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Abstract
This paper addresses the source localization prob-
lem by introducing RoLocMe, a multi-agent re-
inforcement learning system that integrates Skip-
Net — a skip-connection-based RSS estimation
model — with parallel Q-learning. SkipNet pre-
dicts RSS propagation of the entire search region,
enabling agents to explore efficiently. The agents
leverage dueling DQN, value decomposition, and
λ-returns to learn cooperative policies. RoLocMe
converges faster and achieves at least 20% higher
success rates than existing methods in both dense
and sparse reward settings. A drop-one ablation
study confirms each component’s importance and
RoLocMe’s effectiveness for larger teams.

1 Introduction
Source localization is a well-established research problem
with numerous applications, including forest fire tracking
[Sharma et al., 2020], dangerous gas leakage detection [Lu
et al., 2014], radioactive material localization [Morelande et
al., 2007; Zhao et al., 2022], search-and-rescue operations
[Atif et al., 2021], and security surveillance [Rybski et al.,
2000].

Recent deep learning-based source localization methods
[Zhang et al., 2016; Zubow et al., 2020; Zhan et al., 2021;
Wang et al., 2022; Lin et al., 2022; Raj and B. S., 2023]
learn directly from data and often outperform traditional tech-
niques, especially under imperfect conditions such as sparse
sensor coverage or signal degradation, where classical ap-
proaches tend to falter. However, extreme signal attenuation
challenges both. Although traditional methods frequently
fail outright, deep learning models, though affected, tend
to be more robust, leveraging weak signal patterns to main-
tain some level of performance. Mobile sensors address this
shared vulnerability by actively seeking higher-quality data
to reduce uncertainty and improve localization accuracy.

Early research on mobile sensing for source localization
primarily relied on path-planning strategies [Koutsonikolas
et al., 2006; Hu et al., 2008; Jiang et al., 2011; Rezazadeh
et al., 2014], which were straightforward to implement but
struggled to generalize in complex environments. To over-
come these limitations, recent efforts have shifted toward

data-driven reinforcement learning approaches, broadly cat-
egorized into single-agent and multi-agent methods. Single-
agent approaches [Wu, 2019; Ebrahimi et al., 2021; Proctor
et al., 2021; Zhao et al., 2022] have demonstrated adapt-
ability in various environments but often result in prolonged
searches and lack generalizability for multi-agent scenarios.
Recent multi-agent reinforcement learning studies [Alagha et
al., 2022; Alagha et al., 2023; Wickramaarachchi et al., 2024]
have shown promise but face challenges in addressing com-
plex environments and severe signal attenuation.

1.1 Our Contributions
This paper presents a multi-agent approach to source localiza-
tion, addressing two critical challenges: (1) Adaptability in
complex environments, where agents must handle multi-path
fading in unknown environments with dense obstacles, and
(2) Extreme signal attenuation, where latent information from
weak signal samples is difficult to discern, posing challenges
for effective decision-making. To overcome these challenges,
we make the following contributions:

• We propose RoLocMe, a novel system that integrates a
radio map estimation module, with the Value Decompo-
sition Network (VDN) [Sunehag et al., 2017] for agent
training. Unlike recent methods relying solely on sam-
pled signals and agent positions, an explicit signal prop-
agation map estimation module is seamlessly integrated
with a reinforcement learning process, augmenting pre-
vious observations to improve navigation and planning.

• We evaluate RoLocMe across various scenarios involv-
ing complex environments and extreme signal attenua-
tion and test the system by placing agents at significant
distances from the transmitter. Our system achieves at
least a 20% improvement in success rate and a 20% re-
duction in both localization time and the number of ac-
tions taken. We further examine the system’s scalability
by training on various team sizes, demonstrating strong
performance across all configurations.

• We conduct a drop-one ablation study by removing indi-
vidual modules from RoLocMe. The study showed that
λ-returns are important in dense reward. And the radio
map estimation component proves crucial to the system,
boosting agents’ performance by at least 15% across dif-
ferent scenarios.
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2 Related Work
Our work is most related to mobile sensing and agent coordi-
nation for source localization, including path planning-based
and reinforcement learning-based approaches.

2.1 Path Planning-based Approaches
Early studies on source localization focused on path-
planning, where an agent follows a fixed trajectory—such as
Hilbert curves, spiral curves, LMAT trajectories, or Z-curves
[Koutsonikolas et al., 2006; Hu et al., 2008; Jiang et al., 2011;
Rezazadeh et al., 2014]—until reaching the target or within
a threshold. Although these deterministic paths are straight-
forward to implement, they often lack flexibility and can be
challenging to optimize in complex environments.

2.2 Reinforcement Learning-based Approaches
Recent research has shifted toward data-driven reinforcement
learning (RL) approaches, which are commonly categorized
into single-agent and multi-agent methods.

Single-Agent Approaches
A study introduced multimodel Q Learning, which employs a
tabular Q-learning algorithm with pattern recognition on sam-
pled measurements to locate the source [Wu, 2019]. Another
approach, PC-DQN [Zhao et al., 2022], applies DBSCAN to
sampled measurements before using Deep Q-learning (DQN)
[Mnih, 2013], thus enabling efficient searches and demon-
strating strong transferability to related tasks. Other work in-
volves training an agent on a predefined trajectory and then
fine-tuning its policy with DQN [Ebrahimi et al., 2021].
Meanwhile, source measurements can be transformed into
two-dimensional matrices and processed by Double Deep Q-
learning [Liu and Abbaszadeh, 2019]. Finally, RAD-A2C
combines Proximal Policy Optimization (PPO) [Schulman et
al., 2017] with a recurrent neural network to refine search
policies [Proctor et al., 2021].

Multi-Agent Approaches
The OMDTL method introduces a novel observation design
and a team-based reward function, relying on PPO to foster
cooperative agent behaviors [Alagha et al., 2022]. Build-
ing on OMDTL, two enhanced methods, MDRL SR and
MDRL DC [Alagha et al., 2023], both employ an autoen-
coder for environment compression to augment observations
during PPO training, thereby improving agents’ performance.
While MDRL SR uses dense rewards, MDRL DC leverages
expert demonstrations under sparse rewards. However, nei-
ther MDRL SR nor MDRL DC addressed complex environ-
ments, and the agents’ observation can be further simpli-
fied. Another approach proposes multiple reward functions
and employs a similar PPO-based framework for multi-agent
source localization [Wickramaarachchi et al., 2024].

Our work focuses on multi-agent source localization. We
primarily compare our approach with [Alagha et al., 2023]
due to the similarity of the problem setting. In contrast, while
[Wickramaarachchi et al., 2024] tackles a comparable multi-
agent task, their sensing strategy allows agents to sample mul-
tiple values in a small area around them rather than relying
on individual readings at specific positions, making a direct
comparison less applicable to our setup.

3 Proposed RoLocMe System
This section introduces RoLocMe’s system design, integrat-
ing a multi-agent reinforcement learning strategy with Skip-
Net, a deep learning radio signal prediction model.

3.1 Problem Definition and Modeling
Consider a geographic Region of Interest (RoI) discretized
into a two-dimensional grid of H ×W , where H andW are
the height and width of the grid, respectively, with (H,W ∈
Z+). A set of agents is deployed on random cells throughout
this RoI. Each agent can choose from nine possible actions at
each time step: idle or move between cells in one of the eight
directions (up, down, left, right, or any of the four diagonals).

Additionally, each agent can observe Received Signal
Strength (RSS) at its current cell, know the whole environ-
ment, and communicate with other agents. The goal is to ef-
ficiently locate and approach the unknown transmitter within
a distance of x cells.

Based on the defined problem above, we model it as
Partially Observable Markov Decision Process (POMDP)
[Oliehoek et al., 2016] because the agents cannot observe
RSSs of the entire environment and can only rely on the lim-
ited samples based on itself and other agents. POMDP can be
described as a tuple < N ,S,A,⊕,P, r, γ >, where:

• N = {1 , ..., n} denotes the set of n agents (robots)
where N ≥ 1.

• S = {s1, ..., sk}k∈Z+ denotes the set of finite states.
• A = A×A× · · · × A︸ ︷︷ ︸

n

is the set of joint actions, where

A is the set of actions for each agent to choose, while
at = (a1t , ..., a

n
t ) ∈ A denotes a joint actions at time

step t.
• ⊕ = Φ× Φ× ...× Φ︸ ︷︷ ︸

n

is the set of joint observations,

where Φ is the finite set of observations of each agent,
and ϕt = (ϕ1

t , ..., ϕ
n
t ) ∈ ⊕ is a joint observations at time

step t.
• P(st+1, ϕt+1|st,at) ∈ [0, 1] denotes the probability

that at step t, taking joint actions at in state st results
in a transition to state st+1 and joint observations ϕt+1.

• R(s, a) : S × A → R is a reward function that outputs
the team reward when taking joint action a at state s.
R(s, a) is from hence forward referred to as rt for the
rest of the paper.

• γ ∈ [0, 1] is the discount factor.
At each time step, every agent i observes ϕi

t ∈ Φ and selects
an action ait ∈ A according its policy, denoted by πi. Once
all agents have acted simultaneously, they collectively receive
a team reward rt. Each agent’s objective is to maximize the
team’s expected cumulative reward over the entire episode.

3.2 RoLocMe System Overview
RoLocMe addresses source localization by integrating two
deep-learning models: SkipNet [Locke et al., 2023] and the
VDN [Sunehag et al., 2017]. SkipNet is a pre-trained sig-
nal map estimator that enhances each agent’s observations by
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providing a best effort understanding of signal propagation
across the entire RoI. On the other hand, VDN, leveraging
DQN architecture and auxiliary reinforcement learning com-
ponents, facilitates the coordination of multiple agents for
collaborative source localization. In training and inference,
all agents utilize the same trained model, but each acts inde-
pendently based on its observation.

As shown in Figure 1, RoLocMe begins by constructing
shared observations that include a building map (updated with
all agents’ visited positions) and sampled signal points to date
from the entire region of interest. SkipNet processes these
shared observations to produce a refined signal distribution
map. The resulting map is then combined with the shared
observations and downsized to form individual observations
ϕi
t for each agent based on its current position. Guided by

ϕi
t, agents use an ϵ-greedy strategy to select joint actions ait

and explore new cells. As agents gather new signal samples,
the shared observations are updated, allowing SkipNet to re-
fine its predictions and help agents navigate more effectively
iteratively. This process repeats until the agents exhaust the
search time or when an agent reaches the source.

Team’s reward

Environment

2a. Supply maps

1. Get sampling points from 
all agents and building maps

Shared observations

SkipNet model

Agents’ policies

4. Supply Agents’ 
Observations

4*. Update 
policies via 

PQN

5. Perform joint actions

3. Resize, crop, 
concatenate

2b
. G

et
 S

h
ar

ed
 o

b
se

rv
at

io
n

s

Figure 1: RoLocMe workflow: (1) Obtaining shared observations,
(2) SkipNet predicts the RSS map, (3) Create Agents’ observations
from shared observations and SkipNet prediction, (4) Supply ob-
servations to the Agents and Agents select actions, and (5) Agents
perform action and transition occurs until termination.

3.3 SkipNet

SkipNet [Locke et al., 2023] plays a critical role in the suc-
cess of RoLocMe by leveraging shared observations collected
from all visited positions and sampled points across agents.
It estimates the signal distribution for the entire RoI. In-
spired by the autoencoder architecture proposed in [Teganya
and Romero, 2021], SkipNet introduces skip-connections be-
tween the encoder and decoder, which resembles a U-Net ar-
chitecture as shown in Figure 2. These connections minimize
information loss during encoding, especially when sampling
points are sparse, and enhance gradient flow between the de-
coder and encoder. This design facilitates efficient and un-
restricted information transfer during backpropagation, im-
proving overall estimation.
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Figure 2: SkipNet architecture.
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Figure 3: Top: Shared observations across the RoI. Bottom: Down-
sized local and global views for each agent.

3.4 Agent Observation Preprocessing
As illustrated in Figure 3, each agent utilizes two key compo-
nents to construct its observation:

• Shared Observations includes two maps: the Sam-
pling Points Map, which aggregates RSS readings col-
lected over time and scaled between [0, 1], the Building
Map, which identifies building pixels (−1), visited cells
(1), and unvisited cells (0).

• SkipNet Estimation: A predicted signal propagation
map generated by SkipNet, scaled between [0, 1].

Shared observations enhance agents’ awareness of each
other’s positions and provide source estimations based on
sampled points. SkipNet generates a best effort signal prop-
agation map for the entire RoI, improving agents’ under-
standing of the signal distribution. An agent ith observa-
tion, ϕi

t, combines shared observations with SkipNet predic-
tions, downsized through bilinear interpolation, and cropped
around the agent’s position to form a stack of six (d × d)
maps. This downsizing and cropping, shown to improve con-
vergence without compromising performance [Alagha et al.,
2022], effectively balances global context with local focus.

3.5 Agent Architecture
Figure 4 illustrates the high-level design for our multi-agent
system and a detailed view of each agent’s neural network
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architecture. We employ VDN [Sunehag et al., 2017] as a
general design for tackling multi-agent cooperatives, Dueling
DQN [Wang et al., 2016] for the agent’s network design, λ-
returns [Sutton and Barto, 2018], and [Gallici et al., 2024]
suggestions for stabilize DQN in training.

MLP(1) + 
LayerNorm + 

ReLU

MLP (256) + 
LayerNorm + 

ReLU

Max pooling (2x2)

Conv2d (32, 3x3, stride 1, pad 1) 
+ LayerNorm + Relu

Conv2d (64, 3x3, stride 1, pad 1) 
+ LayerNorm + Relu

MLP (256) + 
LayerNorm + 

ReLU

MLP(Actions) + 
LayerNorm + 

ReLU
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Figure 4: Agent network architecture.

Value Decomposition Network
Value Decomposition Networks (VDN) [Sunehag et al.,
2017] provides a straightforward yet powerful approach for
coordinating multiple agents. Let θ denotes the network pa-
rameters in VDN. VDN assumes the team’s optimal Q-value,
Qteam,θ, is the sum of each individual agent’s Q-value, Q̃i,θ.
Formally:

Qteam,θ(ϕt, at) =
n−1∑
i=0

Q̃i,θ(ϕi
t, a

i
t). (1)

Agents can then greedily select actions from their local Q-
values to maximize Qteam,θ. During training, the agents share
a common reward and update their local Q-values by back-
propagating the team’s Q-value via Q-learning.

Deep Q-learning
DQN [Mnih, 2013] utilize deep neural network to estimate
the action’s Q-value directly from raw inputs and update θ
according to:

θ ← θ + α
[
rt + γmax

at

Q(st+1, at+1; θ)−Q(st, at; θ)
]
∗

∇θQ(st, at; θ). (2)
To stabilize learning, DQN employs a large experience re-

play buffer (for randomized updates) and a target network
(updated at a slower pace) to reduce oscillations.

Auxiliary Components
Dueling DQN. Dueling DQN [Wang et al., 2016] separates
Q-value estimation in DQN into two distinct streams: the
Value stream (V ), which estimates the overall value of a state,
and the Advantage stream (Adv), which captures the relative
benefit of each action in that state. The Q-value is computed
as:

Q(st, at) = V (st)+
(
Adv(st, at)−

1

Acts

∑
at+1

Adv(st, at+1)
)

(3)

, where st represents the state, at is the current action, at+1

is the action in next state, and Acts is the number of actions.
This design mitigates the overestimation of action values and
clarifies the state value independently of specific actions.
Parallel Q-learning - PQN. DQN [Mnih, 2013] relies on
large replay buffers and a target network for stability but can
be slow or prone to divergence without them. Parallel Q-
learning [Gallici et al., 2024] tackles this by adding layer
normalization to the network and training over multiple vec-
torized environments in parallel. These changes allow DQN
to achieve competitive performance—comparable to policy-
gradient methods like PPO [Schulman et al., 2017]—without
large replay buffers and a target network.
λ − returns. λ − returns [Sutton and Barto, 2018] is a
target estimation method in reinforcement learning that uti-
lizes bootstrapping, state samples, and rewards. This method
weighs short-term and long-term returns by combining n-step
returns with the λ parameter, suitable for improving training
stability in a partially observable task, as shown in Equation
4. A λ value near 0 favors immediate rewards. In contrast, a
value near 1 prioritizes long-term returns.

Rλ
t = R1

t + γλ
[
Rλ

t+1 −max
at+1

Qθ(ϕt+1, at+1)
]
,

where R1
t = rt + γmax

a′
Q(ϕt+1, a

′). (4)

Reward Design
We investigate the system performance on two reward defi-
nitions—dense and sparse— [Alagha et al., 2023]. Breadth-
First Search (BFS) distances between agents and the trans-
mitter are computed at each step.

• Dense rewards: Let Mt be the set of agent-to-
transmitter distances at time t and min(Mt) their mini-
mum. Let m be the number of agents that moved at time
t. Then,

rt =

{
−m+ 1, if min(Mt+1) < min(Mt),

−m− 1, otherwise.
(5)

• Sparse rewards:

rt =

{
−m+ 100, if transmitter is localized,
−m, otherwise.

(6)

Termination Conditions
An episode terminates when an agent comes within L meters
of the transmitter, marking success or when the maximum
step limit is reached, indicating failure.

Training Process
Algorithm 1 details the entire procedure. After each update
cycle, multiple validation episodes across diverse settings are
conducted, and the best model is saved based on success rates.
Before integrating into RoLocMe for agent training, SkipNet
undergoes pre-training using mean squared error (MSE) loss.

4 Experiments and Results
This section presents experiments conducted to evaluate the
RoLocMe system in comparison with the state-of-arts meth-
ods and provides an in-depth analysis of the significance of
each component in its design.
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Algorithm 1 RoLocMe Training
1: θ ← Initialize network parameters
2: TSC ← 0; t← 0 ▷ TSC = Training step count
3: SkipNet← Load the pretrained SkipNet model
4: Shared Obst ← Env Reset ▷ this t is 0
5: SkipNet Predt ← SkipNet(Shared Obst)
6: Fuse Obs← Concat(SkipNet Predt, Shared Obst)
7: ϕt ← Preprocessing Combine Obs(Fuse Obst) ▷

ϕt = [ϕ0
t , . . . , ϕ

n−1
t ]

8: while TSC ≤ Max Training Steps do
9: for each env e ∈ {0 : Nenv − 1} in parallel do

10: for each agent i ∈ {0 : n− 1} do
11: ai

t ← πϵ-greedy(ϕ
i
t)

12: end for
13: at = [a0

t , . . . , a
n−1
t ]

14: Shared Obst+1, rt, terminalt ← Env Stepe(at)
15: SkipNet Predt+1 ← SkipNet(Shared Obst+1)
16: Fuse Obs← Concat(SkipNet Predt+1, Shared Obst+1)
17: ϕt+1 ← Preprocessing Combine Obs(Fuse Obst+1) ▷

ϕt+1 = [ϕ0
t+1, . . . , ϕ

n−1
t+1 ]

18: Store (ϕt,at, ϕt+1, rt, terminalt) in buffer
19: t← t+ 1
20: end for
21: if t mod T = 0 then ▷ Start an update cycle
22: for epoch ∈ {1 : num epochs} do
23: Shuffle buffer by environment trajectories
24: Create mini-batches grouped by environment
25: for each mini-batch - mb do
26: Compute Rλ,mb

[t−T :t] using Equation (4)
27: Compute Qteam,θ using Equation (1)
28: Perform gradient descent on
29: ∥StopGrad(Rλ,mb

t )−Qteam,θ(ϕt, at)∥2
30: with respect to the network parameters θ
31: end for
32: end for ▷ End an update cycle
33: Clear buffer
34: end if
35: TSC ← TSC +Nenv
36: end while

4.1 Dataset
We use the RadioMapSeer dataset [Yapar et al., 2022],
which consists of 701 environment maps sourced from Open-
StreetMap [OpenStreetMap, 2023] and represents various ar-
eas across major European cities. Each map features 80 trans-
mitter locations, resulting in 80 distinct signal propagation
maps generated using the Dominant Path Model method in
the WinProp program [Hoppe et al., 2017]. We divide the
dataset by environment, allocating 501 maps for training, 100
for validation, and 100 for testing.

• SkipNet dataset: We created a low-sampling dataset
by generating five sampled signals for each propaga-
tion map in the training and validation sets using a
uniform sampling method with sampling rates between
0.01% and 0.1% of the total pixels.

• RoLocMe dataset: Randomly selected 100 environ-
ments each from the training and validation sets, with 5
transmitter placements per environment, totaling 1,000
unique transmissions for end-to-end GPU training. Fi-

nal results use all test maps.

4.2 Methods

Q-Learning hyperparameters Values

Learning rate 5e−4
Gradient clipping by global normalization 100
Discount factor (γ) 0.99
Decay rate (λ) 0.65
Number of epochs (num epochs) 2
Epsilon (ϵ) 0.99
Epsilon decay rate 4e−4
Number of parallel environments (Nenv) 128
Mini-trajectory size (T ) 100
Mini batch size 16
Number of mini-batches (mb) 8
Number of validation episodes 100
Agent’s observations input size (d) 7
Optimizer ([Liu et al., 2019]) RAdam

Environment training parameters Values

Max Training Steps 5e+7
Maximum step per episode 100
Meters per step 5
Terminate distance (L) 5
Distance deployments of each agent 100 and above

SkipNet hyperparameters Values

Learning rate 5e-4
Optimizer ([Kingma, 2014]) Adam
LeakyRelu’s α 0.3

Table 1: Hyperparameters used for training RoLocMe and SkipNet

We introduce the state-of-art models [Alagha et al., 2023]
used for performance comparison:

• MDRL SR-Dense rewards: Multi-agents model trained
with Proximal Policy Gradient with dense rewards

• MDRL SR-Sparse rewards: Multi-agents model trained
with Proximal Policy Gradient with sparse rewards

• MDRL DC: MDRL SR-Sparse rewards with a guided
expert model

To ensure consistency, all comparisons are conducted using
a team of four agents and evaluated under the same testing
conditions. Each method is trained with 10 different seeds,
and performance is recorded across 100 unique starting posi-
tions for each proximity zone within every signal propagation
map in the testing set. This results in a total of 800,000 start-
ing positions per promimity zone. To achieve a more robust
estimate and reduce the impact of outliers, the interquartile
mean is used for evaluation [Agarwal et al., 2021]. Table 1
presents the parameters used during the training of RoLocMe.

4.3 Metrics
We introduce three key metrics to evaluate the performance:

• Success rate: Success rate is the percentage of success-
ful localizations, as defined in Equation 7.

Success Rate(%) =
#locate transmitter within 5 meters

#trials
(7)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

• Localization time: how long a team of agents can suc-
cessfully localize the transmitter.

• Actions: total number of moves of the agents in the
team. The lower the actions, the better the energy ef-
ficiency, as each movement costs some energy.

4.4 Performance Comparison with State of Arts
Methods
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Figure 5: Convergence time of each metric in training 4 agents.

Figure 5 illustrates the convergence rate of each model
across various metrics during training. RoLocMe, under
both rewarding systems, consistently converges faster than
the other models. Among the compared models, MDRL
with dense rewards demonstrates slower convergence than
RoLocMe.

In Figure 6, as the agents’ starting positions move further
from the transmitter, the performance of all models degrades.
However, RoLocMe consistently outperforms the other mod-
els, achieving at least a 30% improvement in the first two
proximity groups and approximately 20% in the last two
groups. Furthermore, although the number of actions and lo-
calization times increases across all methods as proximity in-
creases—due to the longer traversal paths—RoLocMe main-
tains superior performance compared to the other models.

Additionally, RoLocMe in both rewards functions perform
quite similarly. However, there is a slight increase in localiz-
ing time and actions taken roughly 3%, which is insignificant.
Based on the performance, training RoLocMe with dense re-
ward often yields a slightly better policy than sparse reward.
However, using dense or sparse rewards for RoLocMe de-
pends on whether performing repeated BFS calculations for
every step during training is feasible.

4.5 Drop-One Component Ablation Study
In Figure 7, RoLocMe’s full configuration converges faster
and more consistently than its ablation variants (i.e., without
λ-returns, layer normalization, dueling, or SkipNet) in both
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Figure 6: Performance benchmark of 4 agents of RoLocMe with
other RL models in the testing set.
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Figure 7: Convergence time of each drop-one RoLocMe’s compo-
nent in two different reward functions in training 4 agents.

dense and sparse reward settings. These ablated models con-
verge more slowly, especially under sparse rewards, where
their early success rates remain near zero for a considerable
period. By contrast, RoLocMe trained with dense rewards
rapidly achieves near-100% success, requiring fewer actions
and shorter localization times.

Figure 8 displays each ablation’s performance under both
reward functions across various proximity zones. In all cases,
RoLocMe maintains higher success rates, shorter localization
times, and fewer actions—especially when the agent starts far
from the transmitter. While λ− return is also important to the
system, removing SkipNet erodes the agents’ ability to learn
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Figure 8: Performance of each drop-one RoLocMe component in the testing set for dense rewards and sparse rewards in training 4 agents.

the dynamic of signal propagation, leading to significantly
degraded performance. However, the complete RoLocMe de-
sign generalizes effectively across all proximities.

Under dense rewards, omitting dueling or layer normaliza-
tion produces success rates similar to RoLocMe but requires
about 2% more time and actions. In this dense reward set-
ting, successes are not distinctly marked and can be obscured
by smaller rewards or failures, making λ-returns crucial for
properly reinforcing the final objective; without λ-returns, the
success rate drops by at least 75%, with localization times
tripling and actions increasing by at least 1.5 times compared
to the full RoLocMe. Another key component is SkipNet:
eliminating it deprives the agent of the ability to learn the
dynamic of signal propagation in the RoI, causing success
rates to fall by about 15% and time and action costs to rise by
roughly 20%.

In the sparse reward setting, models lacking dueling, λ-
returns, or layer normalization initially achieve comparable
success rates within the first three proximity zones; however,
the model without λ-returns substantially increases localiza-
tion time and actions. In the absence of SkipNet, the suc-
cess rate diminishes, and both localization time and actions
increase significantly, reflecting patterns seen in the dense-
reward case. Generally, models missing SkipNet have lower
performance and require more time and action to search.

4.6 RoLocMe Scalability on Various Team Sizes
Figure 9 illustrates the performance of the RoLocMe system
across various team sizes, ranging from 2 to 16 agents and
different proximity groups. For closer proximities (50–100
and 100–150), success rates remain near 100% regardless of
team size. However, as proximities increase (150–200 and
beyond), larger teams show a decline in performance. While
larger teams can cover greater distances more effectively,
the increased coordination overhead negatively impacts suc-
cess rates, leading to higher localization times and more ex-
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Figure 9: Performances of RoLocMe in various numbers of agents.

ecuted actions. We suspect this limitation arises from using
VDN, which struggles to optimize policies for large groups
of agents.

5 Conclusion
In this paper, we present RoLocMe, a system comprising two
deep learning models that complement each other for source
localization tasks. By fusing the signal estimation from the
SkipNet model into the agents’ observations and designing
the agents via VDN and DQN, we observed a notable per-
formance boost compared to existing methods. Additionally,
we performed an ablation study to illustrate how each com-
ponent contributes to the agents’ performance across various
metrics.
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