the revisions by
the members of .S, yielding ®{=<gsa,,- -, SvxA, }»

(i) Transform this TPO to ensure that the “Success” pos-
tulate (K2®) is satisfied, i.e. that S C [¥ & 5].

This second step is required, since:

Proposition 3. There exists a set of sentences S C L, an
AGM and DP serial belief revision operator x and a state U,
s.t. min(S{<wsa,,- - Swsa, b W) € [AS]

In the special case in which the single sentence revision op-
erator * is one that identifies belief states with TPOs (such as
the natural, lexicographic or again restrained revision opera-
tors), the obvious choice of transformation in step (ii) would
simply be a serial revision by A S. We could take this revi-
sion to use the same serial revision operator as the one used
in the first step. Alternatively, we could choose the natural re-
vision operator *y, which has some attractive properties and
involves the absolute minimal change required to get the job
done. Either way, the proposal would schematically be:

(Agg®) <vos= O{<wsar; - Swwa, } ¥ AS
This leads us to the following definition:

Definition 5. ® is a TeamQueue (TQ; resp. Synchronous
TeamQueue) parallel revision operator if and only if it is a
parallel revision operator such that there exists two AGM and
DP revision operators * and *' and a TeamQueue aggregator
@ (resp. Synchronous TeamQueue aggregator Ostq), such
that, for all U and S C L, Syes is defined from x and ' by
(Aggf), using & (resp. srq)-

To illustrate how this approach might work, we depict in Fig.
2 a plausible model of Example 1. We note that it gives us
the correct intuitive outcome: we find that A, B ¢ [¥] and
A€ [(¥® {A, B}) ® {~B}], as required. The immediate
upshot of this illustration, of course, is:

Proposition 4. (SC29) fails for (even Synchronous) TQ par-
allel revision operators.

What then of the other properties we previously discussed?
First, it yields (Conj®) as its single-step special case:

Proposition 5. If ® is a TQ parallel revision operator, then
it satisfies (Conj®).

Second, we recover Delgrande & Jin’s plausible strong prin-
ciples (PC3¢) and (PC4€):

Proposition 6. If ® is a TQ parallel revision operator, then
it satisfies (PC3%) and (PC42).

We’ve seen that (PC3€) and (PC4¢) jointly entail (C1¢)-
(C42). Proposition 6 therefore gives us:

Lemma 1. If ® is a TQ parallel revision operator, then it
satisfies (C1%), (C29), (C32) and (C42).

We can also recover the parallel version of (Ind”), on the
assumption that we are proceeding from serial revision oper-
ators that satisfy (Ind”):

Proposition 7. Let ® be a TQ parallel revision operator de-
fined from AGM and DP serial revision operators * and *'.
Then, if * and *' satisfy (Ind*), then ® satisfies (Ind?).

Finally, another key principle can also be recovered:

Proposition 8. If ® is a TQ parallel revision operator, then
it satisfies (S®).

Regarding the principles that don’t hold, we’ve already seen
that (SC2€¢) fails. Thankfully, the same applies to (P?):

Proposition 9. (P?) fails for (even Synchronous) TQ parallel
revision operators.

6 Concluding Comments

Order aggregation via the ©grq operator provides a fruitful
approach to iterated parallel revision. It yields a principled
way to construct revision operators that satisfy the plausible
postulates proposed in [Delgrande and Jin, 2012] without val-
idating more questionable ones. Extending a serial revision
operator that identifies epistemic states with TPOs (e.g. nat-
ural, restrained or lexicographic revision operators) through
this approach covers indefinitely many iterations of revision.
For future research, we might first seek to obtain charac-
terisations of noteworthy classes of TQ parallel revision op-
erators based on different classes of serial revision operators,
such as those satisfying both AGM and DP postulates. Cur-
rently, we only have soundness results. Secondly, as seen
in Section 2, even for the single-step parallel case, the obvi-
ous generalisations of Harper and Levi identities ((HI°) and
(LI°)) are not promising. The situation is less clear for the it-
erated parallel case, as work on iterated versions of (HI) and
(LI) for serial change remains fairly recent (see [Nayak ez al.,
2005], [Chandler and Booth, 2019], and [Booth and Chan-
dler, 2019]). Nevertheless, finding an elegant connection be-
tween the respective extensions to the parallel case of AGM
postulates for serial revision and contraction remains an in-
teresting challenge, for both single-step and iterated change.
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