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Abstract
Imitation learning often assumes that demonstra-
tions are close to optimal according to some fixed,
but unknown, cost function. However, accord-
ing to satisficing theory, humans often choose ac-
ceptable behavior based on their personal (and
potentially dynamic) levels of aspiration, rather
than achieving (near-) optimality. For example, a
lunar lander demonstration that successfully
lands without crashing might be acceptable to a
novice despite being slow or jerky. Using a margin-
based objective to guide deep reinforcement learn-
ing, our focused satisficing approach to imitation
learning seeks a policy that surpasses the demon-
strator’s aspiration levels—defined over trajecto-
ries or portions of trajectories—on unseen demon-
strations without explicitly learning those aspira-
tions. We show experimentally that this focuses the
policy to imitate the highest quality (portions of)
demonstrations better than existing imitation learn-
ing methods, providing much higher rates of guar-
anteed acceptability to the demonstrator, and com-
petitive true returns on a range of environments.

1 Introduction
Hand-engineered policies and reinforcement-learned policies
from hand-specified cost functions often fail to perform ad-
equately in complicated tasks of interest (e.g., self-driving).
Prevalent imitation learning approaches [Osa et al., 2018] ad-
dress this issue either by directly mimicking human demon-
strations via behavioral cloning [Pomerleau, 1991] or by es-
timating reward functions that rationalize demonstrator be-
havior [Ng and Russell, 2000; Abbeel and Ng, 2004]—both
under the assumption that the demonstrator is (near) opti-
mal. The many advantages autonomous systems have over
human actors, including faster reaction time [Whelan, 2008],
more precise control [Ladha et al., 2023], increased rational-
ity, and lossless memory [Miller, 1956], can violate this as-
sumption and lead to potential value misalignment [Amodei

Proofs of theorems and additional implementation details are
available in the extended version of this paper at https://arxiv.org/
abs/2505.14820.

Figure 1: Left: Pareto-dominating in the cost function bases (f1, f2)
of acceptable behavior (purple: imitator acceptable set) guarantees
the imitator is acceptable to the demonstrator (red: demonstrator
acceptable set). Right: The subdominance (orange lines) measures
how far imitator trajectory rollouts are from guaranteed acceptance
(by a margin).

et al., 2016] between demonstrator and imitator. New per-
spectives are needed to train more capable imitation learn-
ers from less capable demonstrators without supplemental
annotations [Christiano et al., 2017; Brown et al., 2019;
Rafailov et al., 2024] or assuming some expert-level demon-
strations being available [Tangkaratt et al., 2021].

When faced with challenging decision tasks, satisficing
theory [Simon, 1956] suggests that demonstrators produce
behavior that is acceptable rather than (near) optimal. By
viewing imitation learning through this lens, we aim for im-
itator behavior that is similarly acceptable to the demonstra-
tor, despite never knowing the demonstrator’s precise accept-
ability criteria (Figure 1, left)—working instead with an as-
sumed class of cost functions that defines it. To pursue this
aim, we develop Minimally Subdominant Focused Imitation
(MinSubFI), which employs the subdominance [Ziebart et
al., 2022], a margin-based measure of insufficiency (i.e., the
distance from guaranteeing imitator-acceptability by a mar-
gin), as a training objective for policy gradient optimization
(Figure 1, right). This produces policies that are maximally
acceptable rather than reward-maximizing. Compared to ex-
isting inverse reward learning methods [Brown et al., 2019;
Burchfiel et al., 2016; Wirth et al., 2017; Wu et al., 2019;
Chen et al., 2020; Zhang et al., 2021], which are highly
reliant on an estimated scalar reward function to guide re-
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Figure 2: Existing reward-based imitation methods, e.g., TREX
[Brown et al., 2019], seek to outperform demonstrations using a
pipeline of engineered components (top) to first segment trajecto-
ries into “snippets,” and to ultimately estimate a reward function
that is then optimized using reinforcement learning. Our approach
(bottom) uses the subdominance as the reinforcement learning ob-
jective, which is defined by the relative performance of the imitator
compared to the demonstrations in each cost feature. This effec-
tively uses feedback from the learned imitator policy to guide addi-
tional reinforcement learning without an explicit reward function.

inforcement learning (e.g., using the pipeline of engineered
components in Figure 2, top), our approach more directly op-
timizes the imitator’s policy, enabling it to:

• Learn context-sensitive policies without learning
context-sensitive cost functions;

• Ignore less optimal demonstrations without requiring
explicit noise modeling;

• Automatically select and learn from portions of trajecto-
ries (i.e., snippets) of high quality; and

• Provide generalization guarantees for changing accept-
ability (e.g., due to skill improvement or fatigue).

Under the MinSubFI objective, many of the same engi-
neered components of existing approaches (Figure 2, top) are
jointly optimized in a unified manner (Figure 2, bottom). We
evaluate the benefits of MinSubFI on imitation learning tasks
using human and synthetic demonstrations with both engi-
neered and learned cost features.

2 Satisficing Demonstrations & Policy
Gradient Subdominance Minimization

We now formally recast imitation learning through the lens
of satisficing theory. Under this perspective, policies are
learned from demonstrations that are acceptable, according to
an unknown acceptability set, rather than near-optimal. We
broadly define this notion of acceptability over trajectories
and trajectory “snippets” (i.e., portions of trajectories), and
develop new imitation learning methods that are designed to
be performant with respect to the demonstrators’ unknown
acceptability sets in both theory and practice.

2.1 Imitation Learning Problem Setting
We consider the imitation learning [Osa et al., 2018] task of
producing a policy π̂ based on demonstrated trajectories of
states and actions, ξ̃ = (s̃1, ã1, s̃2, . . . , s̃T ). Demonstrations
are produced from a task-indexed Markov decision process

(MDP),M = (S,A, {τi}, C), characterized by states S , ac-
tionsA, state transition probability distributions τi : S×A →
∆S (with ∆ representing a probability simplex), and a cost
function C : S → R≥0. The state transition probability dis-
tribution is defined for s = a = ∅ to provide an initial state
distribution. Each state transition probability distribution, τi,
corresponds to a different task i that shares the same state-
action space, but may have different initial states, different
absorbing (goal) states, or different dynamics more gener-
ally. We use ξ̃i,j to denote the jth demonstration for the ith

task, Ξ̃ to denote the set of all demonstrations, and Ξ̃i to de-
note the set of demonstrations corresponding to task i. The
cost/reward function is unavailable to the imitator (providing
at most M\C), distinguishing imitation learning from (of-
fline) reinforcement learning [Levine et al., 2020].

2.2 Satisficing Perspective of Demonstrations
According to satisficing theory [Simon, 1956], when faced
with challenging decision tasks, humans tend to prioritize be-
haviors that are acceptable to them rather than striving for op-
timality. This implies that demonstrated behavior is selected
to be acceptable, according to some aspirational criteria of
the demonstrator, rather than being (near) optimal.

Definition 1. Trajectory ξ satisfices (or is acceptable) for a
particular aspiration, defined by (w, ν, t, t′) if and only if it
is less costly than the aspirational threshold ν evaluated us-
ing the cost function parameterized by w: costw(ξt:t′) <
ν. It satisfices the aspiration/acceptability set Ω =
{(w, ν, t, t′)}, i.e., ξ ∈ SatisfΩ, if and only if ξ satisfices
each aspiration in Ω.

Note that the aspiration set can be context-dependent and
vary for each demonstration. For example, it may change
with the growing experience (or fatigue) of the demonstrator,
or based on available side information (e.g., the weather con-
ditions when controlling a vehicle). Additionally, each aspi-
ration criteria can be defined over a portion (i.e., a “snippet”)
ξt:t′ of the full trajectory ξ1:T .

Aspiration sets—and their relationships to available con-
textual information—are generally unknown. Our aim is not
to learn them explicitly. Instead, we seek a policy that pro-
duces trajectories ξ ∼ π × τ , with maximal probability of
acceptance, P (ξ ∈ Satisfξ̃), for ξ̃’s implicit satisfaction set.

A key question from this satisficing perspective is: do
existing imitation learners provide acceptability guarantees
with respect to (unknown) demonstrator acceptability sets?

Behavioral cloning approaches [Pomerleau, 1991] di-
rectly estimate a (stochastic) policy πθ : S → ∆A from
demonstrated state-action pairs, (st, at). The simplicity of
this approach allows the full range of supervised machine
learning techniques to be employed to estimate the pol-
icy. For example, generative adversarial imitation learning
(GAIL) [Ho and Ermon, 2016a] employs a discriminator to
distinguish between human and automated action choices,
and guide policy learning to minimize any differences. Un-
fortunately, behavioral cloning methods cannot outperform
the demonstration policy beyond being Bayes optimal for a
predictive loss that may not align with the acceptability set
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cost function(s). This prevents behavioral cloning methods
from providing satisficing guarantees.

Inverse reinforcement learning [Kalman, 1964] esti-
mates the cost function C(s) that explains or rationalizes
demonstrations (making them near optimal). A cost function
linear in a set of state features, f : S → RK , or state-action
features, f : S × A → RK is commonly assumed [Ng and
Russell, 2000]. Under this assumption, feature matching
[Abbeel and Ng, 2004] guarantees the estimated policy π̂ has
expected cost under the demonstrator’s unknown fixed cost
function weights w̃ ∈ RK equal to the average of the demon-
stration policies π if the expected feature counts match:

E τi∼Ξ̃,
ξ∼π×τi

[fk(ξ)] =
1

|Ξ̃|

∑
ξ̃i,j∈Ξ̃

fk(ξ̃i,j), ∀k (1)

=⇒ E τi∼Ξ̃,
ξ∼πθ×τi

[Cŵ(ξ)] =
1

|Ξ̃|

∑
ξ̃i,j∈Ξ̃

Cw̃(ξ̃i,j),

where fk(ξ) ≜
∑
st,at∈ξ fk(st, at) and Cŵ(ξ) ≜∑

st,at∈ξ Cŵ(st, at). This feature-matching constraint (1)
can be enforced using a potential term measuring the demon-
stration ξ̃’s suboptimality relative to induced behavior ξ.
Closer to our approach, game-theoretic apprenticeship learn-
ing [Syed and Schapire, 2007] assumes the sign of the linear
cost function’s weights are known and produces a policy that
is guaranteed to be better in expectation than the demonstra-
tion average under worst-case weights.

Unfortunately, matching the demonstrator’s unknown ex-
pected rewards (or outperforming on average) only guaran-
tees that the imitator achieves the aspiration level in expecta-
tion. If the demonstrators’ aspirations depend on context that
is not incorporated in the learned cost function, better levels
of aspiration will not be guaranteed. Thus, inverse reinforce-
ment learning does not provide useful guarantees for per-
demonstration satisficing; it is not a discriminative enough
policy optimization method.

2.3 Subdominance Minimization and Satisficing
The subdominance measures how far trajectory ξ is from
Pareto-dominating (i.e., smaller in each cost feature dimen-
sion than) a demonstrated trajectory ξ̃ by a margin (Figure 1,
right). It has been previously employed for inverse optimal
control to make the optimal trajectory induced by learned lin-
ear cost function weights w ∈ RK≥0, outperform sets of task-
specific demonstrations {Ξ̃i} [Ziebart et al., 2022]:

min
w≥0

min
α≥0

N∑
i=1

|Ξ̃i|
|Ξ̃|

subdomα(ξ
∗
i (w), Ξ̃i) +

λ

2
||α||, where:

subdomα(ξ, Ξ̃)=
1

|Ξ̃|

∑
ξ̃∈Ξ̃

∑
k

(feature k) subdomkαk
(ξ,ξ̃)︷ ︸︸ ︷[

αk(fk(ξ)− fk(ξ̃)) + 1
]
+︸ ︷︷ ︸

(aggregated) subdomα(ξ,ξ̃)

, (2)

with [x]+ ≜ max(x, 0) as the hinge function, and tra-
jectory cost features f : Ξ → RK≥0. Other variants in-
clude defining the subdominance using relative cost fea-
tures, relsubdomk

αk
(ξ, ξ̃) ≜

[
αk

(
fk(ξ)

fk(ξ̃)
− 1

)
+ 1

]
+

, and/or

aggregating over feature dimensions using maximization,
subdomα(ξ, ξ̃) ≜ maxk subdomk

αk
(ξ, ξ̃) [Ziebart et al.,

2022]. Like support vector machines [Vapnik and Chapelle,
2000], only a subset of support demonstrations, Ξ̃SVk

i (ξ) ⊆
Ξ̃i, for each task i and feature k, actively influence θ:

ξ̃ ∈ Ξ̃SVk
i (ξ) ⇐⇒ fk(ξ) +

1

αk
≥ fk(ξ̃). (3)

For notational convenience, when ξ is indexed (e.g., by (i, j)
as ξi,j), we denote this resulting support vector set for all
demonstrations of task i as Ξ̃SVk

i,j for feature k. Unfortu-
nately, optimal control is impractical for many realistic im-
itation learning problems of interest. Additionally, it makes
the learned cost/reward function (Fig. 2) a bottleneck that can
prevent the imitation policy from better fitting to (or outper-
forming) demonstrations.

However, subdominance has an important relationship to
satisficing (Theorem 2): if it can be lowered to zero, accept-
ability of the imitator’s behavior is guaranteed under mild
cost function assumptions (positive linear functions of mono-
tonic transformations of cost features).
Theorem 2. A trajectory ξ with zero subdominance
with respect to demonstration ξ̃ implies that the demon-
stration’s corresponding aspiration set (for full trajec-
tory aspiration functions/threholds) is satisficed by ξ:(
∃α > 0, subdomα(ξ, ξ̃) = 0

)
=⇒ ξ ∈ Satisfξ̃.

Proof of Theorem 2. Zero subdominance implies Pareto
dominance of the imitator cost feature over the demonstrator
cost features, which implies that the imitator is accept-
able under any cost functions defining the demonstrator’s
acceptable set.

∀α ≻ 0, subdom(ξ, ξ̃) = 0 =⇒ f(ξ) ⪯ f(ξ̃) (4)

=⇒ ∀θ ⪰ 0, costθ(ξ) ≤ costθ(ξ̃) (5)
=⇒ ξ ∈ satisfξ̃ (6)

Note that the additional margin incorporated in the sub-
dominance plays an important role in providing generaliza-
tion guarantees for the imitator (Theorem 8) that do not exist
if the imitator simply matches the features of the demonstra-
tor on training examples.

As an illustrative example, consider two cost features for
lunar lander depicted in Figure 3: its x offset from the
landing pad and its angular velocity ω. An imitator trajectory
ξ which lands more precisely (i.e., smaller x offset) and more
smoothly (i.e., smaller angular velocity ω) than a demonstra-
tion ξ̃, by definition has zero subdominance. Such a trajec-
tory would also be part of the margined imitator acceptable
set (Figure 1, right) and hence satisfices demonstration ξ̃.

Thus, our objective is to better minimize the subdominance
by finely optimizing over a more flexible class of policies. To
generalize to unseen data, we additionally seek a margin of
improvement over the demonstrator, i.e., subdomα, through-
out our formulation. With this added margin, the subdomi-
nance is a convex function (in trajectory features) that upper
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Figure 3: Examples of lunarlander cost features, which are
computed easily from the environment’s observation vector.

bounds the Satisfξ̃ non-membership, measuring how far the
trajectory is from being guaranteed to satisfy the demonstra-
tor’s aspirations by a margin.

2.4 Snippet-focused Subdominance
To enable snippet-level satisficing (in addition to the
trajectory-level satisficing guaranteed by Theorem 2), we de-
fine a snippet-focused variant of the subdominance. We select
snippet pairs that maximize subdominance:

subdomsnip S
α (ξ, ξ̃)= max

(ξsn,ξ̃sn)∈S(ξ,ξ̃)
subdomα(ξsn, ξ̃sn), (7)

where S extracts snippet pairs from the full trajectories. This
focuses imitation on high-quality snippets (with high sub-
dominance) even if the larger trajectory they come from is
of lower quality (and low or zero subdominance because it is
easy for the imitator to outperform as a whole). The design
of S provides a great deal of flexibility for defining snippets
based on states and/or time steps.

2.5 Subdominance for Stochastic Policies
We next expand the subdominance definition to incorporate
stochastic action selection from policy π:

subdomα(π,Ξ̃)=Eξ∼π×τ
[
subdomα(ξ,Ξ̃)

]
. (8)

Definition 3. The minimally subdominant stochastic policy
πθ : S → ∆A minimizes the expected subdominance of the
minimum cost trajectory, ξ∗(πθ) induced by the weights θ of
policy π, with respect to the set of demonstration trajectories
ξ̃i using hinge slopes α:

min
θ

min
α⪰0

∑
task i

|Ξ̃i|
|Ξ̃|

subdomα(πθ, Ξ̃i)+
λα

2
||α||+ λθ

2
||θ||. (9)

This optimization seeks hinge loss slopes α and a policy
πθ that both minimize the subdominance. Naively approach-
ing this optimization can be problematic, since α = 0 corre-
sponds to a degenerate local optimum. However, the optimal

α values for a policy achieving at least the average feature
counts of the demonstrations are not degenerate. This sug-
gests bootstrapping from an initial policy estimate when min-
imizing α values or restricting α values above zero.

2.6 Subdominance Policy Gradient Optimization

To efficiently optimize the objective outlined in Definition 3,
we consider policy gradient algorithms. We leverage The-
orem 4 for the computation of the policy gradient using
the trajectory-based subdominance as a reinforcement signal.
Corollary 5 provides a per-state decomposition of the sub-
dominance, making a wide range of existing policy gradient
methods applicable that assign credit in a temporally consis-
tent manner.

Theorem 4. Policy πθ’s subdominance with respect to
demonstration set {Ξ̃i} has policy gradient:

∇θ

∑
i

|Ξ̃i|
|Ξ̃|

Eξi∼πθ×τi

[
subdomα(ξi, Ξ̃i)

]
=
∑
i

|Ξ̃i|
|Ξ̃|

Eξi∼πθ×τi

[
subdomα(ξi, Ξ̃i)

∑
(s,a)∈ξi

∇θ log πθ(a|s)
]
,

For a set of single trajectory samples, ξi ∼ πθ ×
τi, for each task i, the policy parameters θ can be
(stochastically) updated via gradient descent: θ ←
θ + η

∑
i

∑
(at,st)∈ξi Gt∇θ log πθ (at|st), where Gt is

any function of the full or future expected subdominance,
subdomα(ξi, Ξ̃i), such as the Q-value, the advantage esti-
mate, or the trajectory return [Sutton et al., 1999].

The proof for Theorem 4 is provided in our supplementary
material. We now present a state-based decomposition of tra-
jectory level subdominance. Subdominance is computed at
the final state to determine which features contribute to it, and
the contribution of each state-action pair to the total trajectory
subdominance is the calculated.

Corollary 5. The absolute and relative subdominances for a
trajectory ξ, with respect to a set of demonstrations Ξ can be
further expanded as:

subdomα(ξ, Ξ̃) =
∑

st∈ξ,k

(
C̃k

ξ,Ξ̃

|ξ| + C̃k
ξ,Ξ̃αkfk(st)−

αkf̃
abs
k,ξ,Ξ̃

|ξ||Ξ̃|

)
;

relsubdomα(ξ, Ξ̃) =
∑

st∈ξ,k

(
C̃k

ξ,Ξ̃
(1−αk)

|ξ| +
αkfk(st)f̃

rel
k,ξ,Ξ̃

|Ξ̃|

)
,

where C̃k
ξ,Ξ̃

= |Ξ̃SVk (ξ)|
|Ξ̃| , f̃ abs

k,ξ,Ξ̃
=

∑
ξ̃∈Ξ̃SVk (ξ)

∑
s′t∈ξ̃

fk(s
′
t), and

f̃ rel
k,ξ,Ξ̃

=
∑
ξ̃∈Ξ̃SVk (ξ)

(∑
s′t∈ξ̃

fk(s
′
t)
)−1

.

This decomposition enables state-of-the-art reinforcement
learning algorithms [Schulman et al., 2017] that assign credit
to actions in a causally consistent manner (i.e., only future
returns influence an action’s updates) to be employed. Further
flexibility is gained via the choice of policy representation.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2.7 Subdominance Policy Gradient Algorithms
Algorithm 1 outlines our approach for optimization. For each
task (i), a trajectory is rolled out by sampling from the cur-
rent learned policy (Line 2). The cost features of the sam-
pled trajectory and the demonstrated trajectory are compared
to determine which dimensions the sampled trajectory does
not sufficiently outperform the demonstration, and are thus
support vectors (Line 4). Here, the α values defining margin
slopes (Eq. (3)) can either be optimized numerically (e.g., us-
ing stochastic gradient descent) or analytically [Memarrast et
al., 2023]. A policy update is then employed to reduce the
subdominance (Line 7).

Algorithm 1 Online subdominance policy gradient

1: while θ not converged do
2: Sample a set of M trajectories Ξi = {ξ(m)

i }Mm=0 from
policy πθ × τi for each task i

3: for each ξ
(m)
i ∈ Ξi do

4: Find support vectors Ξ̃SVk
i,m (and α) given ξ(m)

i

5: Compute loss L(ξ(m)
i ) = subdomα(ξ

(m)
i , Ξ̃i)

6: end for
7: Update θ via policy gradient update rule on L(ξ(m)

i )
8: end while

For snippet-based optimization (Eq. (7)), the snippet ex-
tractor S produces snippet pairs as support vector candidates.
This can uncover supporting snippets from high-quality por-
tions of trajectories that are lower quality overall (and not
supporting trajectories). The highest subdominance snippets
are then used to compute subdominance losses (Line 5) and
to perform policy gradient updates (Line 7).

Algorithm 2 describes a practical approach for snippet-
based optimization. We consider the snippet generator, S,
that produces snippets of various lengths starting from states
that coincide between the rollout and the demonstration. Un-
fortunately, demonstrations and rollouts may share very few
states (apart from the initial state) in practice. To more ef-
fectively uncover supporting snippets, we roll out trajectories
from randomly-chosen states along the demonstrator trajec-
tory, and compare these to snippets from the demonstration
that begin from that state.

Algorithm 2 Snippet-based subdominance policy gradient
1: while θ not converged do
2: Sample demonstration ξ̃j from demonstration set Ξ̃
3: Sample state s

(j)
t ∼ ξ̃j such that 0 < t < |ξ̃j |

4: Set s0 ← s
(j)
t

5: Sample imitator trajectory ξ ∼ πθ(·|s0)
6: Find largest support vector snippets pair(s) (ξsnip, ξ̃snip) (and

α) from snippet pair candidates S(ξ, ξ̃t:T )
7: Compute loss L(ξsnip) = subdomα(ξsnip, ξ̃snip)
8: Update θ via any policy gradient update rule on L(ξsnip)
9: end while

When deploying or simulating a policy is expensive, of-
fline policy gradient methods that are based entirely on the

set of demonstrated trajectories can instead be employed.
Corollary 6. Offline policy gradient (MinSubFIOFF) employs
importance weighting to estimate the gradient for online sub-
dominance minimization from available demonstrations: :

θ←θ+η
∑

i,ξ̃i,j∈Ξ̃i

r̃
(i,j)
θ,π̃ subdomα(ξ̃i,j , Ξ̃i)

∑
(s,a)∈ξ̃i,j

∇θlog πθ(a|s) , (10)

where r̃
(i,j)
θ,π̃ =

πθ(ξ̃i,j)

π̃(ξ̃i,j)
is the importance ratio, and π̃ is an

estimate of the demonstrator’s policy.
The offline policy gradient method (Corollary 6) is outlined

in Algorithm 3 below.

Algorithm 3 Offline, joint stochastic optimization

1: Estimate π̃BC using behavior cloning on demonstrations Ξ̃
2: while θ not converged do
3: for each ξ̃i,j ∈ Ξ̃i do
4: Find support vectors Ξ̃SVk

i,j (αk) given ξ̃i,j
5: for each k do
6: αk ← αk exp

{
−η′

tr̃
(i,j)
θ,π̃BC

∑
ξ̃′∈Ξ̃

SVk
i,j

(
fk(ξ̃i,j) − fk(ξ̃

′)
)
+

λ|Ξ̃|αk

}
7: end for
8: Update θ according to Equation (10).
9: end for

10: end while

2.8 Generalization Bound Analysis
We now define the notion of a γ–satisficing stochastic poli-
cies and present a generalization bound.
Definition 7. A policy is considered γ–satisficing (or γ–
acceptable) for cost features f and distribution of demon-
strated trajectories P (ξ̃), if its trajectories ξ drawn from pol-
icy π satisfies with probability at least γ: P (ξ ∈ Ωξ̃) ≥ γ.

A snippet-based extension of this definition considers ξ ∈
Ωξ̃ if and only if the subdominance is zero for all max-min
snippet pairs (Eq. (7)).
Theorem 8. The policy minimizing the absolute or rel-
ative subdomα

(
ξ∗(πθ), ξ̃i

)
(N iid demonstrations) with

realizable features that are convex sets has the support
vector set

{
Ξ̃SVk(ξ

∗(πθ), αk)
}

and is on average γ–
satisficing on the population distribution with: γ = 1 −
1
N

∣∣∣ K⋃
k=1

Ξ̃SVk(ξ
∗(πθ), αk)

∣∣∣.
This bound motivates subdominance minimization for pro-

ducing demonstrator-acceptable behavior.

2.9 Learning a Cost Feature Representation
Though shaping the imitator’s behavior from demonstra-
tions is much less dependent on a highly-expressive cost
model/features under our approach, hand-engineering fea-
tures can still be a significant burden in many domains. To
mitigate this, we propose to learn a set of cost features fψ
from pairwise preferences over demonstrations.
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Demo Type Environment Min Mean Max

synthetic

cartpole 10 76 194
lunarlander -196 112 284

hopper 6 939 3441
halfcheetah −83 680 1483

walker 18 968 4293

human lunarlander −419 173 303

Table 1: True return statistics of demonstration sets for each envi-
ronment (100 demonstrations each).

Definition 9. Given pairwise preferences over demonstra-
tions D̃ = {ξ̃i ≺ ξ̃j |ξ̃i, ξ̃j ∈ Ξ̃}, and a sufficiently-rich func-
tion class F , a preference-preserving (latent) representation
fψ : S → RK′

≥0 (of dimensionality K ′) can be learned by min-

imizing: argminfψ∈F E(ξ̃i≺ξ̃j)∼D̃

[
− log eci,j

eci,j+ecj,i

]
, where

ci,j = subdomα(fψ(ξ̃i), fψ(ξ̃j)).

Given the learned feature representation, a γ-satisficing
policy can be learned via subdominance minimization in Al-
gorithm 1. This differs from the formulation of TREX in
two key aspects. First, under the exponential preference
model [Bradley and Terry, 1952; Christiano et al., 2017;
Brown et al., 2019; Brown et al., 2020], we employ sub-
dominance between pairs of demonstrations as a loss func-
tion, rather than a linear cost function. The second difference
emerges from choosing subdominance as the loss function:
our formulation permits learning latent representations of any
dimensionality, rather than just a scalar cost signal; such a
vector representation allows us to recover multiple, compet-
ing objectives from preferences, rather than arbitrarily extrap-
olating over a scalar reward signal.

3 Experiments
3.1 Demonstrations
We conduct experiments using a mix of simple, clas-
sic control environments (cartpole, lunarlander)
and complex robotics environments (Mujoco hopper,
halfcheetah, walker) from OpenAI Gym [Brockman
et al., 2016]. For each environment, we obtain 100 demon-
strations from a suboptimal policy learned using PPO. This
ensures that the majority of the resulting demonstrations
are suboptimal and noisy. Human demonstrations for the
lunarlander used in Section 3.7 are collected from non-
expert, human players using the joysticks on an XBox 360
video game controller. Demonstration return statistics for
environment-specific demonstration sets of varying quality
are provided in Table 1.

Cost features are environment-specific as follows:

• cartpole: (cart position)2, (cart velocity)2, and
(pole angle)2, (pole angular velocity)2;

• lunarlander: (x-position)2, (y-position)2,
(x-velocity)2, (y-velocity)2, (angle)2,
(angular velocity)2, and control costs;

learning entropy mini- clip total
Environment rate coeff. batch horizon epochs range steps

cartpole 1e−4 0 512 2048 10 0.2 2e6
lunarlander 1e−4 1e−6 2048 2048 10 0.2 2e6

hopper 9.8e−5 1e−2 512 2048 5 0.2 5e6
halfcheetah 9.8e−5 1e−4 256 2048 5 0.2 5e6

walker 2e−5 6e−4 32 512 20 0.1 1e6

Table 2: Values of PPO hyperparameters for each environment.

• hopper: inverse x-velocity, inverse z-velocity, inverse
z-position, inverse torso angle, and control cost;

• halfcheetah: three variants of inverse x-velocity,
and control cost; and

• walker: inverse x-velocity, inverse z-position, and
control cost.

3.2 Baseline Methods
We employ behavior cloning (BC), generative adversarial im-
itation learning (GAIL) [Ho and Ermon, 2016b], and adver-
sarial inverse reinforcement learning (AIRL) [Fu et al., 2018]
as classical imitation baselines. From extrapolative (better-
than-demonstrated) imitation approaches, we compare our
approach against T-REX [Brown et al., 2019] rather than its
more recent extension, D-REX [Brown et al., 2020], since
the latter only adds a new method for automatically generat-
ing ranked, synthetic demonstrations, while still retaining the
core formulation and loss function introduced in T-REX. As a
result, we are better able to examine fundamental differences
between learning from ranked demonstrations and learning
by subdominance minimization. To provide a more compara-
ble baseline, we learn the TREX cost function C as a linear
combination of cost features f and cost function weights ŵ,
rather than as a function mapping from the observation vec-
tor ϕ to cost C (abbreviated TREXCF); this can be thought of
as replacing the penultimate layer of T-REX’s cost network
with a known, predefined state cost representation. We also
train an unaltered version of T-REX (abbreviated TREX) on
our demonstrations and provide these results for reference.

We implement the policy optimization of MinSubFI using
Stable Baselines3 [Raffin et al., 2021]. Across all experi-
ments, all baseline methods use the same base policy model
paired with Stable Baseline3’s implementation of the PPO al-
gorithm [Schulman et al., 2017]. The experiments are not
based on extensive hyperparameter tuning; rather, all policy
networks use nearly the same hyperparameters (Table 2).

3.3 Training and Bootstrapping
Using Algorithm 1 and analytically computed α values in
step 4, we initialize our Online MinSubFI training with a pol-
icy that is pretrained via Offline MinSubFI (Corollary 10);
we motivate this choice via an ablation study with differ-
ent policy initializations in the extended version of this pa-
per. For all of our experiments throughout the paper, we em-
ploy a quadratic expansion of the original cost features as the
vectorized outer product of the original cost feature vector,
fexpanded = vec(f · f⊤).

We train two snippet-based MinSubFI models: one us-
ing fixed snippet lengths and alignments (MinSubFISNIP)
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Baselines Ours

Environment BC TREX TREXCF AIRL GAIL MinSubFIOFF MinSubFION MinSubFISNIP MinSubFISNIP* MinSubFILCF

cartpole 0.19 0.04 0.00 0.09 2.24 2.62 2.64 2.68 2.59 2.04
lunarlander 0.00 0.00 0.00 0.02 0.00 0.49 1.03 1.16 1.49 2.24

hopper 0.00 0.00 0.00 0.02 6.40 0.86 1.63 1.29 1.38 1.46
halfcheetah 0.00 0.00 0.00 1.12 3.99 1.93 1.93 1.85 1.77 1.74

walker2d 8.73 0.00 0.00 0.00 0.00 2.15 1.44 1.46 1.54 1.86

Table 3: Relative γ-satisficing values of different versions of MinSubFI on the basic cost features (values greater than 1 are formatted in bold
and the best of each environment is additionally colored green).

Demon- Baselines Ours

Environment strations BC TREX TREXCF AIRL GAIL MinSubFIOFF MinSubFION MinSubFISNIP MinSubFISNIP* MinSubFILCF

cartpole 116 (74) 70 (37) 199 (0.1) 199 (0.1) 15 (4) 200 (0.0) 200 (0.1) 198 (2) 199 (0.9) 197 (2) 200 (0.0)
lunarlander 113 (132) 164 (27) -171 (3) 195 (7) -416 (30) 256 (9) 268 (0.5) 268 (0.6) 268 (0.6) 266 (1) -269 (153)

hopper 858 (884) 671 (80) 1335 (15) 2657 (28) 11 (4) 601 (30) 570 (33) 1470 (149) 1070 (166) 849 (125) 1373 (305)
halfcheetah 686 (584) 1283 (53) 1017 (7) 1535 (49) 768 (47) 1595 (4) 1626 (10) 1591 (8) 1591 (14) 1576 (10) 1463 (86)

walker2d 891 (1141) 526 (99) 20 (0.0) 90 (5) -3 (0.1) 489 (82) 1461 (449) 1688 (479) 1861 (481) 1446 (402) 2592 (182)

lunarlanderhuman 173 (118) -75 (83) -569 (114) -310 (86) -197 (71) -254 (5) -25 (21) 193 (5) 6 (10) -76 (11) -487 (267)

Table 4: Mean (and standard deviation) of the true episode returns of the held out demonstrations and trajectories sampled from differ-
ent imitation learning methods’ learned policies for all environments using synthetic demonstrations and for lunarlander with human
demonstrations (bottom row).

and one with alignments that are selected through opti-
mization (MinSubFISNIP*). We additionally train an online
subdominance minimizer with a learned cost feature space
(MinSubFILCF) of K ′ = 3 dimensions via Definition 9. We
use a multi-layer perceptron network with two hidden layers
of width 8 as our cost feature architecture. In contrast with
TREX, which employs four different levels of preference (or
ranks) to categorize demonstration quality, we consider two
preference levels (i.e., acceptable and not acceptable).

3.4 Demonstrator Acceptability Analysis
In Table 3, we evaluate the rate that the imitator satis-
fices demonstrations (Definition 7), guaranteeing demonstra-
tor satisfaction, relative to the rate that a randomly chosen
demonstration satisfices other demonstrations,

P (ξ ∈ Ωξ̃)/P (ξ̃′ ∈ Ωξ̃),

using trajectory-level cost features. Imitation learning meth-
ods designed to minimize a predictive loss (BC) or a learned
cost function (TREX) produce trajectories with very differ-
ent cost features than those of the demonstrations, leading
to small values in this analysis (with a few exceptions, e.g.,
BC on walker2d). More specifically, aggressively optimiz-
ing an estimated cost function using reinforcement learning
often focuses too narrowly on minimizing one or a small
subset of cost features at the expense of ignoring one or
more other features, allowing them to take unacceptable val-
ues. For example, though TREX produces cartpole poli-
cies keeping the pole upright (near optimally), it does so
with much larger amounts of horizontal motion than demon-
strations exhibit, making it potentially unacceptable to the
demonstrator. GAIL, which employs a discriminator to
help make demonstrator and imitator behavior indistinguish-
able, achieves high acceptability rates on some environments.
However, it does so inconsistently, with no relative satisficing
on lunarlander and walker2d.

In contrast, since MinSubFI minimizes an upper bound
on the imitator’s satisficing value, it consistently guarantees
demonstrator acceptability much more frequently. We also
find that online subdominance minimization tends to pro-
vide more frequent acceptability guarantees than the offline
variant. Additionally, snippet-optimized subdominance min-
imization frequently provides the large rates of acceptabil-
ity guarantees in different environments. This is despite
the fact that snippet optimization seeks to provide snippet-
level demonstrator acceptability, while Table 3 measures
trajectory-level acceptability, indicating its general benefit in
guiding policy optimization.

In addition, though MinSubFILCF learns its own space of
cost features, it still provides large rates of guaranteed demon-
strator acceptance in the original, provided cost feature space
for most environments. This provides some evidence that
knowing the demonstrator’s cost feature space is unnecessary
for providing demonstrator-acceptable behavior, even though
it may not be possible to formally guarantee demonstrator ac-
ceptance in such settings.

3.5 True Returns Using Full Demonstration Set
Unlike “real-world” imitation learning tasks, the true returns
used to construct the demonstrator’s policy are known in our
experiments. Though MinSubFI seeks to achieve demon-
strator acceptability for all cost functions defined by its cost
features (Table 3), it should also provide improvements over
demonstrations in terms of true return when the true return
can be (approximately) defined by the cost features. We note
that having a fixed true return function for all demonstrations
is a strong assumption from the perspective of our formula-
tion of satisficing theory, which allows the acceptability set
to vary with each demonstration. In Table 4, we evaluate the
true returns of the demonstrations and each of the imitation
learning methods averaged over three random seeds.

We find that Behavioral Cloning (BC) and AIRL often

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

TO
P 6

0%

TO
P 8

0%
10

0%

BO
T 8

0%

BO
T 6

0%
0

10
0

20
0

M
ea

n 
Re

tu
rn

cartpole

TO
P 6

0%

TO
P 8

0%
10

0%

BO
T 8

0%

BO
T 6

0%

50
0

0

lunarlander

TO
P 6

0%

TO
P 8

0%
10

0%

BO
T 8

0%

BO
T 6

0%

0

20
00

hopper

TO
P 6

0%

TO
P 8

0%
10

0%

BO
T 8

0%

BO
T 6

0%

0

10
00

halfcheetah

TO
P 6

0%

TO
P 8

0%
10

0%

BO
T 8

0%

BO
T 6

0%
0

20
00

40
00

walker

Training Demonstration Subset (%)

Min Demo Return
Mean Demo Return
Max Demo Return
MinSubFI
TREX
AIRL
GAIL

Figure 4: Mean true returns of 100 trajectories rolled out from the learned policies and the minimum, average, and maximum reward of the
training set trajectories . Each policy was trained on a subset of demonstrations obtained by removing the best or worst 10%, 20%, 30%,
or 40% of the demonstrations. Compared to T-REX (orange) and AIRL (purple), the performance of MinSubFI (green) is more robust to
increases in the proportion of suboptimal demonstrations in the dataset.

underperforms relative to the demonstrations (except for
halfcheetah), while the relative performance for TREX
and GAIL is more mixed. We note that GAIL’s higher rel-
ative satisficing performance in Table 3 does not translate
into higher true returns (e.g., on hopper). In contrast,
the various forms of MinSubFI tend to consistently outper-
form the demonstrations with only a few exceptions (e.g.,
MinSubFIOFF on hopper). In terms of the numerical true
returns, different variants of MinSubFI provide the highest
returns except for hopper, in which TREXCF provides the
largest returns. Interestingly, while TREX benefits from us-
ing the cost features as the basis for its cost function estimate,
cost function learning provides significant improvements for
MinSubFILCF in walker2d and cartpole.

3.6 Demonstration Quality and Performance
Demonstrated behavior is often noisy and suboptimal, mak-
ing learning from such data a desirable capability. In this
section, we control the quality of demonstrations used for im-
itation. We sort all demonstrations by their total (true) return
and then choose a subset by retaining the best or worst 90%,
80%, 70%, or 60% of the original set. We use this demonstra-
tion subset to train T-REX and Online MinSubFI. The perfor-
mance is shown in Figure 4.

For the simple cartpole environment, both TREX
and MinSubFI are able to continue outperforming the best
demonstrations even when they become worse in quality. For
the remaining environments, except for halfcheetah in
which TREX performs exceptionally well, MinSubFI tends
to provide comparatively better true returns than the baselines
as the quality of demonstrations becomes worse.

3.7 Performance with Human Demonstrations
Human-provided demonstrations often exhibit multi-modal
patterns and irregular noise distributions, making them harder
to learn from. We explore the behavior of our method trained
on human-provided demonstrations, using the continuous
version of Lunarlander and compare it against imitation base-
lines. The results, averaged over three seeds, are shown in
the last row of Table 4. MinSubFION clearly outperforms all
baselines, which appear unable to learn from human demon-
strations in this setting.

4 Conclusions and Future Work
In this paper, we reframed imitation learning using satisfic-
ing theory to develop MinSubFI, a policy gradient approach
for seeking to make the imitator’s behavior acceptable to the
demonstrator by directly minimizing policy subdominance—
based on entire trajectories or selectively chosen snippets. We
present both variants for online and offline learning, and show
how offline bootstrapping results in significant simulator sam-
ple efficiency. Further, we present a feature presentation
learning method using offline subdominance-minimization
from demonstrations. Using multiple control and robotics
environments, we show that MinSubFI frequently guarantees
demonstrator acceptability, while existing imitation learning
methods rarely do. Further, we show that MinSubFI with
learned cost features provides demonstrator acceptability in
our hand-specified cost feature space. Despite being designed
for the more flexible setting in which the acceptability set can
change for each demonstration, our experiments show that
MinSubFI provides competitive true returns (without explicit
assumptions about a static true cost function, as in other im-
itation learning methods). We additionally show that Min-
SubFI is more robust to degradation in the quality of demon-
strations used for training compared to existing approaches.

There are many interesting directions for future work.
Learning feature representations without supplemental anno-
tations is a challenging problem that would make our method
easier to employ in practice. Developing more general strate-
gies for snippet generation could better leverage demonstra-
tions across different tasks or domains. Exploring other meth-
ods for guaranteeing high levels of demonstrator acceptabil-
ity is also of great interest. Finally, conducting experiments
in application areas that lack true return functions for evalua-
tion and/or have notions of acceptability that are dynamic and
subjective is an important future direction.
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