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Abstract
Fairness in artificial intelligence has garnered in-
creasing attention due to concerns about discrim-
inatory AI-based decision-making, prompting the
development of numerous mitigation approaches.
However, most existing methods assume that de-
mographic information is readily available, which
may not align with real-world scenarios where such
information is often incomplete. To this end, this
paper tackles the pervasive yet overlooked chal-
lenge of developing fair machine learning algo-
rithms with limited demographics. Specifically,
we explore leveraging limited demographic infor-
mation to accurately infer missing demographics
while simultaneously evaluating and optimizing
model fairness. We argue that this approach bet-
ter aligns with common real-world socially sensi-
tive scenarios involving limited demographics. Ex-
tensive experiments on three benchmark datasets
highlight the effectiveness of the proposed method,
surpassing state-of-the-art with significant gains in
fairness while maintaining comparable utility.

1 Introduction
Artificial intelligence (AI)-driven decision-making systems
are increasingly being applied in a wide range of high-risk
decision-making scenarios, such as healthcare [Wang and
Zhang, 2024], employment [Tiwari, 2023], credit assess-
ment [Wang et al., 2024d], and criminal justice [Travaini et
al., 2022]. Despite the significant success, there is grow-
ing concern that they may inadvertently discriminate against
certain subgroups defined by demographics (e.g., gender or
race) [Vasudevan and Kenthapadi, 2020; Le Quy et al., 2022;
Zhang, 2024]. As a result, a substantial body of research
has emerged focused on enhancing fairness in machine learn-
ing algorithms [Zhang et al., 2025]. The majority of these
works address the problem by adopting the statistical group
fairness approach, which first identifies a small collection of
high-level groups defined by demographics and then ensures
similar outcome statistics of the predictor across these sub-

∗Corresponding author.

groups [Wang and Zhang, 2025]. The aim is to prevent situa-
tions where one socially salient group is collectively allocated
a more favorable outcome compared to another (e.g., deter-
mining which patients receive extra medical care or which
customers receive promotional deals) [Zhang et al., 2023b].
A common assumption in these prior works is that demo-
graphic information is readily and completely available as
a precondition for defining fairness and for implementing
debiasing algorithms that depend on these notions [Choi et
al., 2021; Zhang and Ntoutsi, 2019; Zhang and Weiss, 2022;
Wang et al., 2024c; Wang et al., 2024b].

In real-world applications, however, demographics may
not always be accessible due to privacy concerns [Coston et
al., 2019], or fear of discrimination [Krumpal, 2013], which
poses challenges for the existing fairness approaches. For in-
stance, consider a healthcare organization that utilizes an AI
algorithm to optimize patient assignments based on factors
like medical history and demographics. Patients from certain
racial or ethnic backgrounds may withhold their race due to
concerns about bias or prior experiences of discrimination in
healthcare settings [Weber et al., 2021]. In such scenarios, the
majority of existing fairness approaches are rendered inappli-
cable, as they depend on access to complete demographics.

To this end, the research community has begun explor-
ing methods to achieve fairness without complete demo-
graphics, either by inferring demographic proxies or us-
ing strategies like Max-Min fairness [Grari et al., 2021;
Hashimoto et al., 2018]. However, a common limitation of
these methods is that they assume an extreme case where
demographic information is completely unavailable [Ashurst
and Weller, 2023]. In reality, some demographics may still
be available, even though certain users refuse to share their
demographics for various reasons. For example, on the Face-
book dataset commonly used to mitigate bias in friend rec-
ommendation models, 14% of teen users have made their full
profiles public [Madden et al., 2013], providing some avail-
able demographic information. Ignoring this rich available
demographic information, as many existing methods do, can
result in greater performance losses due to imposed fairness
constraints [Kenfack et al., 2024].

Furthermore, when inferring demographic proxies, many
existing methods assume that demographics can be accurately
inferred without adequately filtering out noisy or irrelevant
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information. For instance, if the demographic information of
interest is gender, other attributes like race may introduce bias
if not properly accounted for during the inference process.
This can result in unrealistic proxies, undermining the effec-
tiveness of fairness mitigation [Wang et al., 2025c]. On the
other hand, the Max-Min fairness strategy cannot guarantee
that the uncovered groups are consistent with the demograph-
ics of interest [Yan et al., 2020], as the identified groups may
be influenced by irrelevant features rather than the targeted
demographic information.

To this end, this paper aims to advance algorithmic fair-
ness with limited demographics by collectively addressing
three distinct challenges: i) Efficiently Utilize Limited De-
mographic Information: Existing methods often either ig-
nore or simply use limited demographic information to pre-
dict missing demographics, resulting in inaccurate predic-
tions that introduce additional bias. Ignoring limited demo-
graphics leads to unnecessary information loss, while simply
using it can introduce bias due to distributional differences.
Therefore, a more effective approach is needed to efficiently
leverage limited demographic information to accurately in-
fer missing demographics without introducing bias. ii) Op-
timizing Fairness Amid Missing Demographics: Conven-
tional fairness methods depend on complete demographic in-
formation to measure and mitigate disparities across demo-
graphic groups. However, when such information is incom-
plete, evaluating model bias becomes difficult, as group mem-
bership cannot be determined for all samples. This presents
a core challenge in defining and optimizing fairness objec-
tives with limited demographics. iii) Disentangling Demo-
graphic Inference and Label Prediction: When a model is
tasked with both inferring demographics and predicting la-
bels, there is a risk that it may manipulate the inferred demo-
graphics to artificially improve fairness metrics. For example,
the model could adjust demographic assignments to balance
outcomes across groups, compromising both the integrity of
demographic inference and predictive accuracy. It is crucial
to ensure that demographic inference and label prediction re-
main independent and unbiased, preventing the model from
exploiting this mechanism to game fairness evaluations.

To address these challenges, we propose the Fairness
Disentanglement Variational Autoencoder (FDVAE), a novel
framework that leverages disentangled learning and prob-
abilistic imputation to infer missing demographic informa-
tion while ensuring model fairness, to the best of our knowl-
edge, making it the first approach of its kind. Specifi-
cally, FDVAE uses limited available demographics to disen-
tangle features into demographic-related and demographic-
irrelevant components, enabling more accurate inference of
missing demographic information and enhanced model fair-
ness. This is achieved by decomposing the observed data into
two latent variables that distinguish between demographic-
related and unrelated information, allowing us to infer miss-
ing demographics through a Bayesian network by focusing on
demographic-related information while excluding irrelevant
information. Furthermore, we design a differentiable fairness
loss that enables fairness measurement and optimization with
limited demographic information. Our main contributions are
as follows: i) We explore the effect of irrelevant information

when inferring missing demographics and examine how this
impacts the accuracy of demographic inference. ii) We pro-
pose a novel framework that employs a disentangling struc-
ture to exclude irrelevant demographic information, enabling
more accurate inference of missing demographics. Addition-
ally, we incorporate a probabilistic imputation method to en-
hance model fairness. iii) We conduct extensive experiments
on three real-world benchmark datasets. The results demon-
strate that our proposed method outperforms existing base-
lines across multiple fairness metrics while achieving compa-
rable prediction performance in downstream tasks.

2 Related Work
Fairness is a significant challenge in machine learning sys-
tems [Wang et al., 2023a; Wang et al., 2023b; Wang et al.,
2024a; Wang et al., 2025a; Zhang et al., 2023a], driving ex-
tensive research into fairness-aware frameworks designed to
reduce or eliminate the influence of demographic information
and ensure decisions are independent of it; however, most ap-
proaches rely on constraints or regularizers that require com-
plete demographic information, restricting their applicability
in real-world scenarios where such accessibility is not guar-
anteed [Wang et al., 2025b].

To this end, a few works have taken initial steps to ad-
dress algorithmic bias without demographics. For exam-
ple, ORD [Hashimoto et al., 2018] optimizes for the worst-
case loss over distributions close to the empirical one, im-
proving fairness without requiring sensitive attributes. Sim-
ilarly, ARL [Lahoti et al., 2020] employs adversarial learn-
ing to reweight training samples, focusing on underrepre-
sented groups and indirectly enhancing fairness. The core
idea behind these approaches is rooted in Rawlsian Max-Min
fairness, aiming to minimize the maximum risk across all
groups [Wang et al., 2023c]. Another strategy involves in-
ferring surrogate group information from input features. For
instance, Yan et al. [Yan et al., 2020] use clustering to identify
subgroups and balance class distributions within clusters to
promote fairness. Additionally, some methods require prior
knowledge of correlations between features and demograph-
ics. For example, FairRF [Zhao et al., 2022] mitigates bias by
controlling for features likely correlated with demographics.

Despite these advancements, existing models fall short in
three key areas: i) They ignore available demographic infor-
mation by assuming the complete absence of demographics,
limiting their ability to achieve fairness effectively. ii) They
either fail to accurately identify focused demographic infor-
mation or overlook interference from demographic-irrelevant
features during demographic inference, leading to unreliable
fairness assessment. iii) These methods ignore the possibility
of model manipulation when inferring demographics, which
can lead to artificially enhanced fairness.

To this end, we propose an approach that achieves fairness
through three key innovations. First, we infer missing demo-
graphics by identifying and leveraging demographic-related
information through disentangled learning, without relying
on pre-defined assumptions about feature relevance. Second,
we proposed a novel fairness loss that enables bias measure-
ment with limited demographic information to guide the fair-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ness optimization process. Third, we prevent potential ma-
nipulation during joint optimization by employing gradient
isolation techniques, ensuring that fairness objectives do not
compromise the accuracy of demographic inference.

3 Notations
Assume a set of labeled samples (xi, yi, si) drawn from the
space X × Y × S. Here, X ∈ Rn×d represents the fea-
ture matrix with n samples, where each sample xi is charac-
terized by a d-dimensional feature vector. The correspond-
ing ground truth label vector is denoted as Y ∈ {0, 1}n,
where yi = 1 indicates a granted outcome for sample xi,
and yi = 0 indicates a rejected outcome. Additionally,
S ∈ {0, 1}m represents the demographics, where si denotes
the demographics for a sample xi, and m represents the num-
ber of samples with known demographic information, where
m < n due to the limited demographics. We denote SK

and SU as the set of samples with known and unknown de-
mographic information, respectively. Last, we define the de-
prived group as Sd = {xi | si = 0} and the favored group as
Sf = {xi | si = 1}.

Figure 1: The causal model of the proposed method.

4 Methodology
4.1 Causal Model
This section first presents the proposed causal analysis, which
is crucial for mitigating bias with limited demographics.
Specifically, FDVAE infers missing demographics from ob-
served data by leveraging the causal structure depicted in
Figure 1, which considers four observed variables: demo-
graphic information (S), demographic-related features (XS),
demographic-unrelated features (XS), and the ground truth
label (Y ). Specifically, XS and XS are decomposed by model
from the input features (X), where XS are influenced by S,
while XS are independent of S. For instance, if the demo-
graphics S represents gender, then XS includes features like
beard or height, while XS includes features unrelated to gen-
der, such as race or weather. In other words, the demographic-
related features should be independent of the demographic-
unrelated features.

To implement this disentanglement, we introduce two ex-
ogenous variables, US and US as latent representations of XS

and XS , respectively. Through adversarial training with cor-
relation measure, we ensure these latent variables are prop-
erly disentangled, where US captures demographic-related
information and US captures demographic-irrelevant infor-
mation. This design enables accurate demographic inference

by leveraging demographic-related information in US while
preventing interference from unrelated factors through the
disentangling of US and US , ensuring S is inferred solely
from relevant information. For example, if the missing de-
mographics to infer is gender, US captures latent informa-
tion related to gender, while US captures latent information
unrelated to gender, such as race, enabling focused demo-
graphic inference by using only demographic-related infor-
mation from US . The practical implementation of this causal
structure is achieved through a neural network architecture
with min-max optimization, which we detail in Section 4.2.
Additionally, both US and US contain information that con-
tributes to accurately predicting the true label Y , while we
prevent the influence of demographic information on predic-
tions to achieve fairness.

Figure 2: Neural network architecture of FDVAE.

4.2 Overview of Neural Network Architecture
Our framework consists of two main components that work
together to achieve fair node classification with limited de-
mographics through a neural network architecture that im-
plements the Bayesian inference from our causal model, as
illustrated in Figure 2. The first component employs vari-
ational inference to learn disentangled representations (US ,
US) from fully observed features and partially observed de-
mographics by maximizing the likelihood and incorporating
adversarial correlation measures. Through min-max opti-
mization, the encoder and decoder minimize reconstruction
loss while maintaining latent variable independence (i.e., US

⊥US), enabling reconstruction of fully observed XS , XS and
Y , as well as partially observed demographics S. Second, as
elaborated in Section 4.4, we achieve missing demographic
inference and fair classification in a unified process through
an integrated optimization framework. This dual-purpose de-
sign employs a specialized fairness loss and gradient isolation
technique that ensures effective bias mitigation while main-
taining accurate demographic inference.

4.3 Inferring Missing Demographics
Aligning with the causal analysis in Section 4.1, our causal
model requires inference over the exogenous variables to
identify the partial missing demographics S. A primary chal-
lenge in inferring S lies in accurately modeling the rela-
tionships between the observed variables and the latent vari-
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ables. Previous work [Madras et al., 2019] shows that unob-
served variables can be recovered when the full joint distribu-
tion is successfully modeled, as causal effects are identifiable
when exact inference is possible and observed covariates are
sufficiently informative. Corresponding to our task, demo-
graphics can be recovered by modeling the joint distribution
P (S,XS , XS , Y ) among demographic-related features XS ,
demographic-irrelevant features XS , demographics S, and
ground truth label Y . Thus, we aim to learn two models:
i) A decomposition model to separate the input features into
those related to demographics and those that are unrelated,
and ii) an inference model approximating the distribution of
S given XS , XS , and Y . Specifically, we employ variational
inference, parameterized by deep neural networks, to jointly
learn the parameters of both models. Our goal is to approx-
imate the joint distribution P (S,XS , XS , Y ) by maximizing
the ELBO on the log-likelihood of the observed data, while
disentangling US and US according to the Bayesian network
structure depicted in Figure 2. As XS and US are indepen-
dent given US , and XS and (S, US) are independent given
US , the joint probability P (S,XS , XS , Y ) can be factorized
as follows to learn a consistent generative model:

P (S,XS , XS , Y ) =

∫
US

∫
US

P (US)P (US)P (S|US)

P (XS |US , S)P (XS |US)P (Y |US , US) dUSdUS (1)

where P (S|US) models the relationship between the exoge-
nous variable US and S, effectively capturing US as a proxy
for the demographics. The prior distributions P (US) and
P (US) are typically modeled as standard normal distribu-
tions. The terms P (XS |US , S) and P (XS |US) represent
the decoders for the demographic-related and demographic-
unrelated features, respectively. Finally, P (Y |US , US) cap-
tures the dependency of the Y on both exogenous variables.

Building on this, the decoder distribution
pϕ(XS , XS , S, Y |US , US) can be factorized as below:

pϕ(S,XS , XS , Y ) =p(US)p(US)pϕS
(S|US)pϕXS

(XS |US , S)

(2)
pϕX

S
(XS |US)pϕY

(Y |US , US)

We also assume the posterior qϕ(US , US |XS , XS , S, Y )
can be factorized as:

qϕ(US , US |XS , XS , S, Y ) =qϕ(US |XS , S, Y ) (3)
qϕ(US |XS , S, Y )

Given this approximate posterior, we define the Evidence
Lower Bound (ELBO) [Kingma and Welling, 2013] as:

logP (S,XS , XS , Y |US , US) ≥ Eqϕ(US ,US ,S|XS ,XS ,Y ) (4)[
log

P (XS , XS , Y, S, US , US)

qϕ(US , US |S,XS , XS , Y )

]
The values of logP (S,XS , XS , Y |US , US) correlates

positively with the reality of observed data. The

P (XS , XS , Y, S, US , US) represents the joint distribution be-
tween the observed data, while qϕ(US , US |S,XS , XS , Y ) de-
note the posterior distribution of the demographics. Further-
more, to approximate the intractable posterior distribution of
these latent variables, we introduce a variational distribution
Q(US |XS , S, Y ) and Q(US |XS , S, Y ), which uses a para-
metric family of distributions to approximate the true poste-
rior distribution P (US |XS , S, Y ) and P (US |XS , S, Y ).

Using the factorization of the variational distribution, the
updated ELBO of our framework can be formally described
as:

logP (S,XS , XS , Y |US , US) ≥Eqϕ(US ,US |S,XS ,XS ,Y )[
log pϕS

(S|US) + log pϕXS
(XS |US , S)

+ log pϕX
S
(XS |US) + log pϕY

(Y |US , US)

− KL(qϕUS
(US |XS , Y )∥p(US))

− KL(qϕU
S
(US |XS , Y )∥p(US))

]
(5)

where KL(·) denotes the Kullback-Leibler divergence of the
posterior qθS , qϕUS

and qϕU
S

from a prior P (S), P (US) and
P (US), as shown in follow:


KL

(
qϕUS

(US |S,XS , Y ) ∥P (US)
)
=

EqϕUS
(US |S,XS ,Y ) [logQ(US |S,XS , Y )

− logP (US)]

KL
(
qϕU

S
(US |XS , Y ) ∥P (US)

)
=

EqϕU
S
(US |XS ,Y ) [logQ(US |XS , Y )

− logP (US)]

(6)
The maximization of the ELBO can be performed us-

ing stochastic gradient ascent and the reparameterization
trick [Kingma and Welling, 2013]. However, merely opti-
mizing the ELBO does not guarantee the independence be-
tween US and US , which is crucial for accurate inference. To
enforce independence through adversarial training, we first
need a way to measure the dependence between latent vari-
ables. To this end, we adopt the Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation [Gebelein, 1941], which gen-
eralizes Pearson correlation to capture any non-linear rela-
tionship between random variables. Specifically, this HGR-
based min-max optimization process involves two competing
phases, as illustrated in Figure 2. In the minimization phase,
the encoder and decoder parameters ϕ and θ are updated via
gradient descent to minimize both the reconstruction loss and
the dependence between US and US . Simultaneously, in the
maximization phase, two adversarial networks with parame-
ters ωf1 and ωf2 take US and US as inputs, respectively, and
are updated via gradient ascent to maximize their estimated
dependence. This adversarial process measures the degree of
disentanglement through iterative optimization. We incorpo-
rate this into our loss function through a penalization term
LD, as shown in Equation 7. This alternating optimization
between the main network and adversarial networks allows
for increasingly accurate estimation of the HGR correlation
at each step, leading to more stable disentanglement of the
latent variables.

LD = sup
f1,f2

E(f1(US)f2(US))√
E(f1

2(US))E(f2
2(US))

(7)
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where f1 and f2 are measurable functions with positive and
finite variance. Therefore, the ELBO can be reformulated as:

L = −LELBO + λLD (8)

where λ is a hyperparameter that balances the contribution of
the disentanglement term. By minimizing this loss function,
we ensure that the latent variables US and US are disentan-
gled, enabling accurate inference of the missing demograph-
ics while mitigating bias.

4.4 Mitigation Bias with Limited Demographics
As discussed in Section 4.2, the second component is de-
signed to make fair and accurate predictions. However, ex-
isting fairness-aware methods typically assume that complete
demographics are available beforehand during this integrated
process, which is unsuitable for simultaneous demographic
inference and fairness optimization. Consequently, these
methods cannot be directly applied. To address this issue,
we introduce a differentiable fairness loss that leverages the
probabilistic estimations of the demographic attributes dur-
ing training. Specifically, we model the uncertainty in group
membership XU due to the missing S by considering the pre-
dicted probabilities P (Ŝ|US), where Ŝ is estimated from the
latent variable US as training progresses.

The quality of these demographic predictions directly im-
pacts our ability to ensure fairness, as inaccurate demographic
inference could lead to incorrect fairness assessments, such
as incorrectly labeling an individual from one demographic
group as belonging to another, which could lead to incor-
rect assessments of fairness. To mitigate this risk, we im-
pose a prior constraint on P (Ŝ|US) to minimize the proba-
bility of misclassification. This is achieved by employing a
Dirichlet prior that assigns low probabilities to misclassifi-
cations of demographics (e.g., P (female|male) to a small
value), thereby discouraging incorrect predictions that could
adversely affect the fairness evaluation. Building upon this,
we define the Estimated Group Disparity (EGD) as follows:
Definition 4.2 (Estimated Group Disparity). Given an input
dataset, the Estimated Group Disparity is defined as:

EGD =

(∑
i P (ŝi = 1 |US) · pϕY

(ŷi = 1 |xi)∑
i P (ŝi = 1 |US)

)
(9)

−
(∑

i P (ŝi = 0 |US) · pϕY
(ŷi = 1 |xi)∑

i P (ŝi = 0 |US)

)
where P (ŝi = s |US) denotes the probability that sample xi

belongs to demographic group s as inferred from US , and
pϕY

(ŷi = 1 |xi) is the probability that the model predicts a
granted label for sample xi. In practice, EGD computes the
estimated fairness loss by comparing the probability average
predicted granted label between different demographic sub-
groups as identified by the inferred S.

However, while EGD enables fairness assessment with
limited demographic information, directly integrating it into
training poses challenges due to the concurrent optimization
of demographic inference and prediction tasks. Specifically,
when performing these tasks simultaneously, the model might

manipulate demographic assignments to artificially reduce
the fairness loss (e.g., changing an individual from one group
to another to achieve statistical parity). This issue arises when
jointly optimizing the parameters of both the inference model
qθ and the predictor pϕY

. To prevent the fairness loss from
influencing the learning of qθ, we employ the stop-gradient
technique. Specifically, during backpropagation, we halt the
gradient of the EGD with respect to the parameters of qθ,
effectively treating the inferred demographic probabilities as
constants in the computation of the fairness loss. This strat-
egy maintains a separation between the learning of the demo-
graphic inference and the prediction model, preventing po-
tential manipulation and simplifying the training process.

Furthermore, the prediction of Y not only affects predic-
tive performance but also contributes to fairness metrics. If
the model adjusts Y to optimize fairness, it may compromise
accuracy. Essentially, since the fairness loss depends on the
predictions of Y , applying a stop gradient prevents the simul-
taneous optimization of both fairness and performance objec-
tives. To this end, we introduce a separate semi-supervised
classifier pϕ′

Y
(Y |xi) that estimates Y without considering

fairness constraints. This classifier is trained using available
labeled data and semi-supervised techniques for unlabeled
instances. We then use the predictions from pϕ′

Y
to inform

the fairness evaluation in the EGD. Specifically, for samples
without observed labels, we use the estimated class probabil-
ities from pϕ′

Y
in the computation of the EGD. The updated

EGD is defined as:

LEGD =

(∑
i P (ŝi = 1 |US) · ŷ′i∑

i P (ŝi = 1 |US)

)
−
(∑

i P (ŝi = 0 |US) · ŷ′i∑
i P (ŝi = 0 |US)

)
(10)

where ŷ′i = pϕ′
Y
(Y = 1 |xi) is the predicted probability of a

granted label from the auxiliary classifier pϕ′
Y

. This modifi-
cation ensures that the fairness loss is computed based on pre-
dictions that are not influenced by the fairness optimization of
the main model, thereby avoiding unintended manipulation.

Finally, we incorporate the EGD into the ELBO of our vari-
ational framework. The extended ELBO becomes:

L = −LELBO + λLD + γLEGD (11)

where γ denotes a hyperparameter that balances the contribu-
tion of fairness.

5 Experiment
5.1 Experimental Setup
Datasets. We evaluate the effectiveness of our proposed FD-
VAE framework on three widely used datasets in the fairness
domain: Adult [Ding et al., 2021], COMPAS [Larson et al.,
2016], and CelebA [Liu et al., 2015]. i) The Adult dataset
consists of 49,531 samples with 14 attributes. The task is
to predict whether an individual’s income exceeds $50K per
year, with gender serving as the demographic for fairness
evaluation. ii) The COMPAS dataset contains 6,150 sam-
ples (after selecting only Black and White defendants) with
11 attributes. The goal is to predict whether a defendant will
reoffend within two years. Similar to the Adult dataset, we
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Datasets Metrics
Methods ARL DRO FairKD FairRF FairDA Reckoner FDVAE

Adult

Accuracy (↑) 0.817 ± 0.016 0.817 ± 0.009 0.847 ± 0.004 0.829 ± 0.003 0.823 ± 0.004 0.811± 0.008 0.841 ± 0.012
F1-Score (↑) 0.671 ± 0.005 0.643 ± 0.010 0.590±0.042 0.613 ± 0.012 0.597 ± 0.012 0.553±0.021 0.646 ± 0.018
∆ DP(↓) 0.117 ± 0.025 0.123 ± 0.037 0.102 ± 0.016 0.084 ± 0.008 0.088 ± 0.005 0.097±0.006 0.068 ± 0.008
∆EO(↓) 0.108 ± 0.019 0.102 ± 0.024 0.105 ± 0.018 0.097 ± 0.023 0.071 ± 0.003 0.059±0.002 0.054 ± 0.010

COMPAS

Accuracy (↑) 0.633 ± 0.014 0.626 ± 0.008 0.653 ± 0.011 0.632 ± 0.007 0.612 ± 0.024 0.647±0.018 0.652 ± 0.031
F1-Score (↑) 0.599 ± 0.036 0.637 ± 0.018 0.617 ± 0.023 0.605 ± 0.012 0.627 ± 0.009 0.669±0.021 0.667 ± 0.032
∆DP(↓) 0.148 ± 0.015 0.142 ± 0.021 0.115 ± 0.012 0.119±0.019 0.095 ± 0.008 0.142±0.010 0.091 ± 0.007
∆EO(↓) 0.141 ± 0.028 0.133 ± 0.037 0.108 ± 0.019 0.123±0.027 0.097 ± 0.016 0.148±0.011 0.093 ± 0.013

CelebA

Accuracy (↑) 0.802 ± 0.007 0.766 ± 0.003 0.808 ± 0.003 0.843± 0.027 0.841 ± 0.019 0.795±0.010 0.827 ± 0.024
F1-Score (↑) 0.486 ± 0.009 0.491 ± 0.012 0.358 ± 0.029 0.407±0.033 0.403 ± 0.022 0.375±0.021 0.413 ± 0.029
∆DP(↓) 0.221 ± 0.015 0.232 ± 0.016 0.147 ± 0.022 0.128±0.017 0.115 ± 0.008 0.136±0.004 0.107 ± 0.036
∆EO(↓) 0.258 ± 0.023 0.246 ± 0.027 0.138 ± 0.020 0.211± 0.024 0.187 ± 0.016 0.118±0.011 0.116 ± 0.005

Table 1: Comparison results of FDVAE with baseline methods across real-world datasets. In each row, the best result is indicated in bold,
while the runner-up result is marked with an underline.

use gender as the demographics. iii) The CelebA dataset
includes 202,599 face images, each of size 178 × 218 pix-
els, annotated with 40 binary attributes. We conduct the bi-
nary classification tasks on this dataset: predicting attractive-
ness with gender as the demographics. For all datasets, we
randomly split the data into 50% training data, 20% vali-
dation data, and 30% test data. All the methods evaluated
are trained and tested on the same data partitions each time.
To simulate missing demographics, we create two scenar-
ios: i) Meager Level: We randomly mask the demograph-
ics of 20% of individuals who are both favored and granted
or favored and rejected, as well as 10% of those who are
deprived and granted or deprived and rejected. ii) Serried
Level: We increase the masking proportions to 40% for the
favored-granted and favored-rejected groups and 20% for the
deprived-granted and deprived-rejected groups. The masking
is applied to both the training and validation sets, and no de-
mographics are used during testing.
Baselines. We evaluate the performance of our proposed
FDVAE by comparing it with several baseline methods:
i) ARL [Lahoti et al., 2020]: Introduces adversarially
reweighted learning to ensure fairness without using demo-
graphic data by reweighting training samples to mitigate bi-
ases. ii) DRO [Hashimoto et al., 2018]: Achieves fairness
in repeated loss minimization by controlling the worst-case
performance over time without relying on demographics. iii)
FairKD [Chai et al., 2022]: Utilizes Rawlsian Max-Min fair-
ness through knowledge distillation to achieve fairness across
all subgroups. iv) FairRF [Zhao et al., 2022]: Develops fair
classifiers by exploring feature-related biases, eliminating the
need for sensitive attribute data. v) FairDA [Liang et al.,
2023]: Employs a dual adversarial learning approach to en-
sure fair classification via domain adaptation without relying
on demographic or sensitive attributes. vi) Reckoner [Ni et
al., 2024] achieves group fairness through learnable noise and
knowledge-sharing in a dual-model architecture.
Evaluation Metrics. The evaluation involves two fairness
metrics and two machine learning performance metrics. We
use Accuracy and F1-score to assess the utility performance
of the models. To evaluate fairness, we adopt two commonly
used metrics: ∆DP [Dwork et al., 2012] and ∆EO [Hardt et
al., 2016]. For both ∆DP and ∆EO, smaller values indicate

fairer model predictions.

5.2 Experimental Results
Comparison Study. We compared the performance of FD-
VAE with six baseline methods, and Table 1 summarizes the
results for the classification task. As one can see, FDVAE
consistently outperforms all baseline methods across most
evaluation metrics. Specifically, FDVAE demonstrates supe-
rior fairness performance (i.e., ∆DP and ∆EO), as shown by
the significant improvements in all baseline methods across
various datasets. This enhanced fairness can be attributed to
two main factors: i) FDVAE accurately infers missing de-
mographics by filtering out demographic-irrelevant features,
thereby laying the foundation for the fairness loss estimation
in the model. ii) Our dual focus on inferring missing de-
mographics and predicting sample labels prevents spurious
fairness improvements, such as artificially enhancing fairness
by manipulating sample demographics. Additionally, FD-
VAE achieves excellent utility performance, surpassing other
methods in most cases. This outcome suggests that FDVAE’s
accurate demographic inference minimizes performance loss
due to the enhancement of fairness associated with incorrect
demographics. On the other hand, compared with Rawlsian
Max-Min fairness approaches that may incur performance
penalties when addressing fairness in not-focus subgroups,
FDVAE maintains high utility. Overall, the experimental re-
sults validate FDVAE’s effectiveness in achieving improved
fairness while maintaining strong utility performance.
Quality of Proxy to Recovery Demographics. Table 2
shows the accuracy of FDVAE in recovering missing demo-
graphics across three datasets and two sparsity levels. At
the Meager Level, FDVAE infers missing demographic at-
tributes more accurately due to the availability of more la-
beled data. At the Serried Level, while there is a slight de-
crease in accuracy compared to the Meager Level, the results
remain close, demonstrating FDVAE’s robustness across dif-
ferent data sparsity conditions. We also introduced a variant,
FDVAE-ND, which measures the accuracy of demographic
recovery without filtering out demographic-irrelevant infor-
mation. The results clearly show that failing to exclude irrele-
vant information significantly reduces accuracy, underscoring
the importance of our approach in excluding demographic-
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Figure 3: Ablation study results for FDVAE, FDVAE-NF, and FDVAE-ND.

irrelevant features during the inference process.

Level Datasets FDVAE
(Accuracy)

FDVAE-ND
(Accuracy)

Meager Level
Adult 0.675 0.626

COMPAS 0.701 0.631
CelebA 0.640 0.600

Serried Level
Adult 0.659 0.593

COMPAS 0.673 0.614
CelebA 0.616 0.578

Table 2: Recovered demographics results of FDVAE and FDVAE-
ND (in terms of Accuracy).

Ablation Studies. We conducted ablation studies to under-
stand the impact of each component of FDVAE on improving
fairness. Specifically, we constructed two variants: FDVAE-
ND and FDVAE-NF. FDVAE-ND does not exclude irrele-
vant information when inferring missing demographic infor-
mation (i.e., λ = 0), while FDVAE-NF prioritizes perfor-
mance without considering fairness (i.e., γ = 0). The results
are presented in Figure 3. Compared to FDVAE, FDVAE-
ND exhibits a decrease in both fairness and performance.
This decline occurs because the reduced accuracy in infer-
ring missing demographic information introduces additional
bias, thereby compromising the effectiveness of subsequent
bias mitigation. Similarly, FDVAE-NF shows a significant
reduction in model fairness due to the absence of fairness
considerations. These findings underscore the necessity of
FDVAE’s design, highlighting the importance of excluding
information unrelated to demographics during the inference
process to achieve effective bias mitigation.
Parameters Sensitivity. We examined the sensitivity of FD-
VAE with respect to two hyperparameters, λ and γ. In
FairSAD, λ and γ control the balance between disentan-
glement and fairness. We varied λ and γ within the set
{e−3, e−2, . . . , e3}, where e is the natural constant. Figure 4
shows the results of the parameter sensitivity analysis using
the Adult dataset as an example. Our observations are as fol-
lows: i) The overall performance of FairSAD remains stable
over a broad range of λ and γ values. ii) The model’s fair-
ness improvement is influenced by disentanglement, and util-
ity performance degradation is more pronounced when dis-

Figure 4: Parameters sensitivity analysis on Adult dataset.

entanglement is poor. This finding underscores the equal im-
portance of both disentanglement and fairness contributions.

6 Conclusion
Despite the growing attention to AI fairness, existing fairness
studies typically assume that demographic information is ei-
ther fully available or completely missing, thereby overlook-
ing the real-world scenario of partial demographic availabil-
ity. To this end, we propose a novel disentangled learning
approach that effectively identifies demographic-related in-
formation from observed data to infer missing demographics
while preventing the manipulation of inferred demographics
during fairness optimization. Results on a real biased dataset
show that our method effectively mitigates model bias by
leveraging the available demographic information. This work
opens a promising direction for developing fair ML algo-
rithms that can operate with partially available demographic
information.
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