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Abstract
Inferring the true demand for a product or a service
from aggregate data is often challenging due to the
limited available supply, thus resulting in observations
that are censored and correspond to the realized
demand, thereby not accounting for the unsatisfied
demand. Censored regression models are able
to account for the effect of censoring due to the
limited supply, but they don’t consider the effect of
substitutions, which may cause the demand for similar
alternative products or services to increase. This paper
proposes Diffusion-aware Censored Demand Models,
which combine a Tobit likelihood with a graph-based
diffusion process in order to model the latent process
of transfer of unsatisfied demand between similar
products or services. We instantiate this new class
of models under the framework of GPs and, based
on both simulated and real-world data for modeling
sales, bike-sharing demand, and EV charging demand,
demonstrate its ability to better recover the true demand
and produce more accurate out-of-sample predictions.

1 Introduction
Learning well-specified probabilistic models capable of dealing
with censored data is a long-standing challenge of the statistical
sciences and machine learning. Censoring occurs when the value
of a given observation or measurement is only partially known,
with the true value being latent. Censoring is a process that occurs
naturally in many research fields, such as economics, natural
sciences, and medicine [Breen, 1996]. In this paper, we are partic-
ularly interested in censoring in the context of demand modeling.
Demand modeling is crucial across various application domains,
such as retail and e-commerce, energy, transportation and logistics,
healthcare, telecommunications, manufacturing, tourism, etc., as it
enables accurate forecasting, resource optimization, and strategic
decision-making by understanding and predicting consumer
needs, market trends, and system requirements. When modeling
the aggregate demand for a product or service, censoring occurs
whenever it runs out of supply, thus resulting in observations
that are upper-bounded by the available supply (satisfied demand)
and, therefore, don’t correspond to the actual (true) demand
[Heien and Wesseils, 1990], which is the quantity of interest to be
modeled. From a learning perspective, if the dependent variable is

censored for a non-neglectable fraction of the observations, then
the parameter estimates obtained (e.g., by standard regression
approaches such as OLS) will be inherently biased.

In the statistics literature, Tobit regression models [Amemiya,
1984; McDonald and Moffitt, 1980] constitute the main workhorse
for handling censored observations. They provide a framework
capable of accounting for left- and right-censored data through a
carefully designed likelihood function. However, they rely on the
assumption that individual censoring processes occur in isolation,
which is unrealistic for many real-world applications. Consider
the problem of modeling the charging demand of electric vehicles
(EVs) in an area. If, at certain periods of the day, all chargers are
occupied, then the observed charging demand may not correspond
to the true demand, which will likely be higher than the value
observed. Critically though, that unsatisfied demand above the
available supply is not lost and, at least in a fraction of the cases, it
will be transferred to the nearest available charger [Hipolito et al.,
2022], thus resulting in an unusually high demand being observed
at that charging location. Besides leading to underestimation
of the true demand in the original area, this may erroneously
lead one to believe that the need for charging in nearby areas is
higher than it actually is. More generally, we can consider the
problem of modeling aggregate demand data for a given product
or service. If the supply for that product reaches zero, then there
is a high likelihood that that will result in a higher demand being
observed for other similar/substitute products [Wan et al., 2018]
- e.g., supermarket customers buying more rucola because it has
run out of lettuce to sell, or simply buying from a different brand.

This paper aims to model the ubiquitous process of demand
transfer between related products or services due to censoring
from an aggregate (market-level) perspective. It proposes a new
class of models, which we refer to as Diffusion-aware Censored
Demand Models, that integrates ideas from Tobit models [Tobin,
1958; Amemiya, 1984] with a graph diffusion process to model
the latent process of transfer of unsatisfied demand (graph-based
demand propagation). In doing so, we provide a statistically sound
methodology to more accurately infer the latent true demand for
the product subject to censoring by taking into account the un-
usually high demand for similar products, as well as to obtain ad-
justed estimates for the demand of the latter by accounting for the
“spillover effect”. By modeling the demand transfer process that
occurs between similar products or services when their observed
demand is subject to censoring due to limited supply, we are able
to obtain more unbiased regression models of the true aggregate
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demand. We instantiate this new class of models under the frame-
work of Gaussian processes (GPs) and propose Diffusion-aware
Censored GPs, thus allowing us to jointly model multiple corre-
lated time-series of aggregate demand data corresponding to dif-
ferent products or services. We begin by empirically validating the
proposed approach using artificial data under carefully constructed
scenarios, whereby we analyze its strengths and limitations. We
then demonstrate the proposed approach using three real-world
datasets for modeling sales data, bike-sharing demand, and EV
charging demand. Through these experiments, we pinpoint the
advantages of the proposed approach over standard censored re-
gression, thus demonstrating its ability to better recover the true
demand and produce more accurate out-of-sample predictions.

2 Related Work
Censoring arises naturally in many research fields. Besides the
cases in economics discussed above, it occurs, for example, in
the natural sciences whenever the true value of interest is outside
the measurable range of a measuring instrument. Similarly, in
medicine, censoring arises, for example, when measuring the
survival time in clinical trials, since one may know that the sur-
vival time surpasses the present moment, but one cannot know
the total survival time. Due to the pervasiveness and, oftentimes,
critical importance of censored variables, it is unsurprising that
a significant portion of the literature is dedicated to them. Histor-
ically, learning well-specified models of censored data has always
been an important focus of statistical research, with Tobit models
constituting a unifying probabilistic approach for censored data.
With the advances in machine learning, the limitations of Tobit
models associated with its linearity assumptions have been relaxed
through the use of non-linear models such as Gaussian processes
[Basson et al., 2023; Gammelli et al., 2020] and Neural Networks
[Hüttel et al., 2023]. However, when using a Tobit likelihood,
inference is no longer tractable. Therefore, a considerable portion
of the literature is dedicated to developing approximate inference
approaches (e.g., [Chib, 1992; Groot and Lucas, 2012]).

One domain in which censored data is prevalent is urban
mobility, from which we draw several case studies. People want
to travel from A to B at a given time using a given transportation
mode, but they often face supply constraints that force them to, for
example, opt for an alternative transportation mode, change their
departure time, or not travel at all. Therefore, modeling and in-
ferring true demand from censored demand observations in space
and time is of vital importance for optimizing transportation sys-
tems. For example, [Gammelli et al., 2020] proposed an approach
based on independent Gaussian processes and a Tobit likelihood
to model the demand for shared mobility services at individual
locations, thus resulting in more accurate forecasts of the latent
true aggregate demand. Similarly, [Hüttel et al., 2022] proposed
using neural networks and censored quantile regression models to
model EV car-sharing usage. [Xie et al., 2023] further combine
the predictions of a censored GP model with an optimization
procedure to efficiently allocate resources in bike-sharing systems.

Although these models are able to account for the censoring in-
duced by the limited supply and adjust their estimates accordingly,
they ignore the latent process of transfer of unsatisfied demand
that the censoring process generates. For example, in bike-sharing
systems, there is a high likelihood that users go to the nearest hub

if there are no bikes available at the current hub, thus resulting
in an abnormally high demand for the other hub. Researchers
in econometrics are well aware of the importance of accounting
for substitution effects and have proposed several approaches to
model them [Wan et al., 2018; Schaafsma and Brouwer, 2020;
Domarchi and Cherchi, 2023]. However, their focus is on micro-
econometric approaches that model individual choice behavior
and, therefore, require individual choice data for calibration,
which can be difficult and costly to obtain. On the other hand,
market-level data of aggregate demand is typically readily avail-
able. Contrasting with the existing literature, this paper proposes
a novel framework to model this demand transfer process from
an aggregate (market-level) perspective, thus resulting in more
unbiased regression models of the true (latent) aggregate demand.

3 Background: Censored Gaussian Processes
3.1 Censored Gaussian Processes
Given a dataset D = {(xn, yn, cn)}Nn=1, which, besides the
covariates xn and respective targets yn, also contains a binary
indicator variable cn of whether the nth observation is subject
to censoring, the goal of censored regression [DeMaris, 2004;
Greene, 2003] is to learn a function of the latent true (uncensored)
value fn = f(xn). When modeling demand data, we are
particularly interested in the case of right-censoring, where yn
is upper-bounded by a given threshold un corresponding to the
available supply, such that

yn=

{
fn, if fn<un
un, if fn≥un

. (1)

The censoring indicator variable cn can then be formally
defined as cn = 1(fn ≥ un). Traditionally, when modeling
scalar-valued censored data, a reasonable choice for an obser-
vation model is the well-known Tobit likelihood [Tobin, 1958;
Greene, 2003], or a type-I Tobit model according to the taxonomy
of [Amemiya, 1984]. For right-censored data, the likelihood of
yn under a censored Gaussian distribution is given by

p(yn |fn)=N (yn |fn,σ2)(1−cn)(1−Φ(yn |fn,σ2))cn, (2)

where Φ is the Gaussian cumulative density function (CDF). Note
that this likelihood can be generalized to other distributions such as
Poisson or Negative Binomial as discussed, for example, in [Gam-
melli et al., 2022]. Censored GP regression [Basson et al., 2023;
Groot and Lucas, 2012] then proceeds by placing a GP prior
on f(x)∼ GP(0,κ(x,x′)), and performing Bayesian inference
to compute the posterior distribution over the true (uncensored)
values {fn} or the predictive distribution for a new test point x∗.

4 Problem Formulation
We consider multivariate time-series data comprising input-output
pairs, {X(tp)∈RNt×Np×D,Y(tp)∈RNt×Np}, where Nt denotes
the number of temporal points, Np the number of products or
services, and D=1+Dp the input dimensions, with Dp being the
number of product features. As it is common in the GP literature,
we let X=vec(X(tp))∈RN×D, Y=vec(Y(tp))∈RN×1, where
N=NtNp and the operator vec(·) simply converts the data into
vector form, while preserving the ordering by time first and then
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products. For convenience, we use Xn,k=X(tp)
n,k and Yn,k=Y(tp)

n,k

to index the aggregate demand data for product k at time index
n. Our goal is then to learn a random function f :RD→R, on
which we place a zero-mean GP prior with a fully-factorized
likelihood, thus leading to the following generative process:

f(x)∼GP(0,κ(x,x′)), p(Y |f)=
Nt∏
n=1

Np∏
k=1

p(Yn,k | fn,k), (3)

where fn,k=f(Xn,k), and we slightly abuse notation by writing
f(x) = f(t,p) and κ(x,x′) = κ(t,p,t′,p′), with p denoting the
product (or service) features describing their characteristics,
including their spatial location when demand is distributed
in both space and time, as in the cases of demand for EV
charging or Mobility-on-Demand services. Similarly to standard
censored regression, our goal is two-fold: i) compute the posterior
distribution over the (latent) true demand f given the observed
demand Y (censored and subject to substitutions), and ii) predict
the true demand f∗ for a new test point x∗ (e.g., for forecasting).

5 Diffusion-aware Censored Gaussian Processes
By leveraging the Tobit likelihood in Eq. 2, Censored GP re-
gression (Section 3.1) allows us to account for the bias in-
duced by censoring by essentially giving the latent function
f added flexibility to take higher values for censored observa-
tions (cn = 1). However, when modeling aggregate demand
data, this approach doesn’t account for the exchange of de-
mand that may occur between similar products or services when
some of them run out of supply, thus resulting in abnormal de-
mand being observed for “substitute products” [Wan et al., 2018;
Schaafsma and Brouwer, 2020]. Let fn=(fn,1,...,fn,Np

) denote a
vector containing the true latent aggregate demand for theNp prod-
ucts or services at time index n. We can formally define the con-
cept of unsatisfied demand for a product k as: max(fn,k−un,k,0).
We propose to model the process of transfer of unsatisfied demand
across products as a non-linear diffusion process on a graph.

5.1 Transition Dynamics
Let G = (V,E,W) be a weighted undirected graph, where V is
a set of nodes |V|=Np representing products or services, E is
a set of edges, and W∈RNp×Np is weighted adjacency matrix
representing the similarity between products. We define the edge
weights with the aid of kernel as

Wi,j=

{
κdiff(pi,pj), if i≠j

0, if i=j
, (4)

with κdiff(pi,pj) being determined by an RBF kernel:

κdiff(pi, pj)=exp
{
−∥pi−pj∥2/ℓ2diff

}
. (5)

The underlying assumption is that products with similar character-
istics are likely to be used as replacements when a given product
is out of supply, with the lengthscale parameter ℓdiff controlling
how much customers are willing to tolerate differences in product
characteristics p. Diffusion of the unsatisfied demand to the same
node (self-loops) is obviously not allowed. We then define the
state transition matrix as

T=diag(W1Np)
−1W, (6)

Node 1 (f1)

Node 2 (f2)

Node 3 (f3)

Sink node

Transition matrix True (original) demand

f(0)
1

f(0)
2

f(0)
3

0 20 40 60 80 100
time index (n)

1.0

0.5

0.0

0.5

1.0
Demand after 1-step diffusion

f(1)
1

f(1)
2

f(1)
3

0 20 40 60 80 100
time index (n)

Demand after 2-step diffusion

f(2)
1

f(2)
2

f(2)
3

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Diffusion process demo for 3 time-series using the transition
matrix on the top-left (node 1 sends 80% of its unsatisfied demand
to node 3 and 20% to the sink node, and so on). The true demand
(top-right) that is above the supply (dashed line) gets transferred to the
other nodes (incl. sink node) over the 2 diffusion steps (bottom row).

where 1Np
denotes an Np×Np matrix of ones. Eq. 6 essentially

produces a row-normalized version of W, such that the diffusion
of unsatisfied demand from service i to service j ≠ i becomes:
Ti,j = κdiff(pi, pj)/

∑Np

l=1κdiff(pi, pl). However, this assumes
that all unsatisfied demand at a given node i is transferred to the
neighboring nodes j∈Ni, regardless of how different the service
characteristics pi are from pj. We can relax this assumption by in-
troducing a “sink” node in the graph that connects to all the other
nodes and extending W to be (Np+1)×(Np+1), with Wi,sink=
πsink,∀i≠sink, while Wsink,i=0 and Wsink,sink=1, in order to en-
sure that once demand enters the sink node it never leaves. There-
fore, the parameter πsink∈R controls the likelihood of customers
simply giving up and deciding not to consume any alternative prod-
uct when faced with the lack of supply for their intended product.

Based on T, we propose to model the diffusion dynamics as

f(i+1)
n =f(i)n + max(f(i)n −un,0)T︸ ︷︷ ︸

incoming demand from others

−max(f(i)n −un,0)︸ ︷︷ ︸
outgoing demand

,

=f(i)n +max(f(i)n −un,0)(T−I) (7)

where un is a vector of the corresponding available supply at time
index n, thus making max(f(i)n −un,0) the unsatisfied demand
above the available supply at diffusion step i. If we assume
that customers have no access to information about the available
supply, we can apply the transition operator in Eq. 7 multiple times
in order to simulate the multi-step process of trying to use a service,
finding out that there is no available supply, and then searching for
an alternative, as can happen, for example, for EV charging and
Mobility-on-Demand [Unterluggauer et al., 2023]. In practice, we
limit the maximum number of diffusion steps to Ndiff. Figure 1
illustrates two steps of this diffusion process for 3 time-series.

However, if we assume that customers have access to infor-
mation about the available supply of all products (incl. alterna-
tives), then it is unrealistic to consider a multi-step diffusion
process. Instead, we propose introducing a time-dependent graph
Gn = {V,En}, such that En = {(i,j) | un,j >yn,j}, thereby not
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allowing connections to products that are also out of supply at
time index n, and applying a single diffusion step (Eq. 7) in Gn.
This modeling approach encodes the intuitive assumption that cus-
tomers, when faced with a product out of supply, will look at all
the available alternatives once and choose one or none (sink node).

5.2 Likelihood
After applying the graph diffusion process Ndiff times, the
additional demand observed at time index n due to the demand
transfer process caused by the limited supply of other products
or services can be computed as

dn=max(f(Ndiff)
n −fn,0). (8)

Based on this “diffused demand” dn, we propose to model
the likelihood of the observed demand values, accounting for
censoring and for the diffusion of unsatisfied demand, as

p(Yn | fn)=
Np∏
k=1

N (yn,k |fn,k+dn,k,σ
2)(1−cn,k)

×(1−Φ(yn,k |fn,k+dn,k,σ
2))cn,k . (9)

This likelihood can be intuitively understood as a combination of:
i) a Tobit formulation to account for the observed demand for an
out-of-supply product k (cn,k=1) potentially being lower than the
latent process expected it to be, and ii) an added term dn,k to the
expected demand value of product k to account for the potentially
extra (unexpected) demand observed due to similar products being
out of supply. Kindly note that although Eq. 9 factorizes across
services k, the likelihoods for different products are no longer
independent due to the diffusion process, which ties them together.
Also, note that using the likelihood in Eq. 9 implies access to in-
formation about the available supply un, which is required for the
diffusion process (Eq. 7). This contrasts with regular Tobit regres-
sion (Eq. 2), where only access to a censoring indicator variable
cn is required. Nevertheless, we argue that this is a reasonable
assumption since, for most real-world demand modeling applica-
tions, supply information is typically readily available along with
the demand data. Lastly, it should be noted that although we use
Gaussian processes as the backbone for our proposed approach,
the methodology described above can be generalized to other
modeling approaches such as neural networks and linear models.

5.3 Inference
Scalability is often a concern when modeling large datasets
with GPs. In our case, we are interested in jointly modeling
potentially-long time-series of observed demand across different
products or services, thus further aggravating this concern, since
computing the posterior distribution p(f | X) typically has a
cubic cost of O(N3

t N
3
p ). Therefore, we leverage the work of

[Hamelijnck et al., 2021], which combines spatio-temporal
filtering with natural gradient variational inference to achieve
linear scalability with respect to time.

We begin by assuming that our kernel is both
Markovian and separable between time and products,
i.e. κ(t,p,t′,p′)=κt(t,t

′)κp(p,p′). Under this assumption, the
model in Eq. 3 can be reformulated as a state space model, thus
reducing the computational scaling to linear in Nt. The GP prior
can be written as a stochastic differential equation (SDE) [Chang

et al., 2020], which, in this case, requires marginalizing to a finite
set of products, P∈RNp×Dp , giving, d̄f(t)=Ff̄(t)dt+Ldβ(t),
where f̄(t) is the Gaussian distributed state over products P at
time t, and F and L are the feedback and noise effect matrices.
The function value fn can be extracted from the state by a matrix
H as fn = Hf̄(tn). For a fixed step size ∆n = tn+1− tn, the
resulting discrete model is [Chang et al., 2020]:

f̄(tn+1)=Anf̄(tn)+qn,

Yn | f̄(tn)∼p(Yn |H f̄(tn)), (10)
where An=exp(F∆n) is the linear state transition matrix, and
qn∼N (0,Qn), with Qn denoting the process noise covariance.
If p(Yn |H f̄(tn)) is Gaussian, then Kalman smoothing algorithms
to be employed to perform inference in linear time in Nt. Since
the likelihood of our proposed model (Eq. 9) is non-Gaussian,
we apply conjugate-computation variational inference (CVI)
[Khan and Lin, 2017], whereby an approximate likelihood, that
is conjugate to the prior (in this particular case, Gaussian), with
free parameters λ̃, is considered to enable efficient computation
of the natural gradients of the evidence lower bound (ELBO).

As shown by [Khan and Lin, 2017], if the chosen approximate
likelihood is conjugate to the prior, then performing natural gra-
dient VI is equivalent to a two-step Bayesian update of the form:

λ̃←(1−β)λ̃+β
∂Eq(f)[log p(Y |f)]

∂µ
, λ←η+λ̃, (11)

where λ are the natural parameters of the approximate posterior
distribution (with corresponding mean parameters µ), η are the
natural parameters of the prior, and λ̃ are the natural parameters
of the (approximate) likelihood contributions.

Let N (Ỹ | f,Ṽ) be an approximate likelihood parameterised

by covariance Ṽ = (−2λ̃
(2)

)−1 and mean Ỹ = Ṽλ̃
(1)

, with

λ̃= {λ̃
(1)

,λ̃
(2)
}. The approximate posterior then has the form

q(f) ∝ N (Ỹ | f, Ṽ)p(f). Since the GP prior is Markov and
the approximate likelihood factorizes across time [Hamelijnck
et al., 2021], the approximate GP posterior is also Markov [Teb-
butt et al., 2021]. Therefore, and since the approximate like-
lihood is now Gaussian, the marginals q(fn) can be computed
through linear filtering and smoothing applied to Eq. 10, but with
Ỹn | f̄(tn)∼N (Ỹn |H f̄(tn),Ṽ) as the measurement model. Given
the marginals, Eq. 11 can be used to give the new likelihood param-
eters Ỹ and Ṽ. The ELBO can be written as a sum of three terms:

L=Eq(f)

[
log

p(Y |f)p(f)
q(f)

]
=

Nt∑
n=1

Eq(fn)[log p(Yn |fn)]

−Eq(f)[logN (Ỹ | f,Ṽ)]+log Ep(f)[N [Ỹ |f,Ṽ]], (12)
where the first term corresponds to the expected log likelihood,
the second term is the expected log approximate likelihood, and
the third is the log marginal likelihood of the approximation
posterior. As shown in [Hamelijnck et al., 2021], these terms
can also be computed efficiently based on the outputs of the
filtering and smoothing algorithms. Computing the updates to
the variational parameters in Eq. 11, as well as evaluating the
ELBO (Eq. 12), requires computing Eq(fn)[logp(Yn | fn)] and
its gradients, for which we rely on quadrature. The gradients
are back-propagated through the graph diffusion process using
automatic differentiation.
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5.4 Diffusion Parameters Learning
Along with the hyper-parameters from the kernels κt and κp
of the GP prior, the proposed modeling approach introduces
additional hyper-parameters to the likelihood due to the embedded
diffusion process. The hyper-parameters of the likelihood in Eq. 9
are then: the observation variance σ2, the diffusion lengthscale
ℓdiff, the sink node parameter πdiff, and the number of diffusion
steps Ndiff. While we assume Ndiff to be fixed, the former three
can also be learned from data. Although, for most domains,
there probably is domain knowledge to guide the choice of the
diffusion lengthscale ℓdiff and the sink node parameter πdiff due
to their natural interpretations from a behavioral point of view,
in some scenarios, a data-driven approach may be preferred.
In practice, this can be achieved by, for example, setting these
hyper-parameters to reasonable initial values, and then performing
type-II maximum likelihood estimation via maximizing the
ELBO in Eq. 12 with gradient descent updates alternated with
the natural gradient updates in Eq. 11.

6 Experiments
In this section, we empirically demonstrate the capabilities of the
proposed Diffusion-aware Censored GP (“DCGP”), focusing on
its ability to infer the true demand based on demand observations
that are censored and subject to substitutions, as well as its ability
to produce more accurate predictions of true demand. We consider
two main variants of the proposed approach - one with fixed ℓdiff
and another where ℓdiff is learned (referred to as “DCGP-f” and
“DCGP-l”, respectively), which we compare with Censored GPs
(“CGP”) and standard (Non-Censored) GPs (“NCGP”) fitted to
the observed demand. For reference, we also provide results for an
“Oracle” GP fitted to the true (uncensored) demand. We compare
the different modeling approaches across three metrics: RMSE, R-
squared (R2), and negative log predictive density (NLPD). Source
code for all the experiments is provided at: https://bit.ly/3E2kdSJ

6.1 Artificial Data
Independent time-series. We begin by demonstrating the
proposed approach using independently generated time-series
data based on sinusoidal functions. We construct three datasets.
In Dataset A, we draw samples from two sinusoidal functions
(simulating the true demand) with some observation (Gaussian)
noise added, and then simulate the censoring process by setting
a constant censoring threshold (supply). The demand above
the threshold is sent to the other time-series, and if the resulting
demand for the other time-series now becomes higher than the
threshold, then we throw away the unsatisfied demand (see Fig-
ure 2a). Dataset B is similar to Dataset A, but the threshold is sam-
pled randomly from a uniform distribution for each time step, thus
resulting in a stochastic supply that causes very sporadic supply
shortages rather than shortages lasting for longer time intervals as
in Dataset A. Dataset C is similar to Dataset A but considers three
sinusoidal time-series (instead of two) mimicking the demand of
three products. Whenever Product 1 or Product 3 are out of supply,
their unsatisfied demand goes to Product 2, while the unsatisfied
demand from the latter is distributed equally among Products 1
and 3. All models use the same underlying GP framework with
independent GPs for each product (i.e. κp(p,p′)=1(p=p′)) and

Model NLPD RMSE R2 RMSE funct.

D
at

as
et

A

True GP (Oracle) -1.771 0.099 0.960 0.029
NCGP 0.853 0.188 0.858 0.163
CGP -0.674 0.162 0.895 0.130
DCGP-f -0.685 0.108 0.953 0.051
DCGP-l -0.751 0.118 0.944 0.071

D
at

as
et

B

True GP (Oracle) -1.701 0.103 0.957 0.029
NCGP -0.505 0.188 0.857 0.158
CGP -1.004 0.148 0.912 0.111
DCGP-f 0.911 0.107 0.954 0.038
DCGP-l 0.590 0.106 0.954 0.037

D
at

as
et

C

True GP (Oracle) -2.527 0.104 0.954 0.031
NCGP 0.805 0.188 0.856 0.162
CGP -1.224 0.157 0.900 0.122
DCGP-f -1.311 0.107 0.952 0.042
DCGP-l -1.380 0.130 0.930 0.086

Table 1: Experimental results obtained for the three artificial datasets
of independently-generated (uncorrelated) time-series. “RMSE funct.”
further measures the RMSE to the true underlying (noiseless) function.

κt(t,t
′) being a Matern kernel. Details are in Appendix A.1.1

Table 1 shows the obtained test set results (a more complete
depiction of the results is provided in Appendix B.1). As
expected, the Non-Censored GP performs the worst across the
three datasets by simply fitting the observed data (see, e.g.,
Figure 2b). The Censored GP is able to infer that the demand
should be higher than observed at censored locations (see
Figure 2c), thus achieving better results when compared to the
Non-Censored GP in Table 1. However, as Figure 2c shows, the
Censored GP is unable to understand that the abnormally high
demand observed in some time-series can be explained by the
transfer of unsatisfied demand from other time-series that are
subject to censoring. On the other hand, the proposed approach is
able to account for this transfer and, to a great extent, recover the
true underlying demand (Figure 2d), which can be also observed
in the results in Table 1. Interestingly, for Datasets A and C,
the best results were obtained with a fixed ℓdiff = 1, while for
Dataset B learning ℓdiff resulted in slightly better results. Across
all datasets, the proposed approach is able to achieve results close
to the “True GP (Oracle)” reference, thus demonstrating its ability
to infer the true underlying functions from the observations.

Spatio-temporal data. We now consider artificial spatio-
temporal demand data, whereby demand varies across space and
time as, for example, in the cases of EV charging demand or
Mobility-on-Demand services. We generate artificial true demand
data by first sampling Np=10 2-D spatial locations uniformly
in the range [−2,2], and then sampling 10 time-series of length
Nt=400 from a spatio-temporal GP with a separable kernel with
a Periodic+Matern component over time and a Matern component
over space, to which we then add Gaussian noise. We simulate the
censoring process using a 2-state Markov model, where the states
represent “with supply” and “out of supply” states, with the latter
employing a fixed demand threshold. The unsatisfied demand
is transferred to the nearby locations by simulating the diffusion
process described in Section 5.1 with fixed diffusion parameters

1All appendices are available at: https://arxiv.org/abs/2501.12354.
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censoring occurring

(a) Data generation
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t

1

0

1

2 observed 1
observed 2

inferred 1
inferred 2

true 1
true 2

(b) (Non-Censored) GP posterior

20 0 20 40 60 80 100 120 140
t

1
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1

2 observed 1
observed 2

inferred 1
inferred 2

true 1
true 2

(c) Censored GP posterior

20 0 20 40 60 80 100 120 140
t

1

0

1
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inferred 2

true 1
true 2

(d) Diffused Censored GP posterior

Figure 2: GP posteriors obtained by the different models for the artificial dataset (Dataset A) depicted in (a). The green-shaded areas indicate time indexes
where at least one of the time-series is subject to censoring. As shown in (d), the proposed approach achieves the best approximation to the true demand.

Model NLPD RMSE R2 RMSE funct.

D
at

as
et

ST
-1 True GP (Oracle) -0.031 0.273 0.924 0.178

NCGP 0.327 0.368 0.869 0.313
CGP 0.111 0.313 0.900 0.239
DCGP-f -0.019 0.268 0.926 0.172
DCGP-l 0.047 0.281 0.920 0.191

D
at

as
et

ST
-2

True GP (Oracle) -0.031 0.273 0.924 0.178
NCGP 0.285 0.358 0.877 0.300
CGP 0.140 0.318 0.899 0.246
DCGP-f (1-step) 0.020 0.282 0.920 0.193
DCGP-l (1-step) 0.088 0.302 0.909 0.223
DCGP-f (2-step) 0.018 0.269 0.926 0.172
DCGP-l (2-step) 0.060 0.286 0.918 0.199

Table 2: Experimental results obtained for the two artificially-generated
spatio-temporal datasets. “RMSE funct.” further measures the RMSE
to the true underlying (noiseless) function.

and with a sink node probability of 20%. In this scenario, the
product features p correspond to the spatial locations. We generate
two datasets: “Dataset ST-1” and “Dataset ST-2” using Ndiff=1
and Ndiff =2 diffusion steps, respectively. We use 130 evenly-
sampled observations for training and the remaining for testing.
We provide additional details, including figures, in Appendix A.2.

The results obtained are summarized in Table 2 (see Appendix
B.1 for additional details). Despite the higher dimensionality of
the problem and the correlations between time-series, the results
remain similar to the smaller independent time-series experiment
above. The Censored GP outperforms its Non-Censored
counterpart, while the proposed approach further outperforms
both (we plot examples of the inferred true demand by the
different approaches in Appendix B.1). Importantly, even in
the more challenging setting where ℓdiff has to be learned, the
proposed approach is still able to clearly outperform the other
baselines. The non-learnable variant (fixed at ℓdiff = 0.1) is

able to further outperform it, which is unsurprising given that
the data was also generated with ℓdiff = 0.1. Therefore, this
version corresponds to the scenario where domain knowledge
can accurately drive the choice of ℓdiff. We provide an in-depth
study of the sensitivity to model misspecification in Appendix
B.2. In Appendix B.3, we demonstrate the ability to also learn
the hyper-parameter πdiff. Furthermore, the results in Table 2 also
demonstrate that the proposed approach is able to effectively take
into account multiple steps of diffusion, thus being able to further
improve the true demand estimation in Dataset ST-2.

6.2 Supermaket Sales
We now turn to experiments on real-world supermarket vegetable
sales data obtained from [Sup]. Unfortunately, it is impossible
to have access to the true demand, as that would imply having
access to the customers’ intentions. Therefore, as it is standard
practice in the censored demand modeling [Gammelli et al., 2020;
Hüttel et al., 2022] and, more broadly, in the censored regression
literature [Schmee and Hahn, 1979; Li and Wang, 2003], we resort
to assuming the observed demand to correspond to the true de-
mand, and simulate the censoring process based on it in a realistic
manner. Concretely, we consider the demand time-series for two
products and simulate supply shortages using a 2-state Markov
model similar to the one used for the artificial spatio-temporal data.
The unsatisfied demand for one product is then transferred to the
other product. If the other product is also out of supply, then that
demand is lost. We randomly sample 90% observations for train-
ing and leave 10% for testing. Additional experimental setup de-
tails are provided in Appendix A.3. We also experimented with dif-
ferent splits to study the impact of train set size - see Appendix B.4.

Table 3 shows the obtained results for the train and test sets.
Note that, in censored regression, train set performance is partic-
ularly important, as it is an indicator of the ability to infer the true
demand from the observed data. As the results in Table 3 show,
the proposed approach is able to infer the true demand more accu-
rately than the other baselines, thus resulting in substantially better
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Trainset Testset
Model NLPD RMSE R2 NLPD RMSE R2

True GP 1.541 0.527 0.726 1.692 0.551 0.627
NCGP 2.285 0.735 0.469 2.066 0.669 0.446
CGP 2.166 0.714 0.499 2.010 0.653 0.472
DCGP-f 1.740 0.591 0.657 1.968 0.602 0.553
DCGP-l 1.896 0.612 0.632 2.103 0.601 0.554

Table 3: Experimental results obtained for supermarket sales dataset.

Trainset Testset
Model NLPD RMSE R2 NLPD RMSE R2

True GP 2.091 1.220 0.984 3.208 6.048 0.436
NCGP 2.674 4.016 0.805 3.297 6.603 0.332
CGP 2.552 4.197 0.769 3.252 6.436 0.365
DCGP-f 2.328 2.983 0.885 3.171 5.977 0.448
DCGP-l 2.311 2.992 0.882 3.175 5.982 0.449

Table 4: Experimental results obtained for bike-sharing dataset.

train and test set performance. The additional results with differ-
ent train/test splits in Appendix B.4 further show that the superior
performance of the proposed approach is observable even for
smaller train sets, where some signs of overfitting start to emerge.

6.3 Bike Sharing Demand
We now consider a real-world problem where demand varies
across space and time. Concretely, we consider the problem of
building a model of the true demand for a hub-based bike-sharing
system, where users rent bicycles on an on-demand basis from
one of the many hubs available across the city through the use
of an app. Bike-sharing systems are known to suffer from strong
demand-supply imbalances (e.g., due to normal commuting
patterns), thus leading to hubs frequently running out of bicycles.
Naturally, if a hub is out of bicycles, the user either walks to
the nearest hub with available bicycles or chooses an alternative
transportation mode. Therefore, the problem of inferring and
predicting the true demand is pivotal for daily operations (e.g., re-
balancing [Liu et al., 2016]) and for long-term strategic decisions
(e.g., capacity planning and service expansion [Liu et al., 2017]).

Since no ground truth data is available for this problem, we
follow the same approach as in [Gammelli et al., 2020] to simulate
the censoring process based on the supply data and the observed
demand data for 4 bicycle hubs in NYC - which is assumed to
correspond to the true demand. The unsatisfied demand above the
available supply is transferred to other hubs using the diffusion pro-
cess from Section 5.1. Details are provided in Appendix A.4. The
obtained results in Table 4 again clearly show that the proposed
approach is able to more accurately infer the true demand (as indi-
cated by the train set performance), even in the more challenging
case where ℓdiff is unknown. The improved estimate of the true de-
mand for the train set then translates into more accurate predictions
of the true demand in the test set. Interestingly, in this experiment,
the Censored GP performs worse than its Non-Censored counter-
part in the train set, which could be explained by its inability to
account for the spillover effect to nearby hubs whenever a hub is
out of supply. We also consider a simpler version of this experi-
ment with just 2 hubs, which is easier to analyze, in Appendix B.5.

Trainset Testset
Model NLPD RMSE R2 NLPD RMSE R2

True GP 1.059 0.339 0.965 1.111 0.443 0.942
NCGP 1.806 1.408 0.407 1.817 1.424 0.397
CGP 1.721 1.357 0.447 1.740 1.375 0.431
DCGP-f 1.599 1.215 0.562 1.628 1.244 0.540
DCGP-l 1.611 1.222 0.558 1.639 1.251 0.536

Table 5: Experimental results obtained for EV charging dataset.

6.4 EV Charging Demand
Lastly, we consider the problem of inferring the true spatio-
temporal demand for EV charging from observations consisting of
(realized) charging events. We use the agent-based simulation tool,
GAIA [Unterluggauer et al., 2023], to generate EV charging data
for the whole commune of Frederiksberg in Copenhagen. GAIA
is based on the notion of a steady-state SoC distribution [Hipolito
et al., 2022] and a probabilistic decision-to-charge model to be
able to simulate and analyze different charging strategies, thereby
addressing the uncertainties resulting from the additional demand
for EV charging by accounting for home charging availability,
charging location, and the decision to charge in space and time.
Since GAIA was carefully calibrated with real-world data sources,
such as data from the energy distribution network and from the
Danish National Travel Survey, and because it models individual
agent behavior, it provides a unique environment for validating
our proposed approach by allowing access to the true demand
along with the realized (observable) demand. We use GAIA to
simulate 4 weeks of EV charging event data. We partition the
area of Frederiksberg into 9 clusters using k-means and time in
5-minute bins. We hold out 30% of data for testing. Appendix
A.5 provides additional details on the experimental setup.

Table 5 shows the obtained results. Although the Censored
GP already shows some improvement over the Non-Censored GP
both in- and out-of-sample by accounting for the effect of censor-
ing, the proposed approach is able to further improve the R2 by
more than 10% on top of the Censored GP, thus underscoring the
importance of accounting for the process of transfer/substitutions
when building models of the aggregated true demand for prod-
ucts/services for which reasonable alternatives exist. The learned
value of ℓdiff converged to a value of approx. 50.6m, which, albeit a
bit conservative, is still a reasonable value of how much people are
willing to drive to find the nearest charging station with available
chargers. Fixing ℓdiff=100m further led to a slight improvement.

7 Conclusion
This paper proposed Diffusion-aware Censored Demand Models,
which combine a Tobit likelihood with a graph diffusion process
in order to model the latent process of transfer of unsatisfied
demand between similar products or services. Leveraging a GP
framework, we showed that our proposed Diffusion-aware Cen-
sored GP is able to better recover the (latent) true demand based
on the observations of the satisfied demand and produce more ac-
curate out-of-sample predictions. Our experimental results, based
on real-world datasets for supermarket sales, bike-sharing demand,
and EV charging demand, underscore the broad applicability and
potential of our proposed framework. In future work, we will
explore even larger-scale applications by leveraging sparse GPs.
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