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Abstract

Federated Learning (FL) provides a flexible dis-
tributed platform where numerous clients with high
data and system heterogeneity can collaborate to
learn a model. While previous research has shown
that FL can handle diverse data, it often completely
assumes idealized conditions. In practice, real-
world factors make it hard to predict or design in-
dividual client participation. This complexity re-
sults in an unknown participation pattern - arbi-
trary client participation (ACP). Hence, key open
problem is to understand the impact of client par-
ticipation and develop a lightweight mechanism to
support ACP in FL. In this paper, we first empiri-
cally investigate the client participation’s influence
in FL, revealing that FL algorithms is adversely
impacted by ACP. To alleviate the impact, we pro-
pose a lightweight solution, Federated Average with
Snapshot (FAST), that supports almost ACP for FL
and can seamlessly integrate with other classic FL
algorithms. Specifically, FAST enforces clients to
take a snapshot once in a while and facilitates ACP
for the majority of training processes. We prove
that the convergence rates of FAST in non-convex
and strongly-convex cases match those under ideal
client participation. Furthermore, we empirically
introduce an adaptive strategy to dynamically con-
figure the snapshot frequency, tailored to accom-
modate diverse FL systems. Extensive experiments
show that FAST significantly improves performance
under ACP and high data heterogeneity.

1 Introduction

Federated Learning (FL) stands out as an emerging distributed
machine learning framework where a large number of clients
(i.e., computing nodes or devices) collaborate together to train
a global model under the coordination of a central server
[McMahan et al., 2017; Kairouz et al., 2021]. FL estab-
lishes itself as a powerful and flexible distributed platform,
fostering collaboration among diverse clients characterized
by substantial heterogeneity in data and system while pre-
serving the privacy of raw data residing within each client.
Hence, previous research endeavors have yielded a spectrum

of efficient algorithms capable of achieving optimal conver-
gence rates in theory and delivering great performance in
some practical cases, in the presence of varying degrees of
data heterogeneity [Kairouz et al., 2021; Zhao et al., 2018;
Li et al., 2019; Karimireddy et al., 2020; Yang et al., 2020;
Wang et al., 2021].

Nevertheless, realizing these favorable outcomes often
hinges on the ideal system condition (i.e., ideal client par-
ticipation). Specifically, most FL algorithms presume that
client participation can be fully known, controlled, pre-
dicted or tracked. For example, [McMahan er al., 2017,
Acar et al., 2021; Cho et al., 2023] assume partial client
participation, where participation follows a known or con-
trollable random process, such as ergodic, mixing, or in-
dependent processes. [Yang et al., 2022b; Gu et al., 2021;
Yan et al., 2024] suppose that each client participates at least
once within certain rounds.

In practice, however, each client’s participation is highly
dynamic, unknown and unpredictable [Bonawitz ef al., 2019;
Soltani et al., 2022] since clients frequently exhibit hetero-
geneous and dynamically shifting attributes, including com-
putational power, communication capacity, and availabil-
ity [Kairouz et al., 2021; Bonawitz et al., 2019; Yang et al.,
2021]. These variations stem from the unique characteris-
tics of each individual client and the dynamics of distributed
learning systems. The dynamic, unknown, and unpredictable
intricacies of client participation make it challenging and even
impossible to ascertain a priori beforehand. Moreover, in
some FL systems, such as cross-device FL, tracking client
participation is either infeasible or not permitted [Kairouz et
al., 2021]. We name these patterns as arbitrary client partic-
ipation (ACP), reflecting its dependence on various system
factors and the absence of explicit client tracking. Clearly, it
leaves a substantial gap between algorithmic designs built on
the premise of ideal client participation and the real-world ap-
plications of FL involving ACP. Also, without any conditions
on client participation, a constant error arises for ACP as iden-
tified by the lower bound [Cho er al., 2022; Wang et al., 2020;
Yang et al., 2022b], implying that no algorithm can achieve
stationary point convergence in such case. This observation
motivates us to pose the following fundamental question:
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Question: Is it possible to design a lightweight mechanism
for FL that can accommodate arbitrary client participation
with theoretical guarantees?

In this paper, we show an affirmative answer to this question
by proposing a new client participation mechanism for FL,
denoted as Federated Averaging with SnapshoT (FAST). In
contrast to most FL algorithms that necessitate ideal client
participation in each communication round, FAST imposes a
minimal requirement for client participation by intermittently
implementing a snapshot step. This approach significantly
diminishes the requirement for individual client participation,
enabling ACP for the majority of the training process. We
highlight our contributions as follows:

* Through extensive experiments, we reveal that the mismatch
between ideal client participation in algorithm design and
ACP in practice leads to severe performance degradation,
especially in highly heterogeneous data scenarios. These
phenomena are universal and extend beyond specific algo-
rithms, as observed across multiple FL algorithms.

* To address this issue, we introduce FAST, a lightweight FL
framework that requires only intermittent snapshot steps, en-
forcing fully random client participation during these steps
while accommodating ACP within the system at all other
times. This requirement applies to the client cohort rather
than individual clients, allowing the participating group to
be statistically representative. This is a milder condition
compared to existing works (see Table 1), as it eliminates
the need to track each client individually.

* Theoretically, we demonstrate that, under mild conditions,
FAST can achieve a convergence rate of O(1/vmRK) for

non-convex functions and O(1/R) for strongly-convex func-
tions, where R is the number of communication rounds, K
is the number of local steps, and m is the number of par-
ticipating clients. These rates can match the rates of those
under ideal client participation.

» Empirically, we further propose an adaptive strategy adjust-
ing the snapshots’ frequency dynamically and show that
FAST can seamlessly integrate with other classic FL algo-
rithms. Also, extensive experiments verify its effectiveness.

2 Related Work

Ideal Client Participation: full client participation and
uniformly random client participation. In FL, client partici-
pation can be seen as a proxy for system heterogeneity. Due to
the inherent complexity of real-world FL systems, explicitly
modeling client participation proves challenging [Bonawitz
et al., 2019; Yang et al., 2021]. Most existing FL algo-
rithms often make an assumption about ideal client participa-
tion, typically relying on either full client participation [Gor-
bunov et al., 2021; Haddadpour et al., 2019; Lin et al., 2018;
Wang and Joshi, 2019; Wang and Joshi, 2021; Yu et al.,
2019] or uniformly random client participation [McMahan
et al., 2017; Li et al., 2019; Karimireddy et al., 2020;
Yang et al., 2020; Wu et al., 2023; Zhang et al., 2023;
Wang et al., 2023; Liu et al., 2021; Jhunjhunwala et al., 2022;
Grudziefi et al., 2023]. This assumption requires that the server

force all clients or at least uniformly and randomly sample a
subset of clients to participate in each communication round.
However, each client in FL is not entirely under the server’s
control. While the server may sample a client for a specific
round, the client is highly likely not to participate due to
various system factors such as drop-out, communication con-
gestion, and other unpredictable factors [Kairouz er al., 2021;
Yang er al., 2021]. Tt is worth noting that the server can invest
additional resources to enforce uniform client participation,
such as sampling more clients and extending the waiting time
in each round. Yet, this approach leads to prolonged train-
ing times due to significant communication and computation
overhead [Zhou et al., 2022]. As shown in [Luo et al., 2022],
enforcing uniform client participation in every round by the
server results in slow wall-clock time for FL training.

Controllable Client Participation. In addition to uniform
client participation, another approach in the field involves
modeling client participation as a controllable random process.
One line of works utilizes predefined patterns or probabili-
ties as the model of client participation [Chen et al., 2022;
Yang et al., 2022b; Fraboni et al., 2021; Ruan et al., 2021;
Gu et al., 2021; Avdiukhin and Kasiviswanathan, 2021;
Wang and Ji, 2022; Koloskova er al., 2022]. The main idea
is to allow asynchronous communication or fixed participa-
tion patterns (e.g., given probability) for clients to partici-
pate flexibly in training. However, existing works in this
area often require extra assumptions, such as bounded delay
and extra memory [Yang et al., 2022b; Ruan et al., 2021;
Gu et al., 2021; Koloskova et al., 2022] and identical compu-
tation rate [Avdiukhin and Kasiviswanathan, 2021]. Moreover,
several works explore some unique scenarios of client partic-
ipation. For instance, [Chen er al., 2022] introduced a novel
client subsampling scheme considering the importance of up-
dates, relying solely on the norm of the update. [Malinovsky
et al., 2023; Cho et al., 2023] investigated cyclic client par-
ticipation. [Wang and Ji, 2022] provided a unified analysis
for various client participation, including regularized, ergodic,
independent, and mixing participation. The implicit assump-
tion in these studies is that client participation is either known,
largely controllable or adheres to predefined patterns. It is also
noteworthy to mention a related work [Wang and Ji, 2023],
wherein the estimated probability of each client’s participation
was used for a re-weighting process under unknown participa-
tion statistics. However, estimating such probabilities can be
challenging in practice, such as cross-device FL [Kairouz et
al., 2021].

Each of these approaches contributes to the diverse client
participation strategies employed in FL. However, these strate-
gies often necessitate adherence to specific patterns, which
may not align seamlessly with practical FL scenarios charac-
terized by highly dynamic, unknown and unpredictable nature.
In this paper, we introduce a more general and practical pat-
tern - arbitrary client participation (ACP). This implies that
we do not impose any assumptions on client participation for
the majority of training rounds. Our aim is to offer a flexi-
ble and realistic framework that accommodates various client
participation scenarios in real-world FL applications.

Comparison of Related Work. We compare some related
work about ACP in Table 1. Except for differences in partici-
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pation and convergence rates, we still need to compare some
important points. For FedAmplify [Wang and Ji, 2022], it
can achieve the convergence rate of O( \/ﬁ) only in some

ideal cases (see Sec. 5 in [Wang and Ji, 2022]), and the server
requires participation frequency for each client. For MIFA
[Gu et al., 2021], each client needs to participate in training
at least once in the one-time window. For Anarchic Federated
Learning (AFL) [Yang er al., 2022b], the server needs to iden-
tify and store local models, and each client needs to participate
in training at least once in the one-time window. In contrast,
FAST framework has no extra assumptions for client partici-
pation and can achieve the ideal convergence rate. In addition,
regular FAST does not demand to store extra information.

Algorithm ‘ Participation Condition ‘ Client Track ‘ Convergence Rate
MIFA Bounded inactive rounds v O(1/vVmKR)
AFL Bounded inactive rounds v O(1/vVmKR)
FedAU Every client participates v O(1/vVmKR)
FedAmplify | Regularized, mixing, independent process X O(1/VmKR)
FedAvg Uniform participation in every round X O(1/vVmKR)
FAST (ours) Uniform participation occasionally X O(1/vVmKR)
Lower Bounds ‘ No assumptions ‘ - ‘ Q(1)

Table 1: Comparison of Client Participation in FL and Convergence
Rate for Non-convex Functions.

3 The Impact of Client Participation in FL

In this section, our goal is to investigate the impact of client
participation on FL performance. We first introduce the funda-
mental formulation and the standard FedAvg. Subsequently,
we examine FedAvg’s performance across various client par-
ticipation scenarios and show the adverse effects of different
ACP. This highlights the gap between current algorithm de-
signs and practical FL systems, thus motivating us to develop
a new framework to accommodate ACP for FL.

3.1 Federated Learning and Federated Averaging

Problem Formulation. In a FL system with M clients, our
goal is to minimize the objective function as:

MZF (1)

where x is a d-dimension model parameter, M is the total num-
ber of clients, and F;(x) := ﬁ > eep, F(®,§),Vi € [M]is
the local loss function associated with local dataset D, that is
[ID sampled from one underlying distribution P;. One of the
critical features of FL is that each client has a subtly different
local data distribution, i.e., P; # P; if i # j. This leads to
heterogeneous (or Non-IID) data in the FL system, causing
model drift and non-trivial performance degradation [Kairouz
et al., 2021; Wang et al., 2021].

FedAvg Algorithm. The Federated Average (FedAvg) al-
gorithm [McMahan er al., 2017] stands as the pioneering
exemplar FL algorithm, inspiring numerous variants. Most
of the FL algorithms follow the typical parameter-server ar-
chitecture. In each communication round r € [R], the server
first selects a subset of clients to participate and broadcasts

min F(x
xzcR4

the current global model «,. to each client. Upon receiving the
global model, each participating client locally optimizes the
loss function for some local steps using the local dataset with-
out communication. For example, FedAvg takes K local steps
using the vanilla stochastic gradient descent method. That
is, @, 1 =T, — N VE(x) 1, &) k€ {0, K — 1}
starting from :ci‘o = x,. where f};y x ~ Dj. After local com-

putation, the client sends the model update ! = =z
to the server. At the server side, the server updates the
global model by aggregatmg all the returned local model,
ie., T,y = |s i ZlGS x!. where S, is the set of participated
clients in the r-th round. Then, the next training round begins.
Undoubtedly, client participation, denoted as the set S,.,
stands as a pivotal factor influencing the performance of FL
models. While the majority of works in FL concentrate on
mitigating data heterogeneity, the implications of client partic-
ipation remain largely under-explored. To ensure convergence
guarantees in FL algorithms, specific conditions must be im-
posed on client participation. Essentially, these algorithms
necessitate a regulated form of client participation, such as
participation through uniformly random sampling or a prede-
termined probability distribution, as detailed in Sec.2.
However, in real-world FL systems, client participation is
inherently dynamic, prone to changes in each round [Bonawitz
et al., 2019; Yang et al., 2021]. Even if the server employs an
ideal sampling way, like uniformly random sampling, actual
client participation remains unknown and largely uncontrol-
lable. We term this as arbitrary client participation, signifying
that S,. includes any sampling from the whole client set [M],
thereby incorporating a diverse array of participation schemes.
This process is determined by various inherent system fac-
tors, such as client failures and status changes [Bonawitz et
al., 2019; Yang et al., 2021]. Hence, there exists a conflict
between existing algorithm designs with ideal client participa-
tion and practical FL systems with ACP. This motivates us to
explore the impact of ACP on FL algorithms’ performance.

3.2 The Impact of Client Participation in FL.

Arbitrary Client Participation Simulation. We delve into
FedAvg’s performance across four client participations char-
acterized by distinct distributions: uniform, Beta, Gamma,
and Weibull. Uniform client participation entails the random
client selection from the entire client set, which is an idealized
scenario in current FL algorithms. The Beta distribution is
commonly employed to model events constrained within an
interval. The Gamma distribution finds application in charac-
terizing the frequency of a sequence of events associated with
time or distance. The Weibull distribution is widely utilized
in reliability or survival analysis [Lai er al., 2006]. In FL, the
server often receives returns from clients within a given time
window. Hence, it is reasonable to use uniform distribution
as a baseline for ideal client participation. The latter three
distributions are utilized to approximate different real-world
scenarios, serving as representatives of ACP.

It is important to emphasize that our primary goal is not
to precisely model client participation in FL but to explore
the impact of different potential client participation scenarios.
Also, we aim to highlight the adverse effects resulting from
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the mismatch between the ideal client participation used in the
current algorithm design and ACP observed in practical FL.

Experiment Settings. We perform extensive experi-
ments on Fashion-MNIST [Xiao et al., 2017] and CIFAR-10
[Krizhevsky et al., 2009], considering various Non-IID de-
grees and utilizing the four distributions to simulate different
client participation. As shown in Table 2, we scrutinize the
model performance using FedAvg. For each case, we record
the last five results and report the mean and standard devia-
tion of test accuracy. Here, we only show key findings and
delegate the detailed settings and results for other datasets and
algorithms to Sec. 5 and Appendix.

Observations. We have three key observations. First, Fe-
dAvg’s performance is significantly influenced by client par-
ticipation. As shown in Table 2, the model accuracy varies
across different client participation cases, with uniform partic-
ipation yielding the best performance among these four cases.
This performance difference is substantial, ranging from 3%
to 18%. These results align with practical FL simulations,
where uncontrolled client participation induced by system het-
erogeneity leads to non-trivial model performance degradation
[Yang et al., 2021]. Second, this performance degradation
strongly correlates with the degree of Non-IID data. In our
setting, we adopt the common approach of generating Non-IID
data using the Dirichlet distribution [Acar er al., 2021], with
the parameter « controlling the Non-IID degree. A smaller
« corresponds to a higher Non-IID degree. For datasets with
a higher degree of Non-IID data (smaller «), the model ac-
curacy gap between uniform and other cases becomes more
pronounced. For instance, on the Fashion-MNIST dataset,
the model behaves similarly for different client participation
cases with less Non-IID data (i.e., « = 1). However, as the
Non-IID degree gets higher, such as a = 0.05, the accuracy
gap between uniform and other participation could be as large
as 18%. Third, the performance degradation for ACP (in the
latter three cases) is universal, which extends beyond FedAvg,
as evidenced by consistent observations across other FL algo-
rithms such as FedProx and SCAFFOLD.

It is essential to note that occasional enforcement of uni-
form client participation in FL is feasible. For instance, the
server can sample a larger number of clients and allocate suf-
ficient time for each communication round, allowing ample
clients to complete local computations. However, this strategy
inevitably demands more resources and significantly extends
the training time due to longer waiting time. Thus, it becomes
unrealistic to enforce uniform client participation in every
round. In addition, without imposing any constraints on client
participation, FedAvg is theoretically incapable of asymptot-
ically converging to a stationary point [Yang er al., 2022b;
Yang et al., 2022a] and experiences non-trivial performance
degradation in practice, as shown above. This realization mo-
tivates us to develop a lightweight client participation mecha-
nism, aiming to achieve performance similar to that of uniform
participation while imposing fewer constraints on FL systems.

4 Federated Average with Snapshot (FAST)

We first introduce a lightweight client participation mecha-
nism - Federated Average with SnapshoT (FAST). Then, we

Algorithm 1 Federated Average with Snapshot (FAST)

1. Initialize: model parameter x(, learning rate 7., local
update steps K, communication rounds R, snapshot step
interval I (or probability g).

2: forr=0,....,R—1do

30 Ifr%I == 0 (withqg = 1/1): » Snapshot

4. Server enforces uniformly random clients S, = S

(IS¥| = m) to participate.

5:  Otherwise:

» Arbitrary

6: Server allows arbitrarily random clients S, = S
(IS%| = n) to participate.

7: Eachclienti € S, computes in parallel:

8: Ty g1 = Ty g NeVF(x) 1,6 5) k € [K]
9: Send @} = x;. , ., to the server 4

10:  Server aggregation: &, = |51 >l

" ies,
11: end for
12: Note: Lines 7-10 can be replaced by any other FL algo-
rithms.

provide the convergence analysis for non-convex and strongly-
convex cases. Lastly, to eliminate the need for predefining
the snapshot frequency, we empirically propose a strategy to
dynamically adjust the snapshot frequency for FAST.

4.1 Algorithm Description

As shown in Algo. 1, we introduce a lightweight client par-
ticipation mechanism for FL. In each communication round
r € [R], we design two client participation options. If
r%I == 0, the server takes a snapshot step that requires
to enforce a round of uniform client participation denoted as
client set S with cardinality m for that round, where [ is a
hyper-parameter to control the snapshot frequency. Otherwise,
the server does not put any constraints and can accommodate
any system heterogeneity by allowing ACP denoted as set
S% with cardinality n. On the client side, each participating
client takes K Stochastic Gradient Descent (SGD) steps and
sends the returns back to the server, mirroring the procedure
in FedAvg. Subsequently, after local computations, the server
aggregates all the returns and updates the global model. Addi-
tionally, from a probabilistic perspective, in each round, there
exist a probability ¢ of enforcing snapshots and a complemen-
tary probability of 1 — ¢ to permit ACP. Here ¢ = 1/I can be
regarded as the snapshot probability or frequency.

In general, the uniqueness of FAST is utilizing a snapshot
step every I rounds by enforcing a round of uniform client
participation. The trade-offs of the snapshot are discussed
as follows: 1) Resources. Although uniform client partici-
pation is an ideal situation in FL, it can still be achieved in
practice by using some strategies. For instance, the server can
initially sample 1.3 x m clients and extend the waiting period
[Bonawitz et al., 2019]. This approach would make uniformly
random client participation hold statistically, and mirrors prac-
tical FL simulations, such as 11.6% dropout rate and an opti-
mal waiting time [Yang et al., 2021]. Hence, enforcing uni-
form client participation is practical in reality. Unfortunately,
this approach to achieve uniform participation consumes more
resources, such as time and computation. However, in FAST,
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Participati | Fashion-MNIST | CIFAR-10
articipation \ «
| 0.05 0.1 0.3 0.5 1.0 | 0.1 0.5 1.0
Uniform 84.10%+2.4 86.85%+1.9 89.39%+0.7 91.39%+0.3 92.21%+0.3 | 80.18%+0.6 80.49%+0.4 80.83%+0.7
Beta 74.84%+1.2  79.89%+4.0 86.40%+1.1 88.74%+0.4 89.43%=+0.1 | 68.30%+0.9 72.27%=+0.4 73.32%=+0.6
Gamma 66.65%+4.7 81.81%+1.8 88.41%+0.5 87.79%+04 89.44%+0.2 | 70.90%+0.8 73.20%+0.4 73.04%+0.3
Weibull 73.15%=+5.1 78.78%+1.6  88.80%+0.4 89.20%+0.6 89.53%=+0.2 | 71.74%+0.7 73.21%=+0.7  73.75%=+0.3

Table 2: Test Accuracy Comparison of FedAvg

snapshots just occupy a small portion of entire training rounds,
so FAST can save resources compared to completely uniform
participation in other FL algorithms. 2) Benefits. By the
snapshot, our FAST can simultaneously enjoy the optimal
convergence rates as those with uniform client participation
shown in Sec. 4.2 and achieve improved performance when
compared with ACP shown in Sec. 5.

4.2 Convergence Analysis

We first state several standard assumptions commonly used in
our work and other works about optimization and FL [Kairouz
et al., 2021; Wang et al., 2021].

Assumption 1 (L-Lipschitz Continuous Gradient)

For any x and v, there exists a constant L > 0
such  that ||VF( )= VF()| < Lz — y| and
IVFi(z) - VE(y)ll < Lllz - y||.

Assumpti0n2 (Unbiased Stochastic Gradients with
Bounded Variance) The stochastic gradient calculated
by the client or server is unbiased with bounded vari-
ance E[VE; (:c &) = VE(x) and E|[|VE;(z,&)—
F;(z)||?] < 02, where € is a data sample.

Assumptlon 3 (Bounded Gradient Dissimilarity) For any
i€ [M], |VFi(z) - VF(2)|* < 0.

Next, we offer FAST’s convergence under non-convexity.

Theorem 1 (Convergence of FAST for Non-convex Func-
tions). Under assumptions 1, 2 and 3, supposing that the prob-
.. (2LKnL71)G2+2K O'G
ability q 2 &, TRLK7.—1)G2—2LKn.Gs +2K20%
1 ngtm(l—q)
8LK’ bmnLK

{wT} generated by FAST satisfies:

- and the learn-

ing rate . < mm{ } then the sequence

4(gn+(1—q)m)Ln.
*ZEHVMT )17 < KRn ¢ A — )Lt 5o
~——

Optimization Error Statistical Error

+ (120(1 —q) —|—60q> L*K*n?0},

Heterogeneity Error

where  := F(x¢) — F(x*), * is the optimal solution, and
(1_3 are defined in Appendix.

With a proper learning rate, FAST achieves convergence rate:

v mn

Corollary 1 Withn. = O <
RK(nqg+m(1—q))

gence rate of FAST is

R

1

= BIVE@,)* =0 (
r=1

) , the conver-

ng +m(l —q)
nmKR

R (<nq ﬁan)m)R)

The convergence error of FAST comprises three components:
1) optimization error depending on the initial point x, 2) sta-
tistical error associated with stochastic gradient noise o, and 3)
error arising from heterogeneous data and local updates in FL.
Notably, the third error exhibits a quadratic relationship with
the learning rate. Hence, the first two terms dominate when
using a sufficiently small learning rate. With an appropriate

nq+m(1*Q)) for

learning rate, the convergence rate is O( o o

(mnK

; )
a suitably large round R > et mI—aF
(m = n), the convergence rate becomes:

In a special case

Corollary 2 With m = n, FAST achieves convergence rate:

1 & 1
R IVFEIr=o({imz) @

Remark 1 In non-convex functions, this sublinear conver-
gence rate shows the speedup in terms of clients’ number
m and the local steps K, which matches the optimal conver-
gence rate in FL. with uniform client participation in every
round [Karimireddy er al., 2020; Yang et al., 2020].

Remark 2 It is worth noting that there exists a re-
quirement of the snapshot probability/frequency ¢ (or

I). Specifically, it depends on data heterogeneity in the
(2LKn.—1)G2+2K?02
G +(2LEKn.—1)G2—2LK1.G3+2K 202,
1

For every hetero-

FL system: ¢ >

1+(G1—2LK1.G3)/(2K20 5, +2LK1c.G2—Ga) "
geneous data in FL, we can choose a proper ¢ such that it can
converge at such an optimal rate. We list two special cases to
show FAST’s generalization. 1) o — 0. If data is IID among
clients, then ¢ > 0, meaning that we can always avoid using
the snapshot step and set ¢ = 0. This situation corresponds to
traditional distributed learning where each client has access to
a shared dataset or IID datasets. In such cases, the choice of
which subset of clients participates is inconsequential, as the
training data used remains statistically identical. 2) o — 0.
If data is extremely highly Non-IID, the lower bound of ¢
will approach 1, requiring a high frequency of snapshots. In
extreme cases, it might require uniform client participation in
every round to guarantee convergence.

If we assume a strongly convex condition on the function,
we can achieve a faster convergence rate.

Assumption 4 (Strong Convexity) For any x and y, F; is
p-convex with a constant p > 0, if Fi(y) > Fi(x) +
VE (@) (y — ) + 4y — =|? Vi e [M].
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Theorem 2 (Convergence of FAST for Strongly Convex
Functions). Under assumptions 1,2,3 and 4, supposing that

the learning rate 0 < 1. < min {m, m} and the

2772 2
probability g > 1 — (M , the sequence {x,}

402
generated by FAST satisfies: \
11—
Ellan -2 <exp (ukcn) v+ ULy,
8 2 + (1 —
+ 7K7700-é + (qn ( Q)m) 7760_2’
" mn

where k = ||xg — x*||> and x* is the optimal solution.

Corollary 3 For Theorem 2, supposing 11 > 0, m =n, 1, <

m and R > 20mL, we can obtain
* A R ~71 —
e o170 () +0(1 )

~/ 1 ~ 1
O(z7e) + O ™)
TR T O kR
where 6() subsumes all log-terms and constants. Accord-
ingly, FAST achieves a convergence rate of O(1/R).

Remark 3 In strongly-convex functions, FAST can achieve
a faster convergence rate of O(1/R) compared to the non-
convex case. It is worth mentioning that this rate can match
those achieved in FL with ideal client participation [Li ef al.,
2019]. In conjunction with Corollary 1, it is clear that, under
appropriate hyper-parameter settings, FAST can achieve the
same convergence rate under ACP as these FL algorithms with
ideal client participation.

4.3 Adaptive FAST

As shown in Algo. 1, FAST introduces an extra hyper-
parameter, q (or I), representing the snapshot probability (or
frequency). Obviously, the effective performance of our FAST
is evidently contingent on the selection of an appropriate ¢, as
indicated by the ablation study on ¢ in Sec. 5. In practice, ob-
taining prior knowledge to consistently set the optimal q poses
a challenge. To address this issue, we propose an adaptive
strategy to dynamically update ¢ as shown in Algo. 2.

Algorithm 2 Adaptive ¢q in FAST
Initialize: gy = 0, A = 0, A(default = 1).
for roundr =0,1,..., R — 1 do

1:

2:

3:  Obtain acc, from the FL system
4: A<+~ A —ace,
5

6

T

gr+1 < min(1, max(0, ¢ + AA))
A + ace,
end for

In more detail, we initiate with ¢ = 0 to refrain from en-
forcing client participation at the beginning of training pro-
cedure. Meanwhile, ¢ is adjusted in each round based on
the training accuracy difference A between the current and
previous rounds. When A > 0, indicating a decrease in train-
ing accuracy compared to the last round, we increase q by

AA. This adjustment aims to increase the probability of uni-
form client participation, improving performance. Conversely,
when A < 0, signifying an increase in training accuracy in the
current round, we decrease g by AA. This reduction aims to di-
minish the probability of uniform client participation, ensuring
a more substantial contribution from arbitrary participation in
the training process. Line 5 ensures that the frequency ¢ stays
within the range of [0,1]. For the selection of A\, we conduct a
series of experiments to assess the performance under different
A. Our results show that the adaptive FAST is less sensitive
to the choice of A, and choosing a default A\ = 1 works well
under different settings provided in Sec. 5 and Appendix.

5 Experiments

We provide our experiment settings and main results in
Sec. 5.1, while leaving other details to Appendix.

Datasets and Models. We employ Fashion-MNIST [Xiao
et al., 2017] and CIFAR-10 datasets [Krizhevsky et al., 2009]
for image classification tasks, and we utilize the Shakespeare
dataset [Caldas er al., 2018] for the next character prediction
task. For image classification tasks, we train convolutional
neural network (CNN) models in our FL system, but the mod-
els are different for these two datasets, aiming to adapt to
the characteristics of different tasks. For character prediction
tasks, we train the Char-LSTM model. Comprehensive details
regarding datasets and models can be found in Appendix.

FL System. Our FL system comprises 100 clients in to-
tal for Fashion-MNIST and CIFAR-10 and 139 clients for
Shakespeare. In each round, only 10% clients are chosen to
participate in training. 1) Data Heterogeneity. The experi-
ments on Fashion-MNIST and CIFAR-10 adhere to balanced
and Non-IID datasets, implying that each client possesses
an equal number of data, yet label distributions differ across
clients. To establish this setup, we leverage the FedLab [Zeng
et al., 2023] for data partitioning and employ Dirichlet Distri-
bution to generate label-based distributions for each client. By
adjusting the concentration parameter o, we can control the
Non-IID degree of data. Generally, a smaller « corresponds
to higher data heterogeneity. Shakespeare dataset is naturally
Non-IID, so we directly distribute each user’s data to each
client. 2) Client Participation. We employ four distributions
(i.e., uniform, Beta, Gamma and Weibull) to simulate various
participation. The uniform distribution serves as ideal client
participation, and the other three distributions act as proxies
for ACP. 3) Algorithms. We implement three baselines: Fe-
dAvg, FedProx, and SCAFFOLD. Here, we primarily present
FedAvg’s results, deferring other results to Appendix. When
q = 0, FAST becomes the classic FedAvg under various ACP.
When ¢ = 1, it is the FedAvg under ideal client participation.

Note. For simplicity and clarity, we declare the following
notations across all tables in this paper: a) Ada.(\) means
adaptive FAST with a fixed \. (def.) means the default A =

1. b) Ratio = %, representing the percentage of
ACP. (1 — Ratio) represents the percentage of the snapshot
enforcement. ¢) For A + B, A is the average of the last 5 test

accuracy, and B is the standard deviation.
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Participati Fashion (a=0.05) CIFAR-10 (a=0.1) Shakespeare
articipation
Test Accuracy  Ratio  Test Accuracy Ratio  Test Accuracy  Ratio
Uniform (FedAvg) 1 84.10%+2.4 80.18%+0.6 0% 48.86%+0.3 0%
Ada.(7) 80.92%+3.1 60.3% 76.83%+t1.0 67.5% 48.80%+0.3 54.2%
Ada.(def.)) 77.93%40.7 885% 68.94%+4.0 96.6% 47.51%+0.6 93.9%
Beta (FAST) 0.5 80.74%+2.7 49.6%  78.03%+1.3 50.7%  48.63%+0.3 49.6%
0.3 75.88%+4.4 699%  76.84%+0.6 70.1%  48.31%+0.3  70.5%
0.1 74.42%+53 909%  72.98%+14 899% 47.45%+0.6 90.2%
Beta (FedAvg) 0 74.84%+1.2 100%  68.30%+0.9 100%  46.84%+0.4 100%
Ada.(7) 79.95%+4.9 593% 76.26%+1.4 66.1% 48.88%+0.3  50.8%
Ada.(def.)) 71.48%+4.5 91.8% 73.47%=+0.5 973% 4537%+0.5 92.7%
Gamma (FAST) 0.5 77.39%+2.7 504%  77.76%+0.5 49.6%  48.66%+0.3 49.7%
0.3 76.87%+2.6 68.5%  75.67%+1.1 70.7%  47.69%+0.8 69.8%
0.1 72.23%+3.2 89.7%  74.77%+0.6 89.7%  4591%+0.7 90.3%
Gamma (FedAvg) 0 66.65%+4.7 100%  70.90%+0.8 100%  44.46%+1.0 100%
Ada.(7) 77.89%+3.3 59.5% 76.37%+1.3 66.6% 48.38%+0.3 47.9%
Ada.(def.) 77.14%+2.77 90.4% 7291%+04 97.4%  46.36%+0.8 89.0%
Weibull (FAST) 0.5 79.10%+4.2  50.7%  79.17%+1.0 502%  48.55%+0.3 50.1%
0.3 77.08%+4.2 713%  75.80%+0.6 699% 47.95%+04 70.4%
0.1 75.36%+2.6 89.5% T4.14%+1.1 89.8% 46.63%+t1.4 90.6%
Weibull (FedAvg) 0 73.15%=+5.1 100%  71.74%=+0.7 100%  45.18%+1.8 100%

Table 3: Performance of FAST+FedAvg under Different Client Participation and Non-IID Degrees

5.1 Experiment Results

In this subsection, we provide four key findings to validate our
algorithm and support theoretical analysis.

1. FL Algorithms’ Degraded Performance under ACP.
In Sec. 4, we show the non-trivial performance degradation
of FedAvg under ACP. Notably, this performance degradation
is a universal phenomenon extending beyond FedAvg. This
is evident in the FedProx results that reveal a discernible gap
between ideal client participation (uniform distribution) and
ACP (other three distributions), with this gap significantly
impacted by the level of data heterogeneity. In Appendix, we
present more similar findings for other FL algorithms.

2. Improved Performance of FAST under ACP. In Ta-
ble 3, we present a comparison between FedAvg and FAST
across various client participation and Non-IID scenarios, lead-
ing to three key findings: 1) FAST improves performance
by increasing the snapshot frequency ¢ across all tasks. We
conducted experiments with different fixed values of ¢ and
observed that when ¢ = 0.5, FAST nearly matches the test
accuracy of FedAvg under ideal client participation. In other
words, we can enforce uniform client participation in only
half of the rounds, enabling ACP in the remaining rounds. 2)
Adaptive FAST proves effective, showcasing an increased test
accuracy with the least snapshots. For instance, in Fashion-
MNIST with o = 0.05 and default A = 1, FAST requires only
1 —91.8% = 8.2% snapshot enforcement while elevating
accuracy from 66.65% to 71.48% in the Gamma distribution.
If we take a more aggressive A = 7, the accuracy can be im-
proved to 79.95%. 3) Adaptive FAST achieves a great balance
between test accuracy and snapshot frequency. Across all
cases in Table 3, the default adaptive strategy (Ada.(def.), with
A = 1) consistently requires less than 10% snapshots while
delivering notable improvements.

3. Compatible FAST Framework to Integrate with
Other FL Algorithms. We highlight that the client participa-
tion mechanism in FAST constitutes a general and compatible

framework which can seamlessly integrate with other FL algo-
rithms. To show this, we adopt two additional FL algorithms,
FedProx and SCAFFOLD, utilizing the FAST client participa-
tion mechanism, referred to as FAST+.

Detailed experimental results are provided in Appendix.
In general, we observe that, under ACP, the performance of
FAST+ significantly surpasses that of FedProx and SCAF-
FOLD. These results hold for both fixed ¢ and adaptive ¢. In
specific cases, adaptive FAST+ achieves higher test accuracy
than FAST+ with a fixed ¢ when their individual proportions
of ACP are approximately equal. In other words, adaptive
FAST+ can attain higher test accuracy with a higher percent-
age of ACP (bigger Ratio or smaller ¢). These observations
align with the results in Table 3 for FedAvg, demonstrating
that the client participation mechanism in FAST is general and
compatible with other FL algorithms.

4. Ablation Study for Hyper-parameters. We conducted
extensive ablation experiments on FL and hyper-parameters
of FAST, including «, distributions for modeling client partici-
pation, adaptive hyper-parameter ), etc. Here, we specifically
investigate the impact of A as a key hyper-parameter in adap-
tive FAST. All other results are offered in Appendix.

In Appendix, we present the test accuracy for Fashion-
MNIST with A varying from 1 to 9. Overall, FAST’s per-
formance exhibits less sensitivity to the choices of different A
under distinct distributions. As increasing A, the snapshot fre-
quency rises, resulting in a decreased ratio. This indicates that
the ¢ increases with the increase of \. However, we observe
that the model performance remains stable. Notably, with our
default choice of A = 1, FAST attains good test accuracy with
only a small percentage of snapshots. Across these three dis-
tributions, when A\ = 1, we require less than 5% of snapshot
enforcement, validating the effectiveness of adaptive FAST.
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