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Abstract
Multimodal learning is pivotal for the advance-
ment of artificial intelligence, enabling machines
to integrate complementary information from di-
verse data sources for holistic perception and un-
derstanding. Despite significant progress, existing
methods struggle with challenges such as noisy in-
puts, noisy correspondence, and the inherent uncer-
tainty of multimodal data, limiting their reliability
and robustness. To address these issues, this paper
presents a novel Probabilistic Multimodal Learn-
ing framework (PML) that models each data point
as a von Mises-Fisher (vMF) distribution, effec-
tively capturing intrinsic uncertainty and enabling
robust fusion. Unlike traditional Gaussian-based
models, PML learns directional representation with
a concentration parameter to quantify reliability di-
rectly, enhancing stability and interpretability. To
enhance discrimination, we propose a von Mises-
Fisher Prototypical Contrastive Learning paradigm
(vMF-PCL), which projects data onto a hyper-
sphere by pulling within-class samples closer to
their class prototype while pushing between-class
prototypes apart, adaptively learning the reliabil-
ity estimations. Building upon the estimated re-
liability, we develop a Reliable Multimodal Fu-
sion mechanism (RMF) that dynamically adjusts
the contribution and conflict of each modality, en-
suring robustness against noisy data, noisy corre-
spondence, and uncertainty. Extensive experiments
on nine benchmarks demonstrate the superiority of
PML, consistently outperforming 14 state-of-the-
art methods. Code is available at https://github.
com/XLearning-SCU/2025-IJCAI-PML.

1 Introduction
Multimodal learning integrates consistent and complemen-
tary information from diverse data sources to enable a com-
prehensive perception and understanding of the real world,
which is crucial for promoting the intelligence of unmanned
systems. Much like humans utilize various sensory organs

∗Corresponding author.
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Figure 1: Difference between Gaussian-based models and our PML
in handling unreliable multimodal data with noisy inputs and noisy
correspondence. Gaussian-based models require a function f(·) to
transform estimated variances into reliability for multimodal fusion,
often resulting in instability [Li et al., 2021]. In contrast, our PML
directly leverages concentration parameters to dynamically adjust
the fusion process, which is more stable and reliable. Furthermore,
traditional Gaussian-based models focus solely on aleatoric uncer-
tainty, neglecting epistemic uncertainty, which might lead to sub-
optimal performance. In contrast, our PML could simultaneously
handle epistemic and aleatoric uncertainties, enhancing both perfor-
mance and robustness.

to perceive the world, machines process and fuse multimodal
data from sensors such as cameras, radars, and ultrasonic sys-
tems to achieve holistic perception and understanding. By
leveraging the complementary strengths of distinct modali-
ties, multimodal learning has significantly advanced appli-
cations such as multimodal classification [Xu et al., 2024a;
Geng et al., 2021], audio-visual recognition [Afouras et
al., 2018], and multi-view clustering [Yang et al., 2022;
Wen et al., 2023b]. The core of multimodal learning lies
in effectively extracting and integrating consistent and com-
plementary information from different modalities to enhance
performance for various tasks.

To integrate various modalities, numerous multimodal
learning techniques have been developed, ranging from early
fusion [Yu et al., 2021], which concatenates features at the
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Figure 2: Overview of our Probabilistic Multimodal Learning (PML) framework. First, PML utilizes modality-specific backbones to project
the data into a latent space. Then, PML projects each point into a distribution described by a mean direction (µ) and a concentration
parameter (κ), enabling intrinsic uncertainty estimation. To obtain discriminative directional representations, PML exploits vMF-based
prototype contrastive learning to maximize the agreement between the data and the corresponding class prototype in the latent hypersphere.

input or feature level, to late fusion [Cao et al., 2024], which
integrates predictions at the decision level. Although these
approaches have achieved promising results, they often face
significant challenges arising from modality imbalance [Peng
et al., 2022], noise [Cao et al., 2024], and incomplete or
uncertain data [Xie et al., 2023; Xu et al., 2024a]. For in-
stance, some modalities might dominate others during fusion,
causing the model to overlook weak but informative signals.
In addition, noise in one modality or misalignment between
modalities (a.k.a. noisy correspondence) would remarkably
degrade performance. Although current efforts have intro-
duced robust fusion mechanisms and cross-modal attention
to mitigate these issues [Cao et al., 2024], the aleatoric and
epistemic uncertainty [Kendall and Gal, 2017] inherent in
multimodal data and model remains underexplored. The un-
certainty arises from both aleatoric factors (intrinsic noise in
data) and epistemic factors (limited knowledge or model ca-
pacity), posing a fundamental limitation to the reliability of
existing multimodal learning systems [Gao et al., 2024].

To address these challenges, reliable multimodal learn-
ing has emerged as a critical research direction, focusing
on building models capable of managing uncertainty and
ensuring robustness [Geng et al., 2021; Xie et al., 2023;
Xu et al., 2024a]. By explicitly quantifying and incorporating
uncertainty, these methods aim to enhance trustworthiness
and interpretability, enabling more reliable decision-making
in safety-critical applications, such as autonomous driving
and medical diagnosis [Tang et al., 2022; Zou et al., 2024].
Techniques like Bayesian learning [Kendall and Gal, 2017],
ensemble methods [Lakshminarayanan et al., 2017], and
uncertainty-aware attention mechanisms [Heo et al., 2018]
have shown promising results, but their practical applications
often encounter significant computational burdens or strong
assumptions, which limit their scalability and generalizabil-
ity. As a remedy, Evidential Deep Learning (EDL) [Sensoy
et al., 2018; Xu et al., 2024a] offers an alternative by treat-
ing predictions as subjective opinions and directly inferring
uncertainty. However, existing methods struggle to distin-
guish between epistemic and aleatoric uncertainty, limiting

their capability to handle open scenarios. For example, noisy
data would produce aleatoric uncertainty, while noisy corre-
spondence would induce epistemic uncertainty as shown in
Figure 1.

In this work, we propose a novel Probabilistic Multimodal
Learning framework (PML), as shown in Figure 2, which
models each multimodal data point as a von Mises-Fisher
(vMF) distribution for reliable fusion. Unlike Gaussian-based
models, which rely on variance to capture uncertainty, the
vMF distribution represents data as directional distributions
with a concentration parameter that directly quantifies relia-
bility, thus embracing better stability. Specifically, our PML
first projects each data point into a distribution described by
a mean direction and a concentration parameter, enabling
intrinsic uncertainty estimation within the data. We then
present a von Mises-Fisher Prototypical Contrastive Learn-
ing paradigm (vMF-PL) to pull within-class samples closer to
their category prototype while pushing between-class proto-
types apart on the hypersphere, inherently capturing the direc-
tional discrimination and reliability in the multimodal data.
By leveraging the estimated reliability, a Reliable Multimodal
Fusion mechanism (RMF) is proposed to dynamically weight
mean directions of different modalities for reliable classifi-
cation, enhancing robustness to data noise, cross-modal mis-
alignment, and uncertainty. Moreover, cross-entropy is uti-
lized to evaluate the epistemic reliability between the proba-
bilistic predictions of each modality and fusion results. In the
inference stage, the learned aleatoric and epistemic reliability
values are used to fuse the predictions for reliable and robust
classification. Extensive experiments on nine diverse bench-
marks validate the effectiveness and reliability of our PML,
demonstrating its superiority over existing methods.

The major contributions of this work can be summarized
below:

• We propose a novel vMF-based Probabilistic Multi-
modal Learning framework (PML), which captures in-
trinsic aleatoric and epistemic reliability to dynamically
mitigate unreliable modalities, facilitating stable and ro-
bust classification.
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• To help capture both directional information and relia-
bility of each modality, we present a von Mises-Fisher
Prototypical Contrastive Learning paradigm (vMF-
PCL), which enhances within-class compactness and
between-class scatterness.

• Extensive experiments on nine widely-used multimodal
benchmarks demonstrate the effectiveness and robust-
ness of the proposed PML, outperforming 14 state-of-
the-art baselines.

2 Related Work
In this section, we briefly review two key areas most rele-
vant to this paper: multimodal learning and uncertainty-aware
learning.

2.1 Multimodal Learning
Multimodal learning approaches can be broadly categorized
into three types: early fusion, middle fusion, and late fusion,
depending on the stage at which information aggregation oc-
curs. Early fusion methods commonly combine multimodal
data at the input level [Yu et al., 2021], allowing direct in-
teractions between modalities. However, these methods often
struggle with scalability and modality-specific noise. Mid-
dle fusion methods [Natarajan et al., 2012] integrate multi-
modal data at the feature level by fusing intermediate rep-
resentations. Unlike these methods, late fusion approaches
aggregate predictions at the decision level [Cao et al., 2024],
offering greater flexibility while sacrificing the exploitation
of inter-modal relationships. Recent advancements focus on
more sophisticated fusion techniques, such as attention mech-
anisms [Nagrani et al., 2021], cross-modal interactions [Chen
et al., 2019], and graph-based methods [Mai et al., 2020].
These approaches aim to address challenges such as modal-
ity imbalance [Peng et al., 2022] and noisy inputs [Wen et
al., 2023a; Zhang et al., 2023; Cao et al., 2024] by dynam-
ically adjusting contributions from each modality. Despite
their potential, most methods do not explicitly account for
uncertainty, limiting their robustness and reliability in real-
world scenarios.

2.2 Uncertainty-aware Learning
Uncertainty modeling has gained significant attention as
a critical aspect of reliable AI systems, particularly in
safety-critical applications. Epistemic uncertainty, arising
from model limitations, and aleatoric uncertainty, stemming
from intrinsic data noise, are two primary types of uncer-
tainty [Kendall and Gal, 2017]. Various deep learning tech-
niques have been proposed to quantify and leverage uncer-
tainty, including Bayesian neural networks [Kendall and Gal,
2017], Monte Carlo sampling [Zhang, 2021], and ensemble
learning [Lakshminarayanan et al., 2017]. Recently, in the
context of multimodal learning, robust methods incorporating
uncertainty have emerged, such as uncertainty-aware atten-
tion [Heo et al., 2018], probabilistic embeddings (PE) [Gao
et al., 2024; Shi and Jain, 2019] and evidential deep learning
(EDL) [Sensoy et al., 2018; Xu et al., 2024a]. Most existing
techniques focus on modeling only one type of uncertainty,
often neglecting the potential benefits of jointly quantifying

both epistemic and aleatoric uncertainties. While EDL pro-
vides a direct estimation of uncertainty through subjective
opinions, it struggles to disentangle the two types of uncer-
tainties. Our work fulfills this gap by leveraging the concen-
tration parameter of the vMF distribution to directly quan-
tify aleatoric reliability, and the cross-entropy across proba-
bilistic predictions to estimate epistemic reliability, thus en-
abling more comprehensive uncertainty modeling in multi-
modal learning.

3 Methodology
In this section, we introduce the proposed Probabilistic Multi-
modal Learning framework (PML), which leverages the von
Mises-Fisher (vMF) distribution for reliable multimodal fu-
sion and classification. Our PML consists of three key com-
ponents: (1) vMF-based feature representation, (2) vMF-
based Prototypical Contrastive Learning (vMF-PCL), and (3)
Reliable Multimodal Fusion (RMF). Each component is elab-
orated below.

3.1 vMF-based Feature Representation
For ease of representation, we first give definitions for mul-
timodal classification. Let D = {x1i,x2i, · · · ,xMi, yi}Ni=1
denote the multimodal training set, where xvi represents the
v-th modality of the i-th instance, yi ∈ {1, 2, · · · ,K} de-
notes the corresponding ground-truth label, K is the num-
ber of classes, M is the number of modalities, and N is the
number of instances. Multimodal learning aims to effectively
utilize information from each modality to achieve compre-
hensive perception and understanding. However, there is in-
evitable noise in the multimodal inputs, such as corrupted
data and noisy data, resulting in aleatoric uncertainty.

To capture both directional representation and intrinsic
aleatoric uncertainty, we model each unimodal sample xvi as
a vMF distribution z ∼ Vd(µvi, κvi), where µvi and κvi de-
note the mean direction and concentration parameter, respec-
tively. The larger value of κvi refers to the higher concen-
tration of the distribution around the mean direction µvi, as
well as the reliability. Specifically, given an input sample xvi

from the v-th modality, two modality-specific sub-networks
are exploited to estimate the mean directional representation
µvi and the concentration parameter κvi as follows:

µvi = fv(hv(xvi)) ∈ Rd, κvi = gv(hv(xvi)) ∈ R1, (1)

where d is the dimensionality of the latent space, hv refers
to the backbone for the v-th modality, and fv(·), gv(·) are
two different sub-networks used to estimate the mean direc-
tion and the concentration parameter respectively. Then, each
point xvi could be modeled by a specific vMF distribution
defined on a d-dimensional unit sphere Sd−1 ⊂ Rd [Li et
al., 2021; Conti et al., 2022], with the following probability
density function:

p(z|µvi, κvi) = Cd(κvi) exp(κviµ
⊤
viz), (2)

Cd(κvi) =
κ
d/2−1
vi

(2π)d/2Id/2−1(κvi)
, (3)
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where Cd(κvi) is the normalization constant dependent on
the dimensionality d of z, and Iν(·) is the modified Bessel
function of the first kind, defined as:

Iν(t) =
∞∑

m=0

(
t
2

)2m+ν

m!Γ(m+ ν + 1)
. (4)

The concentration parameter κvi quantifies the reliability of
the sample xvi, with larger values indicating higher certainty.

3.2 vMF-based Prototypical Contrastive Learning
In the ideal scenario, a well-trained model should group
within-class samples together while separating between-class
samples apart, thereby enhancing the representation discrim-
inability. In other words, each class could be ideally rep-
resented as a spherical Dirac delta distribution δ(z − µ̄vk),
which is a degenerate distribution to concentrate all mass at
a single point µ̄vk, i.e., the unit vector of the k-th class from
the v-th modality. Here, δ(z − µ̄vk) represents the features
of the k-th class from the v-th modality, serving as the k-th
class prototype. Intuitively, it is reasonable to assume that the
samples of the same class are distributed around their corre-
sponding category prototype δ(z − µ̄vk) on the latent hyper-
sphere. Let Cv = {δ(z − µ̄vk)}Kk=1 represent the prototypes
of K classes for the v-th modality. Formally, for the given
prototype δ(z − µ̄vk) of the k-th class on the hypersphere,
the difference between a point Vd(µvi, κvi) and a prototype
δ(z − µ̄vk) could be computed as follows:

lvik = DKL (δ(z − µ̄vk)∥Vd(µvi, κvi))

= −κviµ
⊤
viµ̄vk + log(Id/2−1(κvi))

− (
d

2
− 1) log(κvi) +

d

2
log(2π).

(5)

Then, the probability pvij of a point xvi belonging to the j-th
class could be computed as:

pvij = σ (−[lvi1, l
v
i2, · · · , lviK ])j =

exp(−lvij)∑K
k=1 exp(−lvik)

, (6)

where σ represents the softmax function. Ideally, if the point
xvi belongs to the j-th class, pvij should be maximized; oth-
erwise, it should be minimized. Following contrastive learn-
ing principles [Chen et al., 2020], we formulate the following
loss function by using the negative log-likelihood:

Lv = − 1

N

N∑
i=1

ℓ(µvi, κvi, yi), (7)

ℓ(µvi, κvi, yi) = log
exp(−lviyi

)∑K
k=1 exp(−lvik)

. (8)

By minimizing this loss function, we could maximize the
agreement between the data and their corresponding class
prototypes in the latent hypersphere, thus encapsulating the
discrimination into directional representations. Then, we
could obtain the overall loss for all modalities as:

LvMF =
M∑
v=1

Lv. (9)

3.3 Reliable Multimodal Fusion
Multimodal fusion aims to learn m modality-specific trans-
formations fv(·), hv(·) to project each modality Xv =
{xvi}Ni=1 into feature representations Zv = {zvi}Ni=1, which
are then integrated for comprehensive decision as follows:

qi = ϕ (f1(h1(x1i)), · · · , fM (hM (xMi))) , (10)

where ϕ(·) is a fusion function that leverages both consistent
and complementary information for holistic predictions. For
the early fusion, ϕ(·) is a nonlinear function, while f(·) could
be a linear or nonlinear function. On the other hand, for the
late fusion, f(·) is a nonlinear transformation and ϕ(·) is a
linear transformation. In this paper, we focus on late fusion.
To simplify the presentation, the widely-used softmax func-
tion is employed to compute the probability of xvi belonging
to the j-th class, namely:

qv
ij = σ

(
W⊤ [f1(h1(x1i)), · · · , fM (hM (xMi))]

)
j

=
exp

(∑M
v=1 w

⊤
vjfv(hv(xvi))

)
∑K

k=1 exp
(∑M

v=1 w
⊤
vkfv(hv(xvi))

) , (11)

where σ is the softmax function, wvj is the projec-
tion of the j-th category for the v-th modality, W =
[w·1,w·2, · · · ,w·K ] is the projection matrix acting as
a classifier for the concatenated representations, and
w·k = [w⊤

1k,w
⊤
2k, · · · ,w⊤

vk]
⊤. Obviously, the proto-

types could be these modality-specific classifiers {wvj |v =
1, 2, · · · ,M ; j = 1, 2, · · · ,K}. Then, Equation (11) could
be rewritten as:

qv
ij =

exp
(∑M

v=1 µ
⊤
viµ̄vj

)
∑K

k=1 exp
(∑M

v=1 µ
⊤
viµ̄vk

) . (12)

However, the naive fusion approach treats all modalities
equally, making it susceptible to intrinsic uncertainties in the
data [Han et al., 2022a; Xu et al., 2024a]. To address this
problem, we incorporate the estimated reliability to weight
the mean directional representations for more reliable predic-
tions:

qv
ij =

exp
(∑M

v=1 αviµ
⊤
viµ̄vj

)
∑K

k=1 exp
(∑M

v=1 αviµ⊤
viµ̄vk

)
= σ

(
V ⊤ [α1iµ

⊤
1i, α2iµ

⊤
2i, · · · , αMiµ

⊤
Mi,

])
j
,

(13)

where αvi = κvi∑M
v=1 κvi

, V = [v1,v2, · · · ,vK ] repre-
sents the reliability weights for each modality, and vk =
[µ⊤

1k,µ
⊤
2k, · · · ,µ⊤

vk]
⊤.

Let µ∗i = ϵ [α1iµ1i, α2iµ2i, · · · , αMiµMi] ∈ Rd×M ,
which could also be viewed as a directional vector on a
hypersphere, where ϵ is a normalization factor ensuring
∥µ∗i∥ = 1. Consequently, the fused representations are mod-
eled as a vMF distribution Vd×M (µ∗i, κ∗i), where κ∗i =
1
M

∑M
v=1 κvi is the concentration parameter of the fused vMF

distribution, capturing the overall aleatoric reliability of the
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fused multimodal inputs. Following vMF-PCL, we could uti-
lize the negative log-likelihood to formulate the fusion loss
function as follows:

Lf = − 1

N

N∑
i=1

ℓ(µ∗i, κ∗i, yi). (14)

In order to estimate epistemic reliability, the entropy is em-
ployed on the probability as follows:

ruvi = exp

(
K∑

k=1

puik log (p
v
ik)

)
, (15)

where ruvi measures the prediction consistency between the
u-th and v-th modalities for the i-th point. When v = 0, ru∗i
denotes the prediction agreement between the v-th modality
and its final decision, and when v = u, ruui indicates the
reliability of the u-th modality, particularly for the fused pre-
diction (u = v = 0). Intuitively, since epistemic reliability
should align with aleatoric reliability within the same modal-
ity, we present a reliability consistency regularizer to enhance
reliability estimation:

Lr =
1

N

N∑
i=1

M∑
v=1

|αvi − βvi|, (16)

where βvi =
rvv
i∑M

v=1 rvv
i

represents the normalized prediction
reliability for the v-th modality. Then, we could obtain the
final loss of RMF as:

LRMF = Lf + Lr. (17)

3.4 Optimization Objective
The overall training objective combines the vMF-PCL losses
across all modalities, the fused hypersphere, and a reliability
consistency regularizer. The final objective is given by:

L = LvMF + LRMF . (18)
Our proposed PML could be iteratively trained by mini-

mizing the objective function Equation (18) in a batch-by-
batch manner using one stochastic gradient descent optimiza-
tion algorithm, such as Adam [Kingma and Ba, 2014]. By
minimizing L, our model could effectively capture both the
discriminability and reliability from the multimodal data.

During inference, the prediction consistency rv∗i and
learned reliability κvi are utilized to weigh the mean direc-
tions of each modality:

α′
vi =

1

2

(
rv∗i∑M
k=1 r

k∗
i

+
κvi∑M
k=1 κki

)
. (19)

Then the obtained weights are applied to fuse
the learned directional representations like[
α′
1iµ

⊤
1i, α

′
2iµ

⊤
2i, · · · , α′

Miµ
⊤
Mi,

]
for final classification

according to Equation (13).

4 Experiments
In this section, we conduct comprehensive experiments to
demonstrate the effectiveness of our PML across nine widely-
used benchmarks and compare it with 14 state-of-the-art
baselines. Besides, we provide detailed ablation studies to
analyze the contributions of individual components.

4.1 Datasets and Experimental Setup
Datasets. We evaluate our framework on nine publicly avail-
able benchmark datasets spanning diverse modalities, such as
image-text, audio-visual, and feature fusion tasks, to high-
light the generalizability of our approach. These datasets
comprise Handwritten[Duin, 1998], MSRC-V11, NUS-
WIDE-OBJECT2 (NUSOBJ) [Chua et al., 2009], Fashion-
MV [Xu et al., 2022], Scene153, LandUse [Yang and
Newsam, 2010], Leaves1004, MVSA [Niu et al., 2016] and
UPMC-Food101 [Wang et al., 2015]. Specifically, the Hand-
written consists of six feature sets to characterize 2,000 in-
stances of handwritten digits from “0” to “9”, with each cate-
gory containing 200 instances. The NUSOBJ dataset contains
30,000 instances from 31 categories with five different views.
The MSRC-v1 dataset contains 210 images categorized into
seven classes, each with five views. The Fashion-MV dataset
is a multi-view version of the Fashion dataset [Xiao et al.,
2017], designed for multi-view learning analysis, which con-
sists of 30,000 examples of fashion products, divided into ten
categories (e.g., T-shirt, Dress, Coat). The Scene15 dataset
has 4,485 images categorized into 15 indoor and outdoor
scene classes, wherein each image is represented using GIST,
PHOG, and LBP. The LandUse dataset contains 2,100 satel-
lite images classified into 21 categories, where each image
is represented using three different feature extraction tech-
niques. The Leaves100 dataset contains 1,600 leaf samples
from 100 plant species, with three feature views extracted for
each leaf image: shape descriptors, fine-scale edges, and tex-
ture histograms. The MVSA dataset is a sentiment analy-
sis dataset that consists of more than 2,000 image-text pairs
collected from social media. The UPMC-Food101 dataset is
a large multimodal food dataset and consists of more than
100,000 recipes for a total of 101 categories.

Experimental setup. In our experiments, in addition to
the normal experimental setting, we also construct a noise
setting following [Xu et al., 2024a] to further evaluate the ro-
bustness of our method by introducing data noise and noisy
correspondences (misaligned views/modalities) on test sets.
We report the accuracies on the test set to measure the per-
formance. To be further convincing, we report the mean and
standard deviation of experiments conducted with 10 random
seeds following the format of “mean ± std”.

4.2 Implementation Details
In our experiments, the sub-networks fv and gv , which es-
timate the mean direction and concentration parameter, re-
spectively, are designed as multi-layer linear networks. We
exploit the Adam optimizer with a batch size of 32 to train all
models, using a learning rate of 1e-4 for all datasets.

4.3 Comparisons with State of the Art
To verify the effectiveness and robustness of our method,
we compare our PML against 14 baselines, including

1https://mldta.com/dataset/msrc-v1/home/
2https://lms.comp.nus.edu.sg/wp-content/uploads/2019/
3https://doi.org/10.6084/m9.figshare.7007177.v1
4https://archive.ics.uci.edu/dataset/241/one+hundred+plant+

species+leaves+data+set
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Methods Handwritten MSRC-V1 NUSOBJ Fashion-MV Scene15 LandUse Leaves100
DUA-Nets (AAAI’21) 98.10 ± 0.32 84.67 ± 3.03 27.75 ± 0.00 91.08 ± 0.17 65.01 ± 1.55 45.24 ± 1.85 90.31 ± 1.25
TMC (ICLR’21) 98.51 ± 0.15 91.70 ± 2.70 38.77 ± 0.81 95.40 ± 0.40 67.71 ± 0.30 31.69 ± 3.93 86.81 ± 2.20
ETMC (TPAMI’22) 98.75 ± 0.00 92.86 ± 3.01 44.23 ± 0.76 96.21 ± 0.36 71.61 ± 0.28 43.52 ± 3.19 91.44 ± 2.39
TMDL-OA (AAAI’22) 98.55 ± 0.45 95.00 ± 1.67 27.88 ± 0.67 86.52 ± 0.04 75.57 ± 0.02 25.02 ± 2.10 75.28 ± 3.57
DFTMC (CVPR’22) 98.75 ± 0.39 96.90 ± 2.14 - - 63.10 ± 3.60 34.95 ± 1.69 69.92 ± 2.54
DCP-CV (TPAMI’22) 97.91 ± 0.59 92.86 ± 2.61 32.19 ± 9.48 97.96 ± 0.16 76.70 ± 2.15 71.71 ± 2.09 95.62 ± 1.38
DCP-CG (TPAMI’22) 99.00 ± 0.47 95.24 ± 3.69 43.65 ± 1.10 98.11 ± 0.23 77.79 ± 1.73 75.74 ± 0.98 98.19 ± 0.46
UIMC (CVPR’23) 98.25 ± 0.00 98.81 ± 1.19 43.42 ± 0.12 98.13 ± 0.13 77.70 ± 0.00 57.95 ± 0.61 95.31 ± 0.71
QMF (ICML’23) 98.72 ± 0.48 97.86 ± 1.28 38.13 ± 0.73 98.93 ± 0.32 68.58 ± 1.49 47.86 ± 2.55 95.69 ± 1.25
ECML (AAAI’24) 98.72 ± 0.39 94.05 ± 1.60 39.10 ± 0.74 95.25 ± 0.46 76.19 ± 0.12 60.10 ± 2.01 92.53 ± 1.94
TMNR (IJCAI’24) 97.20 ± 0.63 94.05 ± 3.24 34.52 ± 0.85 94.10 ± 0.50 68.10 ± 1.15 27.38 ± 1.88 90.13 ± 1.53
CCML (MM’24) 97.60 ± 0.62 96.90 ± 2.39 41.43 ± 0.71 95.16 ± 0.41 73.02 ± 1.44 44.86 ± 2.03 97.72 ± 0.92
PDF (ICML’24) 98.40 ± 0.37 97.14 ± 1.78 46.78 ± 0.33 98.95 ± 0.19 70.25 ± 1.21 45.17 ± 2.66 98.03 ± 0.71
PML (Ours) 99.32 ± 0.45 99.52 ± 0.95 49.16 ± 0.40 99.10 ± 0.22 82.70 ± 0.86 82.05 ± 1.36 99.91 ± 0.14

Table 1: Accuracy (%) performance on normal test sets. The best and second-best results are in bold and underlined, respectively.

Methods Handwritten MSRC-V1 NUSOBJ Fashion-MV Scene15 LandUse Leaves100
DUA-Nets (AAAI’21) 87.16 ± 0.34 78.57 ± 4.45 25.64 ± 0.25 83.03 ± 0.18 26.18 ± 1.31 37.22 ± 0.56 65.62 ± 2.19
TMC (ICLR’21) 92.76 ± 0.15 86.20 ± 4.90 36.00 ± 0.78 84.76 ± 0.78 42.27 ± 1.61 19.67 ± 1.88 70.25 ± 2.55
ETMC (TPAMI’22) 93.85 ± 1.26 87.14 ± 4.54 40.45 ± 0.81 86.48 ± 1.05 56.90 ± 1.70 36.05 ± 2.50 74.19 ± 1.74
TMDL-OA (AAAI’22) 92.45 ± 0.05 84.52 ± 2.20 27.02 ± 0.75 74.55 ± 0.07 48.42 ± 1.02 21.71 ± 1.83 62.28 ± 3.70
DFTMC (CVPR’22) 53.65 ± 20.07 60.24 ± 23.45 - - 36.01 ± 2.78 7.88 ± 0.94 1.10 ± 0.12
DCP-CV (TPAMI’22) 97.91 ± 0.80 84.76 ± 7.00 28.10 ± 7.80 92.72 ± 2.41 66.22 ± 2.12 59.98 ± 1.93 76.94 ± 1.36
DCP-CG (TPAMI’22) 98.20 ± 0.56 90.00 ± 1.78 38.61 ± 1.29 90.38 ± 2.17 66.44 ± 0.32 61.83 ± 2.48 79.06 ± 1.22
UIMC (CVPR’23) 97.78 ± 0.24 96.90 ± 1.09 41.72 ± 0.31 89.71 ± 0.25 68.25 ± 0.47 50.43 ± 0.46 80.25 ± 1.05
QMF (ICML’23) 97.52 ± 0.86 95.95 ± 1.52 35.62 ± 0.90 92.69 ± 0.78 59.53 ± 1.63 40.17 ± 2.67 77.47 ± 1.46
ECML (AAAI’24) 94.52 ± 0.79 90.00 ± 2.78 36.51 ± 0.76 84.10 ± 0.88 56.97 ± 0.52 50.31 ± 1.81 74.88 ± 1.89
TMNR (IJCAI’24) 92.78 ± 1.01 90.71 ± 4.19 30.88 ± 0.58 85.76 ± 0.81 60.00 ± 1.43 23.95 ± 1.92 74.09 ± 1.99
CCML (MM’24) 93.22 ± 1.09 94.29 ± 2.18 37.38 ± 0.65 83.84 ± 1.01 62.08 ± 1.34 37.76 ± 1.93 78.87 ± 2.31
PDF (ICML’24) 94.35 ± 1.21 94.52 ± 3.02 43.57 ± 0.36 90.73 ± 0.53 58.75 ± 1.03 39.40 ± 1.94 76.34 ± 1.26
PML (Ours) 98.77 ± 0.48 97.86 ± 2.49 46.95 ± 0.50 96.33 ± 0.21 72.63 ± 1.28 71.93 ± 2.14 89.69 ± 1.50

Table 2: Accuracy (%) performance on noisy test sets. The best and second-best results are in bold and underlined, respectively.

Methods MVSA UPMC-Food101
CONCATENATION 70.71 ± 3.08 88.19 ± 0.45
TMC (ICLR’21) 74.61 ± 2.64 90.08 ± 0.29
ETMC (TPAMI’22) 75.76 ± 2.83 90.82 ± 0.25
QMF (ICML’23) 77.11 ± 1.46 92.82 ± 0.05
EAU (CVPR’24) 77.30 ± 2.71 92.43 ± 0.12
PDF (ICML’24) 78.26 ± 0.96 93.06 ± 0.24
PML (Ours) 79.58 ± 0.73 93.15 ± 0.09

Table 3: Accuracy (%) performance on normal test sets. The best
and second-best results are in bold and underlined, respectively.

DUA-Nets [Geng et al., 2021], TMC [Han et al., 2020],
ETMC [Han et al., 2022b], TMDL-OA [Liu et al., 2022],
DFTMC [Han et al., 2022a], DCP-CV [Lin et al., 2022],
DCP-CG [Lin et al., 2022], QMF [Zhang et al., 2023],
UIMC [Xie et al., 2023], PDF [Cao et al., 2024], EAU [Gao
et al., 2024], ECML [Xu et al., 2024a], TMNR [Xu et al.,
2024b], and CCML [Liu et al., 2024]. As shown in Tables 1
to 3, our method consistently outperforms all baseline meth-
ods across all datasets. Non-convergent results for certain
methods on specific datasets (e.g., DFTMC on NUSOBJ and
Fashion-MV) are marked with ‘-’. More specifically, key ob-
servations from the results include:

(1) In the normal testing setting, our PML demonstrates a

consistent performance advantage on all datasets, high-
lighting its superiority and generalizability to various
modalities. For example, our method outperforms the
best competitor, DCP-CG, by 6.31% on the LandUse
dataset. In addition, on most datasets, our method shows
small performance fluctuation, i.e., small std, indicating
its promising stability.

(2) From the results of noisy setting, as shown in Table 2,
although most competing methods suffer remarkable
performance degradation due to noisy and misaligned
modalities/views (e.g., QMF and PDF), our approach
maintains superior accuracy across all datasets, e.g.,
NUSOBJ, Scene15, LandUse, and Leaves100. More
specifically, on the Leaves100 dataset, our method out-
performs the strongest baseline UIMC by 9.44% far be-
yond expectations, which is sufficient to demonstrate the
effectiveness of vMF-based uncertainty modeling and
the robustness of our PML.

4.4 Ablation Study
To further analyze the contribution of each component, we
conduct ablation experiments on normal and noisy test sets
for key designs of PML. The experimental results are shown
in Table 4. From the table, one could see that all compo-
nents contribute to the performance. On the one hand, with-
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Settings vMF-PCL RMF Handwritten MSRC-V1 NUSOBJ Fashion-MV Scene15 Leaves100

Normal

√
98.85 ± 0.60 96.81 ± 1.65 48.44 ± 0.61 98.26 ± 0.28 82.13 ± 0.84 96.81 ± 1.65√
99.30 ± 0.47 99.25 ± 0.56 49.05 ± 0.48 99.10 ± 0.12 82.59 ± 0.60 99.25 ± 0.56√ √
99.32 ± 0.45 99.50 ± 0.15 49.11 ± 0.39 99.12 ± 0.22 82.66 ± 0.91 99.50 ± 0.15

Noise

√
92.25 ± 1.43 81.03 ± 3.20 44.78 ± 0.60 88.80 ± 2.08 70.06 ± 1.56 81.03 ± 3.20√
98.50 ± 0.68 85.97 ± 2.37 47.01 ± 0.49 94.01 ± 1.38 72.59 ± 1.33 85.97 ± 2.37√ √
98.77 ± 0.48 88.47 ± 1.57 47.28 ± 0.43 96.33 ± 0.21 72.71 ± 1.22 88.47 ± 1.57

Table 4: Ablation experimental results on the Handwritten, MSRC-V1, NUSOBJ, Fashion-MV, Scene15, and Leaves100 datasets. The best
results are in bold.

out vMF-PCL, the modality-specific information cannot be
fully exploited. On the other hand, without RMF, the features
of different modalities cannot be effectively and robustly inte-
grated, both leading to inferior performance. Notably, vMF-
PCL has a higher contribution to the performance than RMF,
indicating that modality-specific information is the basis of
fusion to ensure complementary features are extracted from
each modality. In summary, the full version of PML achieves
the best performance in both normal and noisy settings, which
shows that each proposed component plays an important role
in the proposed PML.

4.5 Reliability Study

In this section, we present quantitative experiments to visu-
ally demonstrate the model’s capability to estimate reliability
under varying conditions. After training the model on the
standard training set, we introduced different types of noise
into the test set to assess whether our approach could effec-
tively quantify the associated reliability. The experimental
results are illustrated in Figure 3, covering four distinct sce-
narios: (1) data with normal conditions (i.e., , clean data), (2)
data with additive Gaussian noise, (3) data with noisy cor-
respondence (NC), and (4) data subjected to both Gaussian
noise and noisy correspondence (Noise & NC). From Equa-
tion (2), it can be observed that the introduction of noise leads
to a noticeable decline in the model’s estimated reliability.
Specifically, the model demonstrates high confidence under
normal conditions (yellow region), while the reliability esti-
mation deteriorates as noise is added. In the case of Gaus-
sian noise (blue region), the reliability scores exhibit moder-
ate degradation, reflecting our model could correctly capture
the uncertainty. Similarly, when noisy correspondence is in-
troduced, the model identifies the inherent uncertainty stem-
ming from incorrect cross-modal relationships, resulting in
a more significant reduction in the estimated reliability. The
most pronounced impact is observed when both noise sources
are present, where the reliability is substantially diminished,
indicating that our method successfully captures compound-
ing uncertainties. These findings underscore the effectiveness
of our proposed approach in accurately quantifying reliability
in the presence of various noise types. The results not only
validate the model’s ability to differentiate between clean and
noisy data but also demonstrate its potential to serve as a trust-
worthy mechanism for real-world applications where data un-
certainty is prevalent.
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Figure 3: Reliability Density on the test sets with various conditions
(normal, Gaussian noise, noisy correspondence, and mixture noise)
for the LandUse and Leaves100 datasets.

5 Conclusion
In this paper, we proposed a novel Probabilistic Multi-
modal Learning (PML) framework based on von Mises-
Fisher (vMF) distributions to enhance the reliability of mul-
timodal classification. By modeling each data point with
a vMF distribution, characterized by a mean direction and
a concentration parameter, our method effectively encapsu-
lates discriminative information into the directional represen-
tations while capturing the intrinsic data uncertainty. Unlike
Gaussian-based models, our PML leverages the concentra-
tion parameter to directly measure data uncertainty, providing
more stable and robust reliability modeling. To achieve robust
multimodal fusion, we propose a Reliable Multimodal Fusion
mechanism (RMF) that dynamically balances contributions
from different modalities based on the predicted consistency
and learned reliability. Extensive experiments on nine bench-
mark datasets demonstrate the effectiveness and robustness
of our PML over 14 state-of-the-art approaches, in both nor-
mal and noise settings, showcasing its robustness in handling
noisy and misaligned modalities. Furthermore, ablation stud-
ies validate the necessity of the key components in our frame-
work, including our vMF-PCL and RMF. While this work
focuses on the classic multimodal classification task, in the
future, we plan to extend the proposed PML to broader appli-
cations such as multimodal clustering, cross-modal retrieval,
etc.
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