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Abstract
Multi-label learning (MLL) has gained attention for
its ability to represent real-world data. Label Dis-
tribution Learning (LDL), an extension of MLL to
learning from label distributions, faces challenges
in collecting accurate label distributions. To ad-
dress the issue of biased annotations, based on the
low-rank assumption, existing works recover true
distributions from biased observations by explor-
ing the label correlations. However, recent evi-
dence shows that the label distribution tends to be
full-rank, and naive apply of low-rank approxima-
tion on biased observation leads to inaccurate re-
covery and performance degradation. In this paper,
we address the LDL with biased annotations prob-
lem from a novel perspective, where we first degen-
erate the soft label distribution into a hard multi-
hot label and then recover the true label informa-
tion for each instance. This idea stems from an in-
sight that assigning hard multi-hot labels is often
easier than assigning a soft label distribution, and
it shows stronger immunity to noise disturbances,
leading to smaller label bias. Moreover, assuming
that the multi-label space for predicting label dis-
tributions is low-rank offers a more reasonable ap-
proach to capturing label correlations. Theoretical
analysis and experiments confirm the effectiveness
of our method on real-world datasets.

1 Introduction
Multi-Label Learning (MLL) [Zhang and Zhou, 2014] has
gained significant attention due to its ability to associate mul-
tiple labels with a single instance, making it widely applicable
in tasks such as text classification [Liu et al., 2017] and image
annotation [Jing et al., 2016].

Label Distribution Learning (LDL)1 [Geng, 2016] extends
MLL by assigning a real-valued label description degree [Jia
et al., 2019] to each label, offering more detailed supervisory
information. Leveraging label correlations is a key strategy in
MLL [Huang and Zhou, 2012], and applying low-rank con-
straints in the output space is an effective approach to captur-
ing these correlations [Zhu et al., 2017]. Building on the ad-
vancements in label correlation modeling in MLL, a branch of
algorithms [Jia et al., 2018][Jia et al., 2019][Kou et al., 2023]
has extended these techniques to LDL by assuming low-rank
structures in label distribution spaces, aiming to capture label
correlations more comprehensively.

Annotating label distributions is inherently challenging
and often leads to biased label distributions, where the
collected label distributions deviate from the true distribu-
tions due to variations in annotators’ expertise or subjective
judgments[Xie and Huang, 2018]. The existing method [He
et al., 2024] [Kou et al., 2024a] [Xu and Zhou, 2017] aims to
address this issue by leveraging label correlations modeling
the clean label distribution and training LDL models effec-
tively. For instance, IncomLDL [Xu and Zhou, 2017] aims to
model the learned label distribution space using low-rank la-
bel correlations, thereby completing the missing entries in the
label distribution matrix. And in LRS-LDL[Kou et al., 2023],
the noisy label distribution is modeled as D̂ = D+E, where
D is the true label distributions and E represents noise. It as-
sumes a low-rank structure on the output space (D = WX)
and sparsity of the noise. Similarly, IDI-LDL [Kou et al.,
2024a] applies a low-rank assumption on the output space
while employing an ℓ2,1-norm constraint on the noise.

However, recent evidence shows that the label distribution

1LDL is similar to learning from soft labels, but the soft-label
formulation focuses on single-label problems (i.e., there is only one
true label for each instance), while LDL considers multi-label prob-
lems (i.e., each instance can have multiple true labels).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Illustration of biased label distribution learning using ex-
amples from the RAF dataset [Li and Deng, 2019]. Despite discrep-
ancies between the biased label distribution D̂ and the true distri-
bution D, their corresponding multi-label representations (L̂ and L)
are much closer.

tends to be full-rank [Wang and Geng, 2021], and naive apply
of low-rank approximation on biased observation leads to in-
accurate recovery and performance degradation. In this paper,
we address the LDL with biased annotations problem from a
novel perspective, where we first degenerate the soft label dis-
tribution into a hard multi-hot label and then recover the true
label information for each instance. This idea stems from
an insight that assigning hard multi-hot labels is often easier
than assigning a soft label distribution, and it shows stronger
immunity to noise disturbances, leading to smaller label bias.
As shown in Fig. 1, one images from the Real-world Af-
fective Faces (RAF) [Li and Deng, 2019] reveals significant
discrepancies between the biased and true soft label distri-
butions (D̂ and D). However, their corresponding multi-hot
label (L̂ and L) exhibit much smaller differences. This phe-
nomenon holds across datasets, as demonstrated by the Ta-
bles in Fig. 1. Moreover, while label distributions are inher-
ently full-rank [Wang and Geng, 2021], multi-label spaces are
widely regarded as low-rank [Zhu et al., 2017], making them
more computationally efficient for correlation modeling. The
contributions of this work are summarized as

• We utilize multi-label information and label correlations
to model the recovery of the true label distribution and
propose the BLDL algorithm (Sections 2).

• Extensive theoretical analysis is provided, including
convergence guarantees and generalization error bounds
(Section 4).

• The effectiveness of the method is validated through
comprehensive experiments, with superior performance
demonstrated and insights verified. (Section 5).

1.1 Preliminaries
Denote X ∈ Rd×n as the feature matrix, where d is the fea-
ture dimensionality and n is the number of instances. The la-
bel space is Y = {y1, . . . , ym}, where m is the number of la-

bels. The accurate training set for LDL is T = {(xi,di)}ni=1,
with di = [dy1

xi
, · · · , dym

xi
]⊤ ∈ Rm, satisfying dyxi

≥ 0 for all
y ∈ Y and

∑
y d

y
xi

= 1. The label distribution matrix is
D = [d1, . . . ,dn] ∈ Rm×n. We assume the observed label
distribution D̂ ∈ Rm×n is biased, while the true label distri-
bution is unknown. The goal is to learn a decision function
G : Rd×n → Rm×n using the training set {X, D̂}, such that
G(Xi:) ≈ Di:.

2 The BLDL Approach
A common approach in multi-label learning to capture label
correlations is leveraging low-rank modeling on the output
space. This can be formulated as the following optimization
problem:

min
W

rank(WX), s.t. ∥WX− L∥F ≤ δ, (1)

where W ∈ Rm×d is the learned weight matrix mapping the
feature space to the multi-label space L ∈ Rm×n. The first
term captures label correlations via low-rank modeling [Jia et
al., 2019].

Annotating label distributions is challenging, often intro-
ducing bias. As an extension of MLL, certain bias LDL meth-
ods leverage label correlations to recover true distributions
from biased ones while learning an effective model. These
methods can be formulated as:

min
W,D,E

rank(WX) +R,

s.t. ∥WX−D∥F ≤ δ1, ∥ D̂−D+E∥ ≤ δ2,
(2)

where D ∈ Rm×n is the recovered label distribution, E ∈
Rm×n is the annotation bias, and R applies regularization. δ1
and δ2 represent the reconstruction errors in the optimization
process.

However, recent evidence shows that the label distribution
tends to be full-rank [Wang and Geng, 2021], and naive ap-
ply of low-rank approximation on biased observation leads
to inaccurate recovery and performance degradation. In this
paper, we address the above limitations of existing methods.
Our method are enhance as below:

min
W,O,D

rank(WXO) + α∥D̂O− L̂∥F

+ β∥WX−D∥F + λ1∥W∥2F + λ2∥O∥2F ,

s.t.∥D̂−D∥F ≤ δ1, ∥DO− L̂∥F ≤ δ2,

(3)

where O ∈ Rm×m models the degradation from label distri-
bution to multi-label, and L̂ ∈ Rm×n represents the multi-
label derived from biased distribution. D is recovered la-
bel distribution. Parameters α, β, and λi control the term
weightings. Our method consists of three parts. The first part
is label distribution recovery, where we use both the biased
label distribution and its multi-label representation. Recov-
ering the label distribution via the multi-label space is more
reliable than relying directly on the biased distribution, as the
discrepancy between the biased and true distributions is much
larger than between their multi-label representations. By con-
straining the degradation of the recovered true distribution to
the multi-label space (Condition 2), the reliability of the pro-
cess is ensured. We also require that the difference between
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Figure 2: An overview of the proposed BLDL framework.

the recovered true distribution and the biased distribution be
bounded by δ1 (Condition 1) to control the recovery of the
label distribution. The second part is label distribution learn-
ing, where we impose a low-rank constraint on the multi-label
space (instead of the label distribution space, since it is full-
rank) to capture label correlations (the first, third, and fourth
terms of Eq. (3)). The final part is the multi-label mapping
process, where we learn the mapping from multi-labels to la-
bel distributions (the second and fifth terms of Eq. (3)). The
algorithm flow chart is shown in Fig. 2,

3 Optimization
To solve model (3), we relax the rank by its convex alter-
native, nuclear norm [Gu et al., 2014], and then apply the
ADMM [Boyd et al., 2011] for efficient optimization. The
corresponding augmented Lagrangian function is:

L(W,O,D,Z,Λ)

= ∥Z∥∗ + α∥WX−D∥2F + β∥D̂O− L̂∥2F
+ γ∥DO− L̂∥2F + η∥D− D̂∥2F + λ1∥W∥2F + λ2∥O∥2F
+ ⟨Λ,Z−WXO⟩+ ρ

2
∥Z−WXO∥2F ,

where Z is a splitting variable of WXO, Λ is the Lagrange
multiplier, and ρ is positive penalty parameter. The optimiza-
tion is performed by iteratively updating W,O,D,Z,Λ as
follows:

1) W-subproblem is formulated as:

Wk+1 =argmin
W

α∥WX−D∥2F + λ1∥W∥2F

+
ρ

2
∥Z−WXO+Λ/ρ∥2F .

To obtain the solution, we set the derivative of the objective
with respect to W to zero, and we get:

Wk+1 =
(
2αDX⊤ + ρ(Z+Λ/ρ)O⊤X⊤)
·
(
2αXX⊤ + ρXOO⊤X⊤ + 2λ1I

)−1
.

2) O-subproblem is formulated as:

Ok+1 =argmin
O

β∥D̂O− L̂∥2F + γ∥DO− L̂∥2F

+ λ2∥O∥2F +
ρ

2
∥Z−WXO+Λ/ρ∥2F .

Similar to the solution for W, and we get:

Ok+1 =
(
2βD̂⊤D̂+ 2γD⊤D+ ρX⊤W⊤WX+ 2λ2I

)−1

·
(
2βD̂⊤L̂+ 2γD⊤L̂+ ρX⊤W⊤(Z+Λ/ρ)

)
.

3) D-subproblem is formulated as:

Dk+1 = argmin
D

α∥WX−D∥2F

+ γ∥DO− L̂∥2F + η∥D− D̂∥2F .

Similar to the solution above, and we get:

Dk+1 =
(
2αWX+ 2γL̂O⊤ + 2ηD̂

)
·
(
2αI+ 2γOO⊤ + 2ηI

)−1
.

4) Z-subproblem is formulated as:

Zk+1 = argmin
Z

∥Z∥∗ +
ρ

2
∥Z−WXO+Λ/ρ∥2F .

The solution has closed-form via the soft-thresholding op-
erator [Rajwade et al., 2013]:

Zk+1 = SVT1/ρ(WXO−Λ/ρ).

5) Finally, update the Lagrange Multipliers

Λk+1 = Λk + ρ(Z−WXO),

and update ρ by µρ for some µ > 1.

4 Theoretical Analysis
We first analyze the convergence of the above algorithm in
solving the proposed BLDL model.

Theorem 1. All these iterative solutions W,O,D,Z,Λ gen-
erated by the above ADMM procedure are bounded and con-
vergent.

We then establish the generalization error bound for the
proposed BLDL framework.

Theorem 2. The generalization error of the model, defined as
Egen = ED

[
∥WX−Dtrue∥2F

]
, which is bounded as follows:

Egen ≤ δ24
1− δ

+ (δ3 + ϵ)2 +O
(

rank(WXO)√
n

)
,

where δ4 is the upper bound imposed by the optimization
constraint, δ is the Restricted Isometry Property (RIP) con-
stant, δ3 bounds the deviation between D and D̂, and
O
(

rank(WXO)√
n

)
accounts for the complexity induced by nu-

clear norm regularization.

According to this theorem, it ensures that the recovered la-
bel distribution is robust to noise, consistent with biased ob-
servations, and achieves model simplicity via low-rank con-
straints. All the proof detail can be found in the appendix.
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ID Data sets Objects Features Labels
1 Flickr 6690 200 8
2 Twitter 6027 200 8
3 Emotion6 1980 12 7
4 Fbp5500 5500 512 5
5 SCUT-FBP 1500 300 5
6 RAF-ML 4908 200 6
7 Gene 17892 36 68
8 Scene 2000 294 9
9 SBU-3DFE 2500 243 6
10 SJAFFE 213 243 6
11 Spo5 2465 24 3
12 Spoem 2465 24 2

Table 1: Details of the datasets

5 Experiments
5.1 Datasets
We evaluate our proposed method on 12 real-world datasets.
The datasets cover diverse domains: Flickr, Twitter [Yang et
al., 2017], and Emotion6 [Peng et al., 2015] describe emo-
tional responses to images. Fbp5500 and SCUT-FBP focus
on facial beauty perception [Ren and Geng, 2017]. RAF-ML
is a text dataset for sentiment analysis [Li and Deng, 2019].
The Gene dataset analyzes relationships between genes and
diseases [Yu et al., 2012]. Scene is derived from a multi-label
dataset by converting label rankings into label distributions
[Geng and Xia, 2014]. SJAFFE and SBU-3DFE are facial
emotion datasets collected from JAFFE [Lyons et al., 1998]
and BU-3DFE [Yin et al., 2006], respectively. Finally, Spo5
and Spoem are yeast datasets obtained from biological exper-
iments [Geng, 2016].

5.2 Evaluation Metrics:
We employ six metrics [Kou et al., 2025] to evaluate
the performance of all LDL methods: Chebyshev distance
(Chebyshev↓), Clark distance (Clark↓), Kullback-Leibler di-
vergence (KL↓), Canberra metric (Canberra↓), intersection
similarity (Intersection↑), and cosine coefficient (Cosine↑.

5.3 Biased LDL Generation:
We simulate biased label distributions by modeling experts’
annotations as a voting process, consistent with the Central
Limit Theorem. Specifically, Gaussian noise

(
0, C

m

)
is added

to the true label distributions, followed by normalization to
ensure the distribution constraint holds. Here, m denotes the
number of labels, and C controls the deviation degree of the
biased label distributions. In our experiments, C is set to 0.1,
0.2, and 0.3 to evaluate varying levels of bias. Parameter C
was set to 0.1, 0.2, and 0.3.

5.4 Comparing Methods
We compare our proposed method with seven state-of-the-art
LDL methods, briefly introduced as follows:

• DN-ILDL [Kou et al., 2024a]: Handles label-dependent
and instance-dependent noise by utilizing linear map-
pings, group sparsity, and graph regularization.

• LDL-SCL [Zheng et al., 2018]: Explores local sample
correlations through the construction of a local correla-
tion vector.

• LDLLC [Jia et al., 2018]: Captures label correlations
via a distance-based mapping function.

• LRS-LDL [Kou et al., 2023]: Learns a low-rank lin-
ear mapping for ground truth and a sparse mapping for
noise.

• LDLLDM [Wang and Geng, 2021]: Models both global
and local label correlations by learning the underlying
manifold structure of label distributions.

• EDL-LRL [Jia et al., 2019]: Utilizes local label corre-
lations to effectively capture varying intensities of mul-
tiple emotions.

• TLRLDL [Kou et al., 2024b]: Integrates an auxiliary
multi-label learning process within LDL to capture low-
rank label correlations.

The hyperparameters setting. The hyperparameters for
all methods were set according to their respective publica-
tions. For BLDL, the parameters α, β, γ, λ1, and λ2 were
fine-tuned over the range {0.1, 0.05, 0.01, 0.005, 0.001}. The
parameter η was selected from {1, 10, 50, 100, 150}, and T
was fixed at 0.5. Each method was evaluated using ten-fold
cross-validation to ensure robustness.

5.5 Results and Discussion
Table 2 shows the experimental results (mean±std) of vari-
ous methods on eight datasets for Clark and Cosine metrics.
For C = 0.1, the Friedman test [Demšar, 2006] rejected the
null hypothesis that “all methods perform equally” (Table 3).
Subsequently, the Bonferroni–Dunn test [Demšar, 2006] was
used to compare BLDL with others, where methods differing
by more than one Critical Difference (CD) are considered sig-
nificantly different. CD diagrams in Fig. 3 highlight methods
within one CD of BLDL connected by a thin line, confirming
BLDL’s significant advantage. From these results, we con-
clude:

• Top-1 dominance. BLDL achieves top-1 performance
in 85.42% (41/48) of all configurations and consistently
ranks first across all metrics by effectively addressing
bias in the learning process.

• Benefit of joint modeling. Compared to methods
focusing solely on label correlations (e.g., LDLLC,
LDLLDM), BLDL performs better since those methods
ignore the bias present in label distributions.

• Superiority over bias-only approaches. BLDL also
outperforms methods that address bias alone (e.g., DN-
ILDL, LRS-LDL) by additionally leveraging label cor-
relations—an exploit these bias-only methods fail to
capture effectively.

5.6 Ablation Study
To validate the proposed method, we design two ablated ver-
sions: (i) BLDL-a: Removes the multi-label recovery process
(i.e. drops the first term in Eq. (3)). (ii)BLDL-b: Replaces the
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C Metric BLDL DN-ILDL LDL-SCL LDLLC LRS-LDL LDLDM EDL-LDL TLRLDL

Fli

0.1
Clark 2.1146±.0020 2.1990±.0008 2.1576±.0001 2.1990±.0042 2.2029±.0028 2.1705±.0001 2.1797±.0001 2.1777±.0005
Cosine 0.8368±.0003 0.5516±.0002 0.7356±.0001 0.5781±.0038 0.5537±.0005 0.6964±.0001 0.7436±.0001 0.6421±.0009

0.2
Clark 2.1175±.0010 2.1969±.0153 2.1587±.0001 2.1984±.0021 2.1984±.0078 2.1707±.0001 2.1758±.0001 2.1768±.0020
Cosine 0.8316±.0034 0.5531±.0052 0.7289±.0001 0.5781±.0004 0.5556±.0027 0.6869±.0001 0.7414±.0001 0.6356±.0006

0.3
Clark 2.1382±.0010 2.2018±.0033 2.1597±.0001 2.1990±.0019 2.1985±.0028 2.1713±.0001 2.1733±.0001 2.1778±.0005
Cosine 0.8276±.0021 0.5510±.0017 0.7228±.0001 0.5761±.0008 0.5554±.0001 0.6792±.0001 0.7394±.0001 0.6322±.0014

Twi

0.1
Clark 2.2517±.0028 2.4072±.0037 2.3602±.0001 2.3957±.0039 2.4043±.0040 2.3656±.0001 2.3874±.0001 2.3726±.0001
Cosine 0.8582±.0025 0.4955±.0013 0.7537±.0001 0.5617±.0022 0.5000±.0008 0.7519±.0001 0.8134±.0001 0.6283±.0004

0.2
Clark 2.2783±.0113 2.4014±.0008 2.3608±.0001 2.3897±.0036 2.4015±.0020 2.3651±.0001 2.3827±.0001 2.3763±.0069
Cosine 0.8535±.0015 0.4980±.0009 0.7509±.0001 0.5621±.0043 0.5016±.0017 0.7372±.0001 0.8124±.0001 0.6211±.0037

0.3
Clark 2.3051±.0080 2.4043±.0050 2.3616±.0001 2.3906±.0034 2.4016±.0020 2.3657±.0001 2.3790±.0001 2.3780±.0017
Cosine 0.8480±.0012 0.4957±.0018 0.7447±.0001 0.5575±.0029 0.5014±.0016 0.7274±.0001 0.8106±.0001 0.6131±.0003

Emo

0.1
Clark 1.6237±.0067 1.6753±.0032 1.6457±.0001 1.6875±.0077 1.6820±.0113 1.6404±.0002 1.6423±.0001 1.6697±.0114
Cosine 0.7462±.0099 0.6592±.0008 0.7266±.0001 0.6700±.0005 0.6560±.0047 0.7417±.0001 0.7639±.0001 0.6841±.0020

0.2
Clark 1.6408±.0008 1.6716±.0174 1.6480±.0001 1.6840±.0106 1.6774±.0031 1.6432±.0002 1.6412±.0002 1.6677±.0020
Cosine 0.7499±.0004 0.6613±.0042 0.7227±.0001 0.6701±.0063 0.6565±.0005 0.7370±.0001 0.7589±.0001 0.6816±.0009

0.3
Clark 1.6295±.0004 1.6753±.0051 1.6491±.0001 1.6848±.0104 1.6775±.0031 1.6467±.0001 1.6402±.0002 1.6799±.0001
Cosine 0.7458±.0030 0.6579±.0004 0.7193±.0001 0.6685±.0059 0.6564±.0005 0.7304±.0001 0.7574±.0001 0.6771±.0014

Fbp

0.1
Clark 1.2494±.0047 1.5052±.0013 1.4032±.0001 1.4866±.0010 1.5039±.0041 1.4391±.0001 1.3360±.0001 1.6697±.0021
Cosine 0.9342±.0010 0.6571±.0005 0.8596±.0001 0.6772±.0035 0.6617±.0014 0.7929±.0001 0.9169±.0001 0.6841±.0004

0.2
Clark 1.2974±.0024 1.5054±.0021 1.4115±.0001 1.4891±.0001 1.5027±.0003 1.4475±.0001 1.3472±.0001 1.4579±.0015
Cosine 0.9264±.0012 0.6571±.0003 0.8478±.0001 0.6754±.0026 0.6625±.0009 0.7795±.0001 0.9127±.0001 0.7619±.0027

0.3
Clark 1.3084±.0053 1.5040±.0009 1.4182±.0001 1.4895±.0003 1.5028±.0003 1.4530±.0001 1.3542±.0001 1.4623±.0004
Cosine 0.9251±.0007 0.6577±.0004 0.8367±.0001 0.6747±.0022 0.6622±.0009 0.7695±.0001 0.9083±.0001 0.7553±.0005

Scu

0.1
Clark 1.3869±.0051 1.4955±.0044 1.4494±.0001 1.4838±.0056 1.4985±.0031 1.4265±.0001 1.3908±.0001 1.4735±.0036
Cosine 0.8409±.0075 0.6647±.0016 0.7775±.0001 0.6717±.0068 0.6672±.0008 0.8089±.0001 0.8405±.0001 0.7217±.0028

0.2
Clark 1.3936±.0090 1.4930±.0037 1.4540±.0001 1.4796±.0055 1.4999±.0003 1.4357±.0001 1.3965±.0001 1.4723±.0045
Cosine 0.8344±.0013 0.6653±.0013 0.7761±.0001 0.6687±.0056 0.6665±.0018 0.7965±.0001 0.8369±.0001 0.7213±.0010

0.3
Clark 1.3934±.0066 1.4971±.0049 1.4562±.0001 1.4807±.0048 1.5001±.0005 1.4394±.0001 1.4022±.0001 1.4748±.0005
Cosine 0.8341±.0032 0.6634±.0013 0.7683±.0001 0.6669±.0069 0.6662±.0019 0.7908±.0001 0.834±.0001 0.7131±.0025

Raf

0.1
Clark 1.3864±.0003 1.6119±.0037 1.5534±.0001 1.6115±.0027 1.6102±.0012 1.6025±.0001 1.5410±.0001 1.5688±.0031
Cosine 0.8734±.0006 0.6413±.0006 0.7433±.0001 0.6360±.0011 0.6455±.0001 0.6541±.0001 0.7580±.0001 0.7200±.0011

0.2
Clark 1.4205±.0050 1.6082±.0005 1.5586±.0001 1.6071±.0021 1.6043±.0034 1.6015±.0001 1.5464±.0001 1.5723±.0052
Cosine 0.8630±.0007 0.6418±.0006 0.7349±.0001 0.6356±.0031 0.6472±.0018 0.6566±.0001 0.7506±.0001 0.7153±.0016

0.3
Clark 1.4270±.0019 1.6098±.0005 1.5638±.0001 1.6076±.0019 1.6044±.0033 1.6034±.0001 1.5496±.0001 1.5711±.0001
Cosine 0.8519±.0010 0.6417±.0001 0.7260±.0001 0.6352±.0029 0.6469±.0018 0.6532±.0001 0.7469±.0001 0.7103±.0022

Gen

0.1
Clark 2.1149±.0179 2.1151±.0006 2.1230±.0001 2.1618±.0087 2.1222±.0069 2.1248±.0001 2.1240±.0003 2.1312±.0030
Cosine 0.8353±.0023 0.8342±.0003 0.8337±.0001 0.8196±.0006 0.8342±.0009 0.8338±.0001 0.8339±.0001 0.8317±.0005

0.2
Clark 2.1228±.0107 2.1246±.0066 2.1237±.0001 2.1591±.0018 2.1256±.0222 2.1245±.0001 2.1236±.0001 2.1312±.0127
Cosine 0.8340±.0016 0.8336±.0021 0.8333±.0001 0.8202±.0014 0.8334±.0028 0.8337±.0001 0.8338±.0001 0.8329±.0016

0.3
Clark 2.1225±.0035 2.1269±.0035 2.1225±.0005 2.1591±.0018 2.1256±.0222 2.1249±.0006 2.1240±.0005 2.1296±.0187
Cosine 0.8338±.0003 0.8335±.0007 0.8333±.0001 0.8202±.0014 0.8334±.0028 0.8336±.0001 0.8337±.0001 0.8334±.0012

Sce

0.1
Clark 2.4900±.0012 2.4848±.0017 2.4654±.0001 2.4915±.0019 2.4747±.0012 2.4702±.0001 2.4775±.0001 2.4736±.0001
Cosine 0.7037±.0045 0.5748±.0003 0.6770±.0001 0.5572±.0008 0.5806±.0013 0.6431±.0001 0.6500±.0001 0.6253±.0007

0.2
Clark 2.4808±.0129 2.4829±.0001 2.4668±.0001 2.4950±.0066 2.4819±.0059 2.4711±.0001 2.4751±.0001 2.4771±.0040
Cosine 0.7010±.0010 0.5753±.0007 0.6692±.0001 0.5553±.0018 0.5780±.0029 0.6367±.0001 0.6469±.0001 0.6205±.0034

0.3
Clark 2.5100±.0123 2.4859±.0057 2.4683±.0001 2.4951±.0066 2.4820±.0059 2.4721±.0002 2.4758±.0001 2.4799±.0040
Cosine 0.6876±.0026 0.5738±.0034 0.6611±.0001 0.5551±.0016 0.5779±.0030 0.6328±.0001 0.6455±.0001 0.6168±.0029

top-1 times 41 0 3 0 0 0 4 0

Table 2: Results (mean±std) of the comparing methods in terms of two metrics on ID.1-8 datasets (each is denoted by its first three letters),
where the best results are bolded.
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Figure 3: CD diagrams of the comparing methods in terms of each metrics. For the tests, CD equals 2.3296 at 0.05 signifcance level.

Critical Value (α = 0.05) Evaluation metric Cheb Clark KL Canber Intersec Cosine
2.1310 Friedman Statistics FF 17.6522 8.2619 12.6744 12.5264 19.2706 22.4616

Table 3: The Friedman statistics FF in terms of six evaluation metrics, as well as the critical value at a significance level of 0.05 (8 algorithms
on 12 datasets).
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Figure 4: Ablation results on seven datasets in terms of Chebyshev ↓, Intersection ↑.

BLDL vs. Chebyshev Clark KL Canberra Intersection Cosine
BLDL-a win[4.88e-04] win[3.42e-03] win [4.88e-04] win[4.88e-04] win[4.88e-04] win[4.88e-04]
BLDL-b win[9.77e-04] win [9.28e-03] win[5.37e-03] win[4.88e-04] win [9.77e-04] win[4.88e-04]

Table 4: The results (Win/Tie/Loss[p-value]) of the Wilcoxon signed-rank tests for BLDL against BLDL-a and BLDL-b at a confidence level
of 0.05.

low-rank constraint on WXO with one on WO, thus apply-
ing low-rank modeling in the label-distribution space instead
of the multi-label feature space.

We compare BLDL-a and BLDL-b with the full BLDL us-
ing biased label distributions generated with C = 0.1. Fig. 4
shows results on seven datasets for Chebyshev and Intersec-
tion metrics. Wilcoxon signed-rank tests [Demšar, 2006] con-
firm the statistical significance of BLDL over both ablated
versions (Table 4). From these experiments, we draw three
key observations:

• Importance of multi-label recovery. Comparing
BLDL-a vs. BLDL reveals a significant performance
drop when the multi-label recovery step is removed,
underscoring the critical role of leveraging multiple
pseudo-labels to denoise and recover true distributions.

• Effect of low-rank constraint location. Comparing
BLDL-b vs. BLDL shows that enforcing low-rank struc-
ture on WXO (the recovered multi-label space) outper-
forms constraining WO alone, since the multi-label em-
bedding X is intrinsically low-rank and more robust to
annotation noise.

• Combined benefits. The full BLDL, which both recov-
ers multi-label distributions and constrains the low-rank
structure in the correct space, consistently achieves the
best results across all metrics and datasets.

5.7 Validation of Hypothesis
We computed the difference between the recovered label dis-
tribution and the biased label distribution during the training
phase, denoted as δ1, and the difference between the multi-
label corresponding to the recovered label distribution and the
multi-label corresponding to the biased distribution, denoted
as δ2. As show in Fig. 5, it can be observed that δ1 is con-
sistently greater than δ2 until convergence. Therefore, during
the label distribution recovery phase, multi-label information
is more reliable than the biased label distribution information.

5.8 Analysis of Label Distribution Recovery
We evaluate the recovery error of label distributions during
training using the Frobenius norm ∥Drecover − Dtruth∥F , as
shown in Fig. 6. Our method achieves lower recovery error
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(a) Twitter (b) Flickr (c) Fbp (d) RAF-ML

Figure 5: Error reduction (δ1 and δ2) during iterations on four datasets: (a) Twitter, (b) Flickr, (c) Fbp, and (d) RAF-ML.
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Figure 6: Reconstruction error in recovering true distributions for different methods during the traning stage.

(a) KL with varying α (b) Canberra with varying β (c) Intersection with varying η (d) Cosine with varying λ1

Figure 7: The performance of BLDL with varying parameters in terms of four different metrics on five datasets.

compared to LRS-LDL, demonstrating the benefit of leverag-
ing multi-label information. Additionally, it outperforms TL-
RLDL by addressing biases in the learning process, further
improving recovery accuracy.

5.9 Parameter Sensitivity Analysis

We analyze the sensitivity of α, β, η, λ1, with α, β, λ1 cho-
sen from {0.1, 0.05, 0.01, 0.005, 0.001} and η from {1, 10,
50, 100, 150}. Experiments on five datasets (Scene, SBU,
Emotion, Spo, Spoem) show in Fig. 7 that BLDL exhibits
stable performance, demonstrating robustness to parameter
variations.

6 Conclusion

This paper introduces a novel framework, Biased Label
Distribution Learning (BLDL), to address label distribution
learning under biased annotations. Unlike conventional meth-
ods, BLDL first converts biased soft label distributions into
multi-label representations, effectively mitigating annotation
noise and bias. It further exploits the intrinsic low-rank struc-
ture of multi-label spaces to reliably recover true label distri-
butions. Comprehensive theoretical analysis and experiments
on diverse real-world datasets demonstrate that BLDL signif-
icantly enhances the accuracy and robustness of label distri-
bution recovery, outperforming state-of-the-art methods.
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