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Abstract

We propose self-organizing and simplifying neuro-
fuzzy networks (NFNs) to yield transparent human-
readable policies by exploiting fuzzy information
granulation and graph theory. Deriving from so-
cial network analysis, we retain only the frequent-
yet-discernible (FYD) patterns in NFNs and apply
them to reward-based scenarios. The effectiveness
of NFNs from FYD patterns is shown in classic
control and a real-world classroom using an intelli-
gent tutoring system to teach students.

1 Introduction

Reinforcement Learning (RL) balances online exploration
and exploitation to tackle reward-based environments. If
exploration is prohibited, offline RL may train an agent to
maximize an expected reward using only past data [Levine
et al., 2020]. Inducing policies represented by Deep Neu-
ral Networks (DNNs) with RL for complex environments
has achieved great success, but suffers from a lack of trans-
parency and sample inefficiency [Casillas et al., 2013]. Fuzzy
RL tackles the lack of transparency and sample inefficiency
by “bootstrapping” policies with written instructions from an
expert (i.e., a “warm start”) via IF-THEN rules describing
an approximate/imprecise causality called fuzzy logic rules
[Lee, 1990]. Neural systems incorporating this a priori expert
symbolic knowledge are a type of neuro-symbolic network
called Neuro-Fuzzy Networks (NFNs). While the NFNs are
more transparent and sample efficient, automatically building
them remains an ongoing research endeavor [Aghaeipoor and
Javidi, 2019]. This challenge is further exacerbated by the
potential conflict between achieving interpretability and en-
suring accuracy in NFNs within complex domains [Casillas
et al., 2013]; further compounding the difficulty in creating
NFNs is the well-known symbol grounding problem [Harnad,
1990] found in symbolic reasoning — the issue of connecting
[human] language (the symbols) to percepts [Mooney, 2008].

Our prior systematic design process (in Section 3) self-
organizes NFNs using unsupervised methods and is capable
of offline, model-free Fuzzy RL [Hostetter ef al., 2023b].
This work successfully addressed a common challenge in
NEN design by preventing the fuzzy logic rules from grow-
ing linearly with the available training data. Additionally, it

enabled human-in-the-loop interaction with the agent’s trans-
parent knowledge base facilitated by the NFN.

However, two major flaws exist in our prior work [Hostet-
ter et al., 2023b]: (1) the meaning of fuzzy logic rules’ con-
ditions cannot be adjusted during training, and (2) the num-
ber of conditions in each fuzzy logic rule grows linearly with
respect to the environment’s attributes. Issue (1) limits the
NFN’s potential for increasing the fuzzy logic rules’ effec-
tiveness, and issue (2) detrimentally affects the readability of
fuzzy logic rules as the number of input attributes increases.

Our proposed work in this paper addresses issues (1) and
(2) by yielding a simpler and more robust linguistic fuzzy rule
base (i.e., a knowledge base) that maintains global semantics
[Casillas et al., 2013] without harming performance. Before
fuzzy logic rule simplification, we adjust the symbols’ mean-
ing by ensuring the NFNs’ internal fuzzy representations are
capable of recovering the original percepts to mitigate issue
(1). Then, fuzzy logic rules are simplified in a general ap-
proach compatible with Fuzzy RL by leveraging fuzzy infor-
mation granulation [Zadeh, 1997] and extending social net-
work analysis to retain only frequent-yet-discernible (FYD)
patterns; this addresses issue (2).

To assess how effectively FYD addresses the two major is-
sues, we compare NFNs simplified by FYD to DNNs and our
prior work [Hostetter et al., 2023b] in classic control tasks.
Then, we empirically investigate its effectiveness in real-
world higher-dimensional settings by teaching students prob-
ability principles within an intelligent tutoring system (ITS)
against these same controls as well as Efficient CLAuse-wlse
Rule Extraction (ECLAIRE) — an efficient, polynomial-time
rule extraction algorithm to decompose large DNNSs into rule-
based models [Zarlenga et al., 2021]. Sample code demon-
strating FYD is public (MIT license) [Hostetter, 2025].!

2 Background

Fuzzy logic (abbrev. “f.L.”), f.0. rules, linguistic variables,
and their linguistic terms are all by-products of fuzzy set the-
ory [Zadeh, 1965] — the mathematical study of an uncer-
tainty called impreciseness [Klir and Yuan, 1995]. Often,
fuzzy set theory is mistakenly compared to probability the-
ory, but they handle different types of uncertainty — in fact,
they may complement one another [Zadeh and Aliev, 2018].

'https://github.com/johnHostetter/IJCAI-2025-FYD
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For a fuzzy set, element membership, p, is [typically] be-
tween 0 and 1 [Klir and Yuan, 1995] — unlike “traditional”
sets, where an element either belongs or it does not. Fuzzy
sets more accurately reflect the nuances and spectrum to
which vague or imprecise symbols/descriptions may apply to
an element. For example, understanding the nuance/degree
to which a person belongs to “the set of tall people” is of-
ten overlooked or ignored in set theories assuming bivalence.
Here, we determine elements’ membership to fuzzy sets by
using the Gaussian membership function for two reasons: (1)
it easily allows gradient descent [Tung et al., 2011], and (2)
NFNs that use Gaussians are fuzzy basis functions capable of
universal function approximation as proven with the Stone-
Weierstrass theorem [Wang and Mendel, 1992al.

Constrained fuzzy sets with semantics are linguistic terms,
and linguistic variables can only take on values that are lin-
guistic terms [Klir and Yuan, 1995]. An implication be-
tween the assignment of linguistic variable(s) to some lin-
guistic term(s) (i.e., premises) and other linguistic variable(s)
assigned to some other linguistic term(s) (i.e., consequents)
is a f.£. rule. Degree of applicability/activation of a f.£. rule
depends on the information’s relevancy or membership in the
premises. A collection of f.¢. rules is the knowledge base,
where a f./. system may be built to infer outputs from input
stimuli; an NEN is a computationally efficient f./. system ca-
pable of back-propagation [Lin and Lee, 1991]. We propose a
framework to self-organize NFNs capable of policy induction
by means of methods such as model-free offline RL [Kumar
et al., 2020] or imitation learning [Torabi et al., 2018].

Assume state s belongs to a n-dimensional continuous
space, [ [\ S;. Then, i indexes the state domain and corre-
sponds to the i state attribute. Action space, A, is a discrete
and finite set. We will also demonstrate our methods on an ex-
ample dataset (Table 1) throughout Sections 3 and 4. Building
our NFNs requires no knowledge regarding the action taken
or the reward received, only the state information.

ID ‘ 31 ‘ 52 ‘ 53 ‘ 34 ‘ A
1 047 | 1.14 | 030 | 1.27 | a1
2 1.40 | 0.02 | -0.37 | 0.69 | a9
3 2.80 | 0.11 | -0.09 | 042 | ay
4 1-396 | 044 | 038 | -028 | aq
5 459 | 1.22 | 0.02 1.10 | as
6 1.34 | 0.56 | 0.22 | 0.53 | a3
7 | -226 | 1.19 | -0.24 | -0.28 | a;
8 1.13 | 0.19 | -0.10 | 0.48 | a2

Table 1: Example dataset; data was artificially and uniformly sam-
pled for Cart Pole where: S; is the cart’s position (—4.8,4.8), Sz
is cart’s velocity (—inf,inf), Ss is pole’s angle (in radians) within
(~—0.418,~0.418), and Sy is pole’s angular velocity (—inf, inf).
Action space, A, is to push the cart left, a1, or right, as.

3 Self-Organizing Neuro-Fuzzy Networks

Our prior work [Hostetter et al., 2023b] introduced a system-
atic design process called CLIP-ECM-Wang-Mendel (CEW)
[Hostetter and Chi, 2023] to self-organize an NFN from data

while remaining flexible to various learning paradigms. Sec-
tions 3.1, 3.2, and 3.3 describe each step to construct com-
ponents which ultimately form an NFN. Section 3.1 creates
membership functions in a data-driven, incremental manner;
this effectively discovers logical propositions that describe
“vague” symbolic concepts (e.g., slow velocity). Section 3.2
finds “exemplary” stimuli for f.£. rule candidacy. Section 3.3
uses results from Sections 3.1 and 3.2 to yield possible f.£.
rule premises (i.e., linguistic descriptions or qualitative as-
sessments of the stimuli); then, a preliminary NFN is self-
organized and can be trained similarly to a DNN.

3.1 Creating Membership Functions

Our f.£. rules will map linguistic terms that describe the en-
vironment’s current state to Q-values of the available actions.
Fuzzy sets represent these linguistic terms (e.g., adjectives or
concepts) and may be discovered using Categorical Learning
Induced Partitioning (CLIP) [Tung et al., 2011].

CLIP is a quick, single-pass, computationally efficient al-
gorithm to incrementally create fuzzy sets and does not re-
quire a predetermined linguistic term count. Given the first
state, s, in the data, D, CLIP will create a fuzzy set in each
i"™ domain as in Fig. 1.1. Initially, this fuzzy set in some ™
domain may be interpreted as the concept of being near, simi-
lar, or approximately s; (the core of the concept). This “soft”
partition allows for varying degrees of membership, such that
new data is ranked according to how similar it is to s;. The
membership function, y; ;, controls how we quantify simi-
larity to the core, where j indexes the fuzzy set along the i
domain. Fuzzy sets found by CLIP are defined by Gaussian
membership functions, with parameters for their center (i.e.,
core), ¢; j, and sigma, o; ;. The value of s; must belong to
at least one fuzzy set in the state domain 7 with a degree ex-
ceeding e. If none adequately describe s;, then a new fuzzy
set, 1; 5, is centered on s;, but o; ; depends on its neighbors,
if any. If exactly one neighbor, p; j-, exists, then its o j is

modified
(cigr — i)
0441 ‘I)< —JIOTJ%,J" (D

such that ~ controls how sigma is adjusted and o; ; = o; j
(Fig. 1.2). Else, if p; ; has a left and a right neighbor, then
apply (1) to both, and 0; ; = ®(0; j/, 0, ;~), where j’ and ;"
index the left and right neighbors, respectively. The & is a
regulator function such that ®(o; j/, 05 ji) = 30 jv + 04 jr]
where ;' # j” and prevents malformed fuzzy sets by allow-
ing a reasonable buffer between concepts to preserve their
distinct semantic meaning. Fuzzy sets found on Table 1 us-
ing CLIP are shown in Fig. 2 with their parameters in Table 2.

| i=1  i=2  i=3 i=4
pij | ¢ ol c¢c o] ¢ o] c¢c o
j=1|047 3.34|1.14 0.56| 0.30 0.41]| 1.27 0.53
j=2|-3.96 3.43|0.02 0.56|-0.37 0.41]| 0.69 0.65
j=3]1459 334|056 056| - - |-0.28 0.65

Table 2: The parameters of the fuzzy sets shown in Figure 2.
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Figure 1: Applying CLIP, with ¢ = 0.6 and x = 0.2, to cart position s; data (pink dots) from Table 1. (1) s; = 0.47 creates a fuzzy set, but
none exist for the next s; = 1.40; (2) a new fuzzy set is then made, and existing accommodate it; (3) continue for all remaining s; € D.
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Figure 2: Fuzzy sets found (ordered by moment of creation) when applying CLIP, with e = 0.6 and k = 0.2, to Table 1.

3.2 Identifying Exemplars

The task of creating f.£. rules is closely related to identifying
exemplars, clusters, or prototypes within input-output data
[Angelov and Gu, 2018]. In offline RL, although states have
no associated output behavior before learning Q-values, we
can still identify exemplars or “regions of interest” for f./.
rules by the Evolving Clustering Method (ECM) [Kasabov
and Song, 2002]. ECM quickly and dynamically estimates
the number of clusters within data in a single pass and finds
their current centers using a distance threshold (Dthr); Dthr
affects cluster count, and subsequently, f.. rule count. Thus,
Dthr can be adjusted to limit the growth of the knowledge
base —a larger Dthr finds fewer candidates for f.¢. rules, but
risks losing approximation power. Data is determined to be-
long to a cluster if its general Euclidean distance, defined as
s — 8|l = (X0, [si — |*)? /n? where s,8 € S, is less
than the Drhr. Clusters’ centers obtained are candidates, X,
to create f.¢. rules such that X = {x1,x2,...,x)}. ECM
assists f.£. rule generation by eliminating redundant states as
f-£. rules may grow linearly with respect to training data size
(.e.,
Dthr = 0.2 on Table 1 simply aggregates states #2 and #8 to
yield (1.265,0.105, —0.235, 0.585) as there are only 8 rows.

3.3 Discovering Possible Fuzzy Logic Rules

The Wang-Mendel Method is well-established and widely
used for f.f. rule generation [Wang and Mendel, 1992b].
Given a set of training data, &', transform each x to its
fuzzy representation through a Cartesian product of fuzzy
sets, where each fuzzy set is for a specific input dimension.
To determine which fuzzy sets, for 1 < ¢ < n of x, we select
the fuzzy set that z; attains the highest degree of membership:

* = argmax fi; j(2;) for 1 < j < || 2)

where f1; ; is a fuzzy set and |u;] is the count of fuzzy sets
in dimension i. A f./. rule links compound fuzzy sets to
a decision, but we will use O as the decision for versatil-
ity, as this is later learned through gradient descent. Thus,
given candidate x, we make a f.£. rule in the form: Ruley, :
(11 %5 42,505 - - - 5 i) = O where * satisfies (2) for 1 < 4 <
n and Ruley, means the k" f.£. rule (k > 1); rules with iden-
tical antecedents are eliminated to avoid redundancy.

From Table 1 and Fig. 2, we yield the f.¢. rules in Table 3.
While these may be interpretable in our simple example, the
f-£. rules’ premises grow linearly with respect to input di-
mensionality. If n =142, then each f.¢. rule has 142 premises
since CEW does not address this issue. Our proposed work
in Section 4 extends CEW by fixing its shortcomings.

Rule | From ID(s) | o1 j | p2, | 13,5 | 1ha,
1 1 1 1 1 1
2 2&8 1 2 2 2
3 3 3 2 2 2
4 4 2 3 1 3
5 5 3 1 1 1
6 6 1 3 1 2
7 7 2 1 2 3

Table 3: Each entry specifies the index j of the linguistic term asso-
ciated with a particular input dimension in a f.£. rule.

4 Proposed Methodology

Our model for maintaining e-completeness (later defined) is
introduced in Section 4.1, followed by FYD for simplifying
f-£. rules in Section 4.2. Finally, our NFN induces policies
akin to a DNN but offers greater transparency.
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4.1 Refining the Fuzzy Logic Rules

CLIP can generate high-quality fuzzy sets, but their inter-
action within premises may lead to subpar performance if
the associated parameters are poorly chosen. In a small ex-
ploratory study, Hostetter and Chi reduced f.¢. rule count
by generating f.¢. rules only for unique latent observations,
using externally stored representations. This paper instead
leverages the NFN'’s internal latent space to improve rule sta-
bility; to this end, we propose that the fuzzy representation of
a state s, defined as {y(s) | 1}, is of high quality if s can be
reliably reconstructed from it.

Still, there is a significant caveat: naively encoding to
fuzzy representations and decoding will not work for fuzzy
sets; pure decoding is insensitive to additional constraints
such as maintaining semantics. Additionally, fuzzy sets
may accidentally exceed the typical domain or violate e-
completeness if their parameters, such as centers and widths,
are allowed unrestricted modification. The e-completeness
property guarantees input belongs to a fuzzy set (or f.¢. rule)
with a degree > ¢, so NFNs have ample coverage of the input
space to ensure a f./. rule is activated strongly enough to re-
spond accordingly. Otherwise, catastrophic numerical issues
stemming from (near) zero activation of f./. rules within a
knowledge base can cause division by zero errors.

Let K be the number of rules discovered after Section 3.3.
Then, f.¢. rules are created in the form Mamdani-Rule;:
(:ul.,*v M2, - - >Nn,*) = (Nl,*v H2 x5 e - 7,LLn,*) where * again
satisfies (2). Mamdani f.¢. rules contain fuzzy sets in their
premises as well as their consequences. Naturally, they re-
quire a special form of NFN, and here, we use a Mam-
dani NFN with a center of sums defuzzification [Rutkowska,
2002]. We chose this approach, with Mamdani f.£. con-
trol, as the knowledge base contained within truly embod-
ies the intent of encoding and decoding (it’s analogous, or a
“f.£. equivalent” to an approximate identity function that has
a non-trivial mapping due to the non-linear internal work-
ings of NFNs). Our remedy augments the target decoding
by preserving activated rule strengths during fuzzy set tuning
(S| tRute,(S) .- - fiRules () ) Where figuie, (s) is the de-
gree of activation of Rulej, when given s. The Mamdani NFN
auto-encoder’s objective is to minimize the loss in reproduc-
ing s, as well as minimize the loss between fiyamdani-rule;, (S)
and i ryie, (s) for all 1 < k < K rules. The reproduction of
s is derived from the center of sums defuzzification of rules’
consequences, which are fuzzy sets. If s can be reproduced
from fuzzy sets in rules’ consequences, then we argue that
the fuzzy representation is of high quality. This promotes
cooperative and aware fuzzy sets through their rule rela-
tions, resulting in improved reliability and stability in the self-
organization process. In essence, both sets of rules cohabitate
the final assembled NFN’s knowledge base to help maintain
consistency in the fuzzy hypercube mapping [Kosko, 1994]
and avoid violating e-completeness [Lee, 1990]. As observed
in our experiments, adjusting individual premises is allowed
if the compound premises’ behavior remains consistent. If
the need arises, preserving original compound rule activation
strength can be omitted or updated if the system’s dynamics
demand it. Still, allowing compound rule activation to roam
freely during Fuzzy RL tends to yield subpar performance or

failure to learn. This is exacerbated if premise elimination
occurs, which is introduced next in Section 4.2.

4.2 Simplifying the Knowledge Base

Fuzzy information granulation (i.e., f-granulation) theory
is the magnum opus of Zadeh’s legacy in soft computing
[Zadeh, 1997]. This paradigm elegantly integrates fuzzy
theory with numerous fields (e.g., probability, rough theory,
graph theory) to leverage the full power of mathematics under
a single umbrella. A compelling view in f-granulation reveals
the relationship between f.£. systems and graph theory. Al-
though superficially simple, this has significant potential for
interdisciplinary work between the fields. We leverage this
viewpoint to discover f.£. rules that have frequently occur-
ring yet discernible premises from one another; this discerni-
bility simplifies rules by removing redundancy, shrinking the
number of premises contained in each rule, and enhancing the
human readability of the knowledge while simultaneously not
disrupting the rules’ intended activation strengths. As such,
we aptly call it the frequent-yet-discernible (FYD) method.

We retain premises with frequent activation to maintain
e-completeness. Fuzzy association analysis calculates fuzzy
set frequency as the scalar cardinality, S [Chen ef al., 2011].
The scalar cardinality of each premise term, 1, ;, is computed
by summing the membership degree of s; to the fuzzy set y; ;
across all states s in the dataset:

doska(s1)  Dogpa(s1)
S = :

ZS Hn,1 (Sn) ZS Hon max; |4 | (sn)

where rows and columns correspond to variables and possible
terms, respectively.

A graph is built with vertices V and edges &£, where
Vo= Ay | 1 <@ <n)A(l < < |} and
E = {(wi,j,Ruley) | p;; € Ruleyk N(1 <k < K)A(1<
i <n)A (1 <3 <|wl|)}; put simply, vertices represent-
ing the input variables’ terms are connected with directed
edges to rules that involve them within their premises. To
find discernible (i.e., unique) premises, it is easier if we first
use metrics quantifying indiscernibility such as each vertex’s
closeness centrality, C [Freeman, 1978]; C typically calcu-
lates a social network’s structural centrality (i.e., degree of
centralization in the entire network). Vertex’s closeness cen-
trality is the inverse sum of distances to all other vertices (ig-
noring edge direction) [Csardi and Nepusz, 2006]. In FYD,
how reachable other premises are from mutual connections
(via shared f.f. rules) determines how often two premise
terms co-occur. The possibility of redundant premise terms
increases as this co-occurrence becomes greater.

C finds how indiscernible a premise term is from others
by leveraging information regarding mutual connections (i.e.,
indiscernibility with respect to ferms). So we also calculate
direct usage, U, of each y; ; across all f.¢. rules with U = %
to further quantify premise indiscernibility (i.e., indiscernibil-
ity with respect to rules); the matrix O’s entries correspond
to each p1; ;’s out-degree (count of f.£. rules it appears in)
such that 0 < ¢ < mnand 0 < j < max; |u;|. We experimen-
tally found that FYD has more stable global or local feature
elimination in f.£. rules by incorporating both C and U.
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We define indiscernibility, IND, of premise term(s) with
C AU, where A is a t-norm (generalization of logical “and”).
Since IND € [0, 1], a premise term, p; ;, is more common
as IND; ; — 1, suggesting it may be redundant, and vice-
versa. Here, we use the Hadamard product for the t-norm
where IND=CAU=CoU.

If discernibility is .IND (i.e., 1 — IND), then a higher
value suggests a term is “poorly connected” or “uncommon”.
Assembling these components introduces the FYD formula:

Frequent Discernible
S — min(S) ~_ IND — min(IND) )
max(S) — min(S) max(IND) — min(IND)

where the t-norm (i.e., “logical and” A) may be defined in
multiple manners, but for simplicity, we use the Hadamard
product again. Matrix S and IND are normalized to bound
them within [0, 1]. As FYD, ; — 1, the premise y; ; is more
frequent-yet-discernible. Example calculations of C, O, and
IND are provided based on the NFN built with fuzzy sets
and f.£. rules from Fig. 2 and Table 3, respectively.

Yet
I

C o IND
0.415 0.362 0.378 322 0.178 0.103 0.108
0.415 0.334 0.362 32 2 0.178 0.095 0.103
0.459 0.415 —— 43 — 0.263 0.178 ——
0.347 0.395 0.362 23 2 0.099 0.169 0.103

where O’s entries are the premise term’s occurrences across
rules. Next, S and FYD are calculated with the example
data, D, and fuzzy sets from Table 1 and Fig. 2, respectively.

S(D) FYD(D)

5.339 2.283 3.116 0.507 0.000 0.252
3.631 3.891 4.391 0.224 0.526 0.656
4.603 3.829 —— 0.000 0.257 ——
2.550 5.019 2.899 0.085 0.498 0.192

Although some premise terms are considered discernible
(e.g.,1—IND; 5 = 0.897), when we factor in activation fre-
quency across D, then discernible premises (purely accord-
ing to the graph) are no longer given high importance since
they are infrequent (e.g., FYD; > = 0). So, the premise
term, [ 2, 1S unnecessary, as it is seldom activated in prac-
tice despite discernibility metrics allocating high importance
to it because of its rare involvement in f.£. rules. This high-
lights the glaring shortcoming of naively simplifying rules
solely on discernibility (e.g., LERS from rough set theory)
as in the RSPOP family of NFNs [Ang and Quek, 2005;
Das et al., 2016; Iyer et al., 2018] where the nature of
premises’ multi-valued degree of truth is totally disregarded.
Similarly, relying only on activation frequency may disregard
how often a premise term occurs across f.¢. rules. For ex-
ample, FYD3 ; = 0 because although it occurs frequently,
Ss3,1 = 4.603, it has the highest closeness centrality, C3 1 =
0.459, and is used across the most rules, O3 ; = 4. Our
proposed FYD is the first work to identify this inadequacy
of existing work in f.£. rule simplification for offline Fuzzy
RL, and requires no utilization of the intended outputs or tar-
gets for our f.¢. rules; this makes it appropriate for Fuzzy RL
when there is no clear desired mapping yet.

Kneedle [Satopaa er al., 2011] finds an appropriate knee
point in the sorted values from F'YD. Then, any p; ; with a
FYD, ; below this threshold is removed, and the f.¢. rules
are updated accordingly. This performs a local (and, in the
extreme —global) feature selection. It may also delete f./.
rules if all their premises are deleted, as they are then non-
essential. Only the maximal frequent compound premise of
f-£. rules are kept. Kneedle calculates 0.257 as the threshold
from FYD(D), and retains only 5 from 11 terms: 1,1, p2,2,
H2.3, 13,2, pa,2. Rule 5 is non-essential, as all its premise
terms have been cut. Rules 1, 3, 4, and 7 are marked for
deletion as well, as their compound premises are subsets of
larger FYD premises. Specifically, rules 3 and 7 are cut since
they are proper subsets of rule 2, and their activation is suf-
ficiently captured by rule 2. Similarly, rule 4 is redundant
as it is a proper subset of rule 6, so they share overlapping
activation. FYD finds only rules 2 and 6 are frequent-yet-
discernible from the 7 f.¢. rules in Table 3 given D.

Rule | From ID(s) | 1.5 | 2, | 13,5 | 114
1 1 1 [ - - |-
2| 2&8 |12 2|2
3 3 — 2122
4 4 T R
5 5 - - -
6 6 1|3 -

7 7 -2

Table 4: Only two f.£. rules are kept (in bold).

Fuzzy Set(s) | Semantic
1,1 “slightly right of the middle”
2,2 “near zero”

p2.3 & fig2 “fast (positive)”
13,2 “left leaning”

Table 5: The gap between quantitative and qualitative may be
closed by attaching semantic meaning to the fuzzy sets.

A human may attach semantics to the “vague” symbols’
precise definitions (Table 5) by analyzing the corresponding
plotted fuzzy sets (Fig. 2). For example, rule 6 may be read
as: “if the cart’s position is slightly right of the middle, the
cart’s velocity is fast (positive), and the pole angular veloc-
ity is fast (positive), then the (Q-)values of pushing the cart
left or right are __ and __, respectively.” Consequences are
shown as blanks (i.e., ) since they change (via gradient de-
scent) based on the NFN’s performance, but per Section 3.3,
we initialize all consequence values to start from O.

Fewer premises may be retained than the maximal f./. rule
premise identified here, but finding a minimal discriminant
f-£. rule premise is left for future research. The only step re-
maining is to train our simplified NFN with a learning algo-
rithm. It is important to emphasize that an NFN, once built, is
used similarly to a DNN but offers greater transparency in its
decision-making. We showcase NFN’s generalizability with
Kumar et al.’s Conservative Q-Learning (offline RL) and Be-
havior Cloning [Torabi et al., 2018] (imitation learning).
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5 Classic Control Experiments & Results

We evaluated on Cart Pole [Barto et al., 1983], Mountain Car
[Moore, 1990], and Two-Link Arm [Sutton, 1995].

Experiment conditions. For baselines, DNNs were trained
with 7 different strategies: 1. Conservative Q-Learning
(CQOL) [Kumar et al., 2020]; 2. Behavior Cloning (BC)
[Torabi er al., 2018]; 3. Deep Q-Learning (DQL) (with no
offline augmentation) [Mnih er al., 2015]; 4. Double DQL
(DDQL) (with no offline augmentation) [Hasselt ez al., 2016];
5. Batch Constrained Q-Learning (BCQ) [Fujimoto et al.,
2018]; 6. Neural Fitted Q Iteration (NFQ) [Riedmiller,
20051; 7. Soft Actor Critic (SAC) [Christodoulou, 2019]. All
were selected for their applicability to discrete control and
offline learning potential. Additionally, we compare to NFN's
self-organized using CLIP, ECM, and Wang-Mendel (CEW)
[Hostetter et al., 2023b; Hostetter and Chi, 2023] (as in Sec-
tion 3) and trained via CQL or BC. We evaluate our proposed
FYD method (Section 4) against these baselines and train its
NFNs via CQL or BC. We highlight CQL and BC to show-
case NFNs’ ability for offline RL or imitation learning, but
it is compatible with others too (e.g., SAC). DNNs had two
hidden layers (256 RELU neurons each), a linear output layer,
and one output neuron per possible action. All methods were
optimized by Adam [Kingma and Ba, 2014].

Policy induction. Shared parameters were identical: o =
1.0, v = 0.99, learning rate n = 3 X 10~%, and the batch size
was 32. For FYD or CEW, CLIP used x = 0.2, ¢ = 0.6, and
ECM’s distance threshold, Dthr, was 0.1. Training data was
collected by a DNN using DQL and experience replay while
solving the given environment online. Each condition was run
10 times across different seeds; each algorithm was shown
the same data in the same order for each seed. During each
run, the amount of data available for offline training gradu-
ally increased to show how conditions behave as more data
is provided. Policies were evaluated online for 10 episodes
using OpenAI Gym and mean performance was recorded.

Results. Fig. 3.a. shows FYD remains on par with the mean
performance of DNN or CEW with CQL or BC and in some
cases, surpasses it (e.g., Cart Pole). Compared to the existing
method of building NFNs called CEW, FYD would often ob-
tain higher rewards and show greater stability. Since the two
share the same processes for fuzzy set definition, exemplar
identification, and rule generation (see Section 3), the perfor-
mance difference can be attributed to our proposed changes
in Section 4; the reduction of premises is shown in Fig. 3.b.

6 ITS Experiments & Results

A web-based ITS teaches ten probability principles (e.g.,
Bayes’ Theorem). The ITS provides adaptive instructions,
immediate feedback, and on-demand hints to enhance learn-
ing. Pedagogical decisions are whether a student should solve
the next problem (Problem-Solving (PS)), study a worked-
out example (Worked-Example (WE)), or work collabora-
tively with the ITS on the next problem (Collaborative PS
(CPS)). An additional level of interaction between student
and ITS occurs during CPS — ITS can decide to tell the stu-
dent the next step or elicit the student to solve the next step.

Experiment conditions. This study was homework for an
undergraduate Computer Science class. Students were told to
finish in a week and that they would be graded on demon-
strated effort rather than learning performance. 225 stu-
dents were randomly assigned: FYD (N=53), CEW (N=56),
DNN (N=55) and ECLAIRE (N=61). ECLAIRE is an effi-
cient, polynomial-time rule extraction to decompose DNNs
into rule-based models [Zarlenga et al., 2021]. The tutor,
general procedure, training materials, and questions were all
the same during these studies. The training corpus provides
the states, actions, and rewards for policy induction. Due
to midterms and study length, 195 students finished, but 22
were excluded from the analysis due to perfect pretest scores.
Final group sizes were FYD (N=39), CEW (N=38), DNN
(N=44) and ECLAIRE (N=52). The students’ completion
rate between conditions was not significantly (sig.) different:
x2(3) = 2.5443, p = 0.46734.

Procedure. 7Textbook: Students review probability princi-
ples. Pretest: Students’ a priori knowledge is bench-marked
with 8 single- and multiple-principle problems. ITS train-
ing: Students are trained with 12 problems (shown in the
same order for each) with the assistance of an automated tu-
tor (e.g., FYD, DNN). Posttest: Learning is evaluated with 12
problems —8 isomorphic to the pretest, with the remaining 4
as non-isomorphic multiple-principle problems. Tests were
graded by 2 experienced graders in a double-blind manner.

State. 142 features that may impact student learning ex-
tracted from interaction logs are split into 5 groups: Auton-
omy (10): amount of work done by the student (e.g., steps
done without help); Temporal Situation (29): time-related
information (e.g., average time per step); Problem-Solving
(35): current problem-solving context (e.g., problem diffi-
culty); Performance (57): student’s ability to solve (e.g., per-
centage of correct steps); Hints (11): student’s hint usage.

PS, WE, or CPS as previously described.

Reward. There is no immediate reward during tutoring, but
the delayed reward is students’ Normalized Learning Gain
(NLG) —their learning gain irrespective of incoming compe-
tence [Abdelshiheed et al., 2024; Islam et al., 2024]. NLG

. postlest—pretest :
ig BOSLES_Preiest “yhere 1 is the max score for posttest and
v 1—pretest

pretest score is lower than 1.

Action.

Policy induction. A hierarchy of policies was created
where one policy determines what action to take on the
problem-level, and separate policies determine whether to
elicit or tell the next step during a CPS for each problem. All
pedagogical policies were induced offline with CQL using
2,421 students’ interaction logs over 14 semesters of class-
room studies; parameters were: « = 0.1, v = 0.99, learning
rate n = 3 x 1074, k = 0.2, € = 0.7, with a batch size of 32.
ECLAIRE policies were produced from DNNs after CQL.

Results. Effect sizes are partial eta squared (n?) or Cohen’s
d. Pretests were not sig. different (F'(3,169) = 0.247, p =
0.781), indicating balanced incoming competence. Regard-
less, students’ incoming competence was factored by adjust-
ing for pretests with a one-way ANCOVA; due to each exper-
imental condition’s strength, there was also no statistically
sig. difference in students’ learning (F'(3,169) = 0.158, p
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Figure 3: (a) Mean online reward of conditions’ trained policies as more offline data is used; line thickness determines chosen architecture
(e.g., thickest is FYD). (b) Violin plots show kernel density estimates and quartiles for the premise terms.

= 0.924), but time spent for ITS training was sig. differ-
ent (F(3,169) = 13.047, p < 0.001, n* = 0.188). Tukey-
Kramer post hoc multiple comparisons found FYD had a sig.
and large effect reducing the time to complete ITS training
by 0.638, 0.719, 0.636 hours compared to ECLAIRE (d =
1.374), CEW (d = 1.301), and DNN (d = 1.102), respectively
(p < 0.001 each comparison).

Model complexity. The f./. rule count between FYD and
CEW was comparable, ¢(18) = 0.316, p = 0.755, d = 0.15,
but premises’ count was sig. different with pronounced ef-
fect size in favor of FYD, #(5564) = 1720.551, p < 0.001,
d = 46.15. FYD had 286.8 (35.01) rules with 9.734 (3.993)
premise terms, but CEW had 269.8 (92.991) rules, each with
142 premise terms. Although ECLAIRE had 2.1 (0.316)
rules, their premises had 330.780 (236.032) terms. The term
count in the rules’ premises between FYD and ECLAIRE was
sig. different with a pronounced effect (again, in favor of
FYD), t(2907) = 72.978, p < 0.001, d = 11.48. For qualita-
tive analysis, a sampled rule from each FYD and ECLAIRE
in Table 6 illustrates our rules’ readability. For ECLAIRE
—a state-of-the-art decompositional rule extraction method
for DNNs —we select the smallest rule, which still contains
26 inequality relations within its premise. Our method’s abil-
ity to construct short rules conditioned upon original features
offers exciting possibilities for automatic knowledge acquisi-
tion and facilitation from agent to human.

7 Related Work

Hein et al. self-organize NFNs for offline RL by using fuzzy
particle swarm RL in a simulation to learn its parameters, but
must define sought-after f.(. rule count, and assumes it is
simple to model the system’s dynamics. Incorporating other
logic with RL has also been researched. Relational RL (RRL)
combines RL with inductive logic programming (or relational
learning) to produce interpretable and generalizable policies;
these may be applied to planning tasks [DZeroski ef al., 2001].

Condition | An Example Rule Premise

IF the student only has a FEW hints
A performance on this PP is AVG
A correctly answer De Morgan’s Law OFTEN

IF [(s1 > 0) A (s113 > 0.5) A (s115 > 0.857)
A(s6 > 0.931) A (ss6 < 0.056) A (s93 < 0.262)]
. V[(s1 > 0) A (s113 > 0) A (s¢ < 0.962)
A(se > 0.956) A (s76 > 0.925)]

FYD
(Ours)

ECLAIRE

Table 6: For ECLAIRE, s; is the i‘" feature and values in the asso-
ciated inequality are a learned threshold approximating the original
DNN’s decision boundary; PP refers to a probability principle.

Relational Deep RL leveraged DNNs with RRL to play Star-
Craft II [Zambaldi et al., 2018]. Alternatives such as neu-
ral logic RL represent induced policies with first-order logic
[Jiang and Luo, 2019]. Deep Symbolic RL (DSRL) derives
symbolic representation from unstructured data with a DNN
[Garnelo et al., 2016]. Symbolic RL with Common Sense ex-
tends DSRL by generating symbolic representations prior to
learning and decision-making algorithms [d’ Avila Garcez et
al., 2018]. Other approaches aim to mimic a DNN policy by
extracting an interpretable model, but encounter limitations
[Bastani et al., 2018; Hostetter et al., 2023al.

8 Conclusion

Self-organizing NFNs are interpretable and adaptable by
leveraging data for their structure and parameters. Our frame-
work yields effective NFNs with less rule complexity but no
observable loss in performance. FYD shortened the ITS train-
ing time for students and exhibited statistically higher trans-
parency concerning premise count. Our NFNs’ rules are con-
ditioned upon the original features expressed via a linguistic
medium (i.e., constrained fuzzy partitions). Their knowledge
can also be transferred to/from other NFNs, opening many
exciting opportunities, such as in federated learning.
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