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SIFAR: A Simple Faster Accelerated Variance-Reduced Gradient Method

Zhize Li
Singapore Management University

zhizeli@smu.edu.sg

Abstract
In this paper, we propose a simple faster accel-
erated gradient method called SIFAR for solving
the finite-sum optimization problems. Concretely,
we consider both general convex and strongly con-
vex settings: i) For general convex finite-sum prob-
lems, SIFAR improves previous state-of-the-art re-
sult given by Varag.In particular, for large-scale
problems or the convergence error is not very small,
i.e., n ≥ 1

ϵ2 , SIFAR obtains the first optimal result
O(n), matching the lower bound Ω(n), while pre-
vious results are O(n log 1

ϵ ) of Varag and O( n√
ϵ
) of

Katyusha. ii) For strongly convex finite-sum prob-
lems, we also show that SIFAR can achieve the opti-
mal convergence rate O

(
(n+

√
nL
µ ) log 1

ϵ

)
match-

ing the lower bound Ω
(
(n+

√
nL
µ ) log 1

ϵ

)
provided

by Lan and Zhou in 2015. Besides, SIFAR enjoys a
simpler loopless algorithmic structure while previ-
ous algorithms use double-loop structures. More-
over, we provide a novel dynamic multi-stage con-
vergence analysis, which is the key for improving
previous results to the optimal rates. Our new theo-
retical rates and novel convergence analysis for the
fundamental finite-sum problem can directly lead
to key improvements for many other related prob-
lems, such as distributed/federated/decentralized
optimization problems. Finally, the numerical ex-
periments show that SIFAR converges faster than
the previous state-of-the-art Varag, validating our
theoretical results and confirming the practical su-
periority of SIFAR.

1 Introduction
In this paper, we consider the fundamental finite-sum prob-
lems of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where f : Rd → R is a smooth and convex function. We
consider two settings in this paper, i) general convex setting

(µ = 0); ii) strongly convex setting (µ > 0), where µ is
the strongly convex parameter for f(x), i.e., f(x) − f(y) −
⟨∇f(y), x − y⟩ ≥ µ

2 ∥x − y∥2. Note that the case µ = 0
reduces to the standard convexity. Also note that the strong
convexity is only corresponding to the average function f , is
not needed for these component functions fis.

Finite-sum problem (1) captures the standard empirical risk
minimization (ERM) problems in machine learning [Shalev-
Shwartz and Ben-David, 2014]. There are n data samples and
fi denotes the loss associated with i-th data sample, and the
goal is to minimize the loss over all data samples. This opti-
mization problem has found a wide range of applications in
machine learning, statistical inference, and image processing.
In recent years, there has been extensive research in designing
gradient-type methods for solving this problem (1). To mea-
sure the efficiency of algorithms for solving (1), it is standard
to bound the number of stochastic gradient computations for
finding a suitable solution. In particular, our goal is to find
a point x̂ ∈ Rd such that E[f(x̂) − f(x∗)] ≤ ϵ, where the
expectation is with respect to the randomness inherent in the
algorithm. We use the term ϵ-approximate solution to refer
to such a point x̂, and use the term stochastic gradient com-
plexity to describe the convergence result (convergence rate)
of algorithms.

Two of the most classical gradient-type algorithms are gra-
dient descent (GD) and stochastic gradient descent (SGD)
(e.g., [Nemirovski and Yudin, 1983; Nesterov, 2004; Ne-
mirovski et al., 2009; Duchi et al., 2010; Lan, 2012; Ghadimi
and Lan, 2012; Hazan, 2019]). However, GD requires to
compute the full gradient over all n data samples for each
iteration (xt+1 = xt − η 1

n

∑n
i=1 ∇fi(xt)) which is inef-

ficient especially for large-scale machine learning problems
where n is very large. Although SGD only needs to compute
a single stochastic gradient (e.g., ∇fi(x)) for each iteration
(xt+1 = xt − η∇fi(xt)), it requires an additional bounded
variance assumption for the stochastic gradients (i.e., ∃σ > 0,
Ei[∥∇fi(x) − ∇f(x)∥2] ≤ σ2) since it does not compute
the full gradients (∇f(x), i.e., 1

n

∑n
i=1 ∇fi(x)). More im-

portantly, for strongly convex problems, SGD only obtains
a sublinear convergence rate O(σ

2

µϵ ) rather than a linear rate
O(· log 1

ϵ ) achieved by GD.

To remedy the variance term E[∥∇fi(x) − ∇f(x)∥2] in
SGD, the variance reduction technique has been proposed and
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it has been widely-used in many algorithms in recent years.
In particular, [Le Roux et al., 2012; Schmidt et al., 2017]
propose the first variance-reduced algorithm called SAG and
show that by incorporating new gradient estimators into SGD
one can possibly achieve the linear convergence rate for
strongly convex problems. Then this variance reduction di-
rection is followed by many works such as [Shalev-Shwartz
and Zhang, 2013; Mairal, 2013; Johnson and Zhang, 2013;
Defazio et al., 2014; Mairal, 2015; Nguyen et al., 2017]. Par-
ticularly, SAG [Le Roux et al., 2012] uses a biased gradient
estimator while SAGA [Defazio et al., 2014] modifies it to an
unbiased estimator and provides better convergence results.
[Johnson and Zhang, 2013] propose a novel unbiased stochas-
tic variance reduced gradient (SVRG) method which directly
incorporates the full gradient term ∇f(x) into SGD. More
specifically, each epoch of SVRG starts with the computation
of the full gradient ∇f(x̃) at a snapshot point x̃ ∈ Rn and
then runs SGD for a fixed number of steps using the modified
stochastic gradient estimator

∇̃t = ∇fi(xt)−∇fi(x̃) +∇f(x̃), (2)

i.e., xt+1 = xt − η∇̃t, where i is randomly picked from
{1, 2, . . . , n}. In particular, if each full gradient ∇f(x̃)
(which requires n stochastic gradient computations) at the
snapshot point x̃ is reused for n iterations (i.e., x̃ is changed
after every n iterations), then the amortized stochastic gra-
dient computations for each iteration is the same as SGD.
Note that E[∇̃t] = ∇f(xt) is an unbiased estimator, and
its variance E[∥∇̃t − ∇f(xt)∥2] ≤ 4L

(
f(xt) − f(x∗) +

f(x̃)−f(x∗)
)

is reduced as the algorithm converges xt, x̃ →
x∗, while the variance term is uncontrollable for plain SGD
where ∇̃t = ∇fi(xt). [Johnson and Zhang, 2013] also show
that SVRG obtains the linear convergence O((n + L

µ ) log
1
ϵ )

which can be better than the sublinear convergence rate
O(σ

2

µϵ ) of plain SGD, for strongly convex problems. The
SVRG gradient estimator (2) is adopted in many algorithms
(e.g., [Xiao and Zhang, 2014; Allen-Zhu and Yuan, 2015;
Lei and Jordan, 2016; Allen-Zhu and Hazan, 2016; Reddi et
al., 2016a; Reddi et al., 2016b; Lei et al., 2017; Li and Li,
2018; Zhou et al., 2018; Ge et al., 2019; Kovalev et al., 2020;
Li and Li, 2022]) and also is used in our SIFAR.

The aforementioned variance-reduced methods are not ac-
celerated and hence they do not achieve the optimal conver-
gence rates for convex finite-sum problem (1). See the non-
accelerated variance-reduced algorithms listed in the first part
of Table 1, i.e., SAG, SVRG, SAGA and SVRG++, they do
not achieve the accelerated rates, i.e., L

µ vs.
√

L
µ (strongly

convex case) and L
ϵ vs.

√
L
ϵ (general convex case). Note

that we do not list the SCSG [Lei and Jordan, 2016] and
SARAH [Nguyen et al., 2017] in Table 1 since SCSG requires
an additional bounded variance assumption (without this as-
sumption, its result is the same as SVRG and SAGA) and
SARAH uses E[∥∇f(x̂)∥2] ≤ ϵ as the convergence criterion
which can not be directly converted to E[f(x̂)− f(x∗)] ≤ ϵ.
SARAH is usually used for solving nonconvex problems
where the convergence criterion is typically the norm of gra-

dient (e.g., [Fang et al., 2018; Wang et al., 2018; Pham et
al., 2019; Li, 2019; Li et al., 2021b; Li et al., 2021a]). Also
both SCSG and SARAH are non-accelerated methods and
thus do not achieve the optimal convergence results. There-
fore, much recent research effort has been devoted to the de-
sign of accelerated gradient methods (e.g., [Nesterov, 2004;
Beck and Teboulle, 2009; Lan, 2012; Allen-Zhu and Orec-
chia, 2014; Su et al., 2014; Lin et al., 2015; Allen-Zhu, 2017;
Lan and Zhou, 2018; Lan et al., 2019; Li and Li, 2020;
Li et al., 2020]). As shown in Table 1, for strongly convex
finite-sum problems, existing accelerated methods such as
RPDG [Lan and Zhou, 2015], Katyusha [Allen-Zhu, 2017],
Varag [Lan et al., 2019] and our SIFAR are optimal since their
convergence results are O

((
n +

√
nL
µ

)
log 1

ϵ

)
matching the

lower bound Ω
((
n+

√
nL
µ

)
log 1

ϵ

)
given by [Lan and Zhou,

2015].
However, for general (non-strongly) convex finite-sum

problems, all previous accelerated methods do not achieve the
optimal convergence result. In particular, Varag [Lan et al.,
2019] obtains the current best result O

(
nmin{log 1

ϵ , log n}+√
nL
ϵ

)
, while the lower bound in this general convex case is

Ω
(
n +

√
nL
ϵ

)
provided by [Woodworth and Srebro, 2016].

More importantly, for large-scale problems where the num-
ber of data samples n is very large, or the convergence er-
ror ϵ is not very small, then the convergence result of Varag
is O(n log 1

ϵ ) which is not optimal since the lower bound is
Ω(n) (see Table 2). Note that the case of large-scale problems
or the case of moderate convergence error often exists in ma-
chine learning applications. We show that our SIFAR takes
an important step towards the ultimate limit of accelerated
methods and it is the first algorithm to achieve the optimal
convergence rate O(n) in this case matching the lower bound
Ω(n). See Tables 1 and 2 for more details.

2 Our Contributions
In this paper, we mainly focus on further improving the con-
vergence result in order to close the gap between the up-
per and lower bound. We propose a novel loopless acceler-
ated variance-reduced gradient method, called SIFAR (Algo-
rithm 1), for solving both general convex and strongly convex
finite-sum problems given in the form of (1). Tables 1 and
2 summarize the convergence results of previous algorithms
and SIFAR.

Now, we highlight the following results achieved by SI-
FAR:

• For general convex problems, SIFAR obtains the rate

O
(
nmin

{
1 + log 1

ϵ
√
n
, log

√
n
}
+
√

nL
ϵ

)
for finding an

ϵ-approximate solution of problem (1), which improves pre-

vious best result O
(
nmin{log 1

ϵ , log n} +
√

nL
ϵ

)
given by

Varag [Lan et al., 2019] (see the ‘general convex’ column
of Table 1). Moreover, for a very wide range of ϵ, i.e.,
ϵ ∈ (0, L

n log2
√
n
]∪ [ 1√

n
,+∞), or the number of data samples

n ∈ (0, L
ϵ log2

√
n
] ∪ [ 1ϵ2 ,+∞), SIFAR can exactly achieve the
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Algorithms µ-strongly convex General convex
Simple

(Loopless)

GD O
(

nL
µ

log 1
ϵ

)
O
(
nL
ϵ

)
Yes

Nesterov’s AGD
[Nesterov, 1983; Nesterov, 2004]

O
(
n
√

L
µ
log 1

ϵ

)
O

(
n
√

L
ϵ

)
Yes

SAG [Le Roux et al., 2012] O
((

n+ n2⌊ L
nµ

⌋
)
log 1

ϵ

)
— Yes

SVRG [Johnson and Zhang, 2013] O
((

n+ L
µ

)
log 1

ϵ

)
— No

SAGA [Defazio et al., 2014] O
((

n+ L
µ

)
log 1

ϵ

)
O
(
n+L

ϵ

)
Yes

SVRG++ [Allen-Zhu and Yuan, 2015] — O
(
n log 1

ϵ
+ L

ϵ

)
No

RPDG [Lan and Zhou, 2015] O
((

n+
√

nL
µ

)
log 1

ϵ

)
O

((
n+

√
nL
ϵ

)
log 1

ϵ

)
1 Yes

Catalyst [Lin et al., 2015] O
((

n+
√

nL
µ

)
log 1

ϵ

)
1 O

((
n+

√
nL
ϵ

)
log2 1

ϵ

)
1 No

Katyusha [Allen-Zhu, 2017] O
((

n+
√

nL
µ

)
log 1

ϵ

)
O

(
n log 1

ϵ
+

√
nL
ϵ

)
1 No

Katyushans [Allen-Zhu, 2017] — O

(
n√
ϵ
+

√
nL
ϵ

)
No

Varag [Lan et al., 2019] O
((

n+
√

nL
µ

)
log 1

ϵ

)
O
(
nmin

{
log 1

ϵ
, log n

}
+

√
nL
ϵ

)
No

SIFAR

(this paper)
O
((

n+
√

nL
µ

)
log 1

ϵ

)
O
(
nmin

{
1 + log 1

ϵ
√

n
, log

√
n
}
+

√
nL
ϵ

)
2 Yes

Lower bound
Ω
((

n+
√

nL
µ

)
log 1

ϵ

)
[Lan and Zhou, 2015]

Ω

(
n+

√
nL
ϵ

)
[Woodworth and Srebro, 2016]

—

1 These gradient complexity bounds are obtained via indirect approaches, i.e., by adding strongly convex perturbation.
2 SIFAR can achieve the optimal result O

(
n +

√
nL
ϵ

)
for a very wide range of ϵ, i.e., ϵ ∈ (0, L

n log2
√
n
] ∪ [ 1√

n
,+∞) (see

the following Table 2 for more details), while the term min
{
log 1

ϵ
, log n

}
in Varag [Lan et al., 2019] cannot be removed

regardless of the value of ϵ.

Table 1: Convergence rates for finding an ϵ-approximate solution E[f(x̂)− f(x∗)] ≤ ϵ of (1)

Algorithms

The convergence error (E[f(x̂)− f(x∗)] ≤ ϵ): large ϵ −→ small ϵ

(or the number of data samples: large n −→ small n)

ϵ ≥ 1√
n

1√
n
> ϵ ≥ 1

n
1
n
> ϵ ≥ L

n log2
√
n

L
n log2

√
n
> ϵ

Katyushans [Allen-Zhu, 2017] O
(

n√
ϵ

)
O
(

n√
ϵ

)
O
(

n√
ϵ

)
O
(

n√
ϵ
+

√
nL
ϵ

)
Varag [Lan et al., 2019] O

(
n log 1

ϵ

)
O
(
n log 1

ϵ

)
O (n log n) O

(√
nL
ϵ

)
SIFAR (this paper) 1 O (n) O

(
n
(
1 + log 1

ϵ
√
n

))
O (n log

√
n) O

(√
nL
ϵ

)
Lower bound

[Woodworth and Srebro, 2016]
Ω(n) Ω (n) Ω

(
n
√

L
ϵn

)
Ω

(√
nL
ϵ

)
1 SIFAR achieves the optimal result O(n) for large-scale problems (large n) or moderate error (not too small ϵ). It

should be pointed out that all parameter settings of SIFAR (i.e., {pt}, {θt}, {ηt}, and {αt} in Algorithm 1) do not
require the value of ϵ in advance. The convergence rate of SIFAR will automatically switch to different results listed
in Table 2.

Table 2: Direct accelerated stochastic algorithms for general convex setting with respect to ϵ
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optimal convergence result O
(
n+

√
nL
ϵ

)
matching the lower

bound Ω
(
n +

√
nL
ϵ

)
provided by [Woodworth and Srebro,

2016] (see Table 1 and its Footnote 2).
• In particular, we would like to point out that none of pre-

vious algorithms with/without acceleration can obtain the op-
timal result O(n) for finite-sum problems (1) where the num-
ber of data samples is very large or the convergence error is
not very small, SIFAR is the first algorithm that achieves the
optimal result O(n) for these typical machine learning prob-
lems (see the second column of Table 2 and its Remark).

• We also note that SIFAR is the first loopless direct accel-
erated stochastic algorithm for solving general convex finite-
sum problems, while previous accelerated stochastic algo-
rithms use indirect approaches (RPDG, Catalyst, Katyusha)
and/or use inconvenient double-loop algorithmic structures
(Katyushans, Varag) (see Table 1). Moreover, by exploiting
the loopless structure of SIFAR, we provide a novel dynamic
multi-stage convergence analysis which is the key for improv-
ing previous results to the optimal rates.

• For strongly convex finite-sum problems (i.e., under
strong convexity Assumption 2), we also prove that SIFAR

achieves the optimal convergence rate O
(
(n +

√
nL
µ ) log 1

ϵ

)
matching the lower bound Ω

(
(n+

√
nL
µ ) log 1

ϵ

)
provided by

[Lan and Zhou, 2015] (see Table 1).
• Moreover, the convergence guarantee of SIFAR is the

last iterate convergence, i.e., guarantee for wT (see Corol-
laries 1 and 2) unlike previous average iterates convergence,
i.e., guarantee for w̄T = 1

T

∑T−1
t=0 qtwt for some distribution

q.
• Finally, the numerical experiments show that SIFAR con-

verges faster than the previous state-of-the-art Varag [Lan et
al., 2019], validating our theoretical results and confirming
the practical superiority of SIFAR.

3 Preliminaries

Notation: Let [n] denote the set {1, 2, · · · , n} and ∥·∥ denote
the Euclidean norm for a vector and the spectral norm for a
matrix. Let ⟨u, v⟩ denote the inner product of two vectors u
and v. We use O(·) and Ω(·) to hide the absolute constant.
We will write x∗ := argminx∈Rd f(x).

For convex problems, one typically uses the function value
gap as the convergence criterion.
Definition 1. A point x̂ is called an ϵ-approximate solution
for problem (1) if E[f(x̂)− f(x∗)] ≤ ϵ.

To show the convergence results, we assume the following
standard smoothness assumption for the component functions
fis in (1).
Assumption 1 (L-smoothness). Functions fi : Rd → R are
convex and L-smooth such that

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ (3)

for some L ≥ 0 and all i ∈ [n].
It is easy to see that f(x) = 1

n

∑n
i=1 fi(x) is also L-

smooth under Assumption 1.

Algorithm 1 SIFAR: SImple Faster Accelerated variance-
Reduced gradient

Input: initial point x0, parameters {pt}, {θt}, {ηt}, {αt}
1: w0 = x̄0 = x0 = x0

2: for t = 0, 1, 2, . . . , T − 1 do
3: xt = θtxt + (1− θt)wt

4: Randomly pick i ∈ {1, 2, . . . , n}
5: ∇̃t = ∇fi(xt)−∇fi(wt) +∇f(wt)

6: xt+1 = 1
1+µηt

(xt + µηtxt)−
ηt

αt
∇̃t

7: x̄t+1 = θtxt+1 + (1− θt)wt

8: wt+1 =

{
x̄t+1 with probability pt
wt with probability 1− pt

9: end for
Output: wT

For considering the strongly convex setting, we assume the
following Assumption 2.
Assumption 2 (µ-strong convexity). A function f : Rd → R
is µ-strongly convex such that

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ

2
∥x− y∥2, (4)

for some µ ≥ 0.
Note that the strong convexity is only corresponding to the

average function f in (1), is not needed for the component
functions fis.

4 SIFAR Algorithm
In this section, we describe the simple SIFAR method in Al-
gorithm 1. SIFAR uses the SVRG gradient estimator (2) (see
Line 5 of Algorithm 1) and two interpolation steps (momen-
tum) (see Line 3 and Line 7 of Algorithm 1). Line 6 of Algo-
rithm 1 is a gradient update step.

Although previous accelerated stochastic algorithms such
as Katyusha/Katyushans [Allen-Zhu, 2017] and Varag [Lan
et al., 2019] also adopt the SVRG gradient estimator com-
bined with momentum steps, SIFAR enjoys a simpler loop-
less algorithmic structure. Note that the previous loop-
less SVRG/Katyusha algorithms provided in [Kovalev et al.,
2020] only solve the strongly convex case (µ > 0). Here, our
loopless algorithm SIFAR can deal with both general convex
(µ = 0) and strongly convex (µ > 0) problems, and the SI-
FAR algorithm itself is also different and more concise than
the loopless algorithms in [Kovalev et al., 2020]. Moreover,
for general convex problems (µ = 0), SIFAR provides a new
state-of-the-art convergence result which improves all previ-
ous results.

In each iteration t, the stochastic gradient estimator ∇̃t of
SIFAR (Line 5 of Algorithm 1) uses the gradient informa-
tion of only one randomly sampled function fi. Note that
for the last term ∇f(wt), it reuses previous ∇f(wt−1) with
probability 1 − pt−1 or needs to compute the full gradient
∇f(x̄t) with probability pt−1 (see Line 8 of Algorithm 1).
Thus we know that SIFAR uses (n + 2)pt−1 + 2(1 − pt−1)
stochastic gradients in expectation for iteration t. In partic-
ular, if pt ≡ 1

n , then SIFAR only uses constant stochastic
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gradients for each iteration which maintains the same com-
putational cost as SGD. The snapshot point wt is updated in
the last Line 8 of Algorithm 1, it is a probabilistic step which
is the key part for removing double-loop structures to obtain
a simple loopless algorithm, similar to [Kovalev et al., 2020;
Li et al., 2021a]. However, we propose a new dynamic multi-
stage convergence analysis which uses a dynamic control of
the probability {pt} in Line 8, unlike directly fixing it to a
constant pt ≡ p as in [Kovalev et al., 2020]. To the best of
our knowledge, this is the first time that a loopless algorithm
uses a dynamic change of {pt}.

5 Convergence Results for SIFAR
In this section, we present two main convergence theorems
of SIFAR (Algorithm 1) for solving finite-sum problems (1),
i.e., Theorem 1 (general convex setting in Section 5.1) and
Theorem 2 (strongly convex setting in Section 5.2). Subse-
quently, we formulate two Corollaries 1–2 from Theorems 1–
2 for providing the detailed convergence results. The detailed
proofs for Theorems 1–2 and Corollaries 1–2 are deferred to
the appendix.

5.1 General convex setting
In this section, we provide the main convergence theorem of
SIFAR for general convex problems and then obtain a corol-
lary for providing the detailed convergence result. Note that if
we fix the probability pt in Line 8 of Algorithm 1 to a constant
p, then the update of wt follows from a geometric distribution
Geom(p). For a geometric distribution N ∼ Geom(p), i.e.,
N = k with probability (1− p)kp for k = 0, 1, 2, . . . (after k
failures until the first success), we know that E[N ] = 1−p

p . In
the first stage of SIFAR, we indeed use constant probability
pt ≡ p = 1

n+1 . Let t1 be the first time such that w changes
to x̄, i.e., wt1+1 = x̄t1+1 and wt1 = wt1−1 = · · · = w0.
Thus t1 ∼ Geom(p) and E[t1] = n. Note that this first stage
where we fix pt ≡ p is similar to loopless SVRG [Kovalev et
al., 2020], SCSG [Lei and Jordan, 2016] and PAGE [Li et al.,
2021a]. The difference is that our SIFAR will use a dynamic
change of pt after the first stage, while previous algorithms
always keep fixing the probability pt ≡ p.
Theorem 1 (General convex case). Suppose that Assump-
tion 1 holds. For 0 ≤ t ≤ t1, let pt ≡ 1

n+1 , θt ≡ 1 − 1
2
√
n

,
ηt ≤ 1

L(1+1/(1−θt))
and αt = θt. For t > t1, let pt =

max{ 4
t−t1+3

√
n
, 4
n+3}, θt = 2

pt(t−t1+3
√
n)

, ηt ≤ 1
3L and

αt = θt. Then the following equation holds for SIFAR (Algo-
rithm 1) for any iteration t > t1 + 1:

E[f(wt)− f(x∗)] ≤ 32∥x0 − x∗∥2

ηt−1pt−1(t− t1 + 3
√
n)2

.

According to Theorem 1, we can obtain a detailed conver-
gence result in the following Corollary 1.
Corollary 1 (General convex case). Suppose that Assump-
tion 1 holds. Choose the parameters {pt}, {θt}, {ηt}, {αt}
as stated in Theorem 1. Then SIFAR (Algorithm 1) can find
an ϵ-approximate solution for problem (1) such that

E[f(wT )− f(x∗)] ≤ ϵ

within T iterations, where

T ≤

{
2n if ϵ ≥ O( 1n )

n+
√

24(n+3)L∥x0−x∗∥2

ϵ if ϵ < O( 1n )
,

and the number of stochastic gradient computations can be
bounded by

#grad = O

(
nmin

{
1 + log

1

ϵ
√
n
, log

√
n
}
+

√
nL

ϵ

)
.

Remark: From the choice of probability {pt} in Theorem 1,
we know that there are three stages of SIFAR: i) the first stage
pt ≡ 1

n+1 for 0 ≤ t ≤ t1; ii) the second stage pt = 4
t−t1+3

√
n

for t1 < t ≤ t1 + n+ 3− 3
√
n; iii) the third stage pt ≡ 4

n+3

for t > t1 + n + 3 − 3
√
n. This novel multi-stage con-

vergence analysis is key part for the improvement of SIFAR.
Roughly speaking, the number of stochastic gradient compu-
tations in the first stage is #grad = O(n), in the second stage
is #grad = O

(
nmin

{
log 1

ϵ
√
n
, log

√
n
})

, and in the third

stage is #grad = O
(√

nL
ϵ

)
. Note that the guarantee of SI-

FAR is the last iterate convergence unlike previous average
iterates convergence. Also note that all parameter settings
{pt}, {θt}, {ηt}, {αt} of SIFAR in Theorem 1 do not require
the value of ϵ in advance. The convergence rate of SIFAR will
automatically switch to different results as stated in Table 2.

5.2 Strongly convex setting
In this section, we provide the main convergence theorem of
SIFAR for strongly convex problems (µ > 0 in Assumption 2)
and then obtain a corollary for providing the detailed conver-
gence result.

Theorem 2 (Strongly convex case). Suppose that Assump-
tions 1 and 2 hold. For any t ≥ 0, let pt ≡ p, θt ≡ θ =
1
2 min{1,

√
µ
pL}, ηt ≤ 1

Lθt(1+1/(1−θt))
and αt = 1 + µηt.

Then the following equation holds for SIFAR (Algorithm 1)
for any iteration t ≥ 0:

E[Φt] ≤
(
1− 4pθ

5

)t
Φ0, (5)

where Φt := f(wt)− f(x∗) + (1+µη)pθ
2η ∥xt − x∗∥2.

Similarly, according to Theorem 2, we can obtain a detailed
convergence result in the following Corollary 2.

Corollary 2 (Strongly convex case). Suppose that Assump-
tions 1 and 2 hold. Choose the parameters {pt}, {θt}, {ηt},
{αt} as stated in Theorem 2. Then SIFAR (Algorithm 1) can
find an ϵ-approximate solution for problem (1) such that

E[f(wT )− f(x∗)] ≤ ϵ

within T iterations, where

T ≤ 5

4pθ
log

Φ0

ϵ
.
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Moreover, by choosing p = 1
n and recalling that θ =

1
2 min{1,

√
µ
pL}, the number of stochastic gradient compu-

tations can be bounded by

#grad = O

(
max

{
n,

√
nL

µ

}
log

1

ϵ

)
.

Remark: In this strongly convex case, the parameter setting
of SIFAR in Theorem 2 is simpler than the general convex
case in Theorem 1. Here, the choice of probability {pt}
can be fixed to a constant p and {θt} also can be chosen
as a constant θ. Then according to Theorem 2, we know
that {ηt} and {αt} also reduce to constant values. Thus
there is only one stage in this strongly convex case rather
than three stages in previous general convex case. Also
here the function value decreases in an exponential rate, i.e.,
E[Φt] ≤

(
1 − 4pθ

5

)t
Φ0 (see (5) in Theorem 2). It is easy

to see that the number of iterations T can be bounded by
O(· log 1

ϵ ) for finding an ϵ-approximate solution E[f(wT ) −
f(x∗)] ≤ ϵ. Then, by choosing p = 1

n (thus each iteration
only computes constant stochastic gradients in expectation),
the number of total stochastic gradient computations can be
bounded by #grad = O

(
max

{
n,
√

nL
µ

}
log 1

ϵ

)
. This con-

vergence result is optimal which matches the lower bound
Ω
((

n +
√

nL
µ

)
log 1

ϵ

)
given by [Lan and Zhou, 2015] (see

Table 1). Note that all parameter settings {pt}, {θt}, {ηt},
{αt} of SIFAR in Theorem 2 also do not require the value of
ϵ in advance.

5.3 Proof sketch for general convex case
(Theorem 1)

Now, we provide the proof sketch of Theorem 1. As we dis-
cussed in the Remark at the end of Section 5.1, we know that
there are three stages of SIFAR. First, we provide a key lemma
for the first stage.
Lemma 1. Suppose Assumption 1 holds. For 0 ≤ t ≤ t1, let
pt ≡ p, θt ≡ θ, ηt ≤ 1

L(1+1/(1−θt))
and αt = θt. Then the

following equation holds for SIFAR (Algorithm 1):
E[f(wt1+1)− f(x∗)]

≤ E
[
(1− θ)

(
f(x0)− f(x∗)

)
+
(θ2p
2η

+ (1− p)L(1− θ)θ2
)
∥x0 − x∗∥2

−
(θ2p
2η

− (1− p)L(1− θ)θ2
)
∥xt1+1 − x∗∥2

]
.

(6)
According to the update formula of wt in the Line 8 of

Algorithm 1, we know that E[t1] = 1−p
p . Thus if we let pt ≡

p = 1
n+1 in the first stage of SIFAR (i.e., for 0 ≤ t ≤ t1),

then E[t1] = n. The choice of parameters in Lemma 1 with
p = 1

n+1 is the same as the first stage of Theorem 1.
After the first stage, for any iteration t > t1, we provide

the following technical lemma which describes the change of
function value between two adjacent iterations.

Lemma 2. Suppose Assumption 1 holds. Choose stepsize
ηt ≤ 1

L(1+1/(1−θt))
and αt = θt for any t ≥ 0. Then the

following equation holds for SIFAR (Algorithm 1) for any it-
eration t ≥ 0:

E
[

ηt
ptθ2t

(
f(wt+1)− f(x∗)

)]
≤ E

[
(1− ptθt)ηt

ptθ2t

(
f(wt)− f(x∗)

)
+

1

2

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)]
. (7)

According to (7), in order to get a recursion formula, we
need to show that

(1− ptθt)ηt
ptθ2t

≤ ηt−1

pt−1θ2t−1

(8)

by further choosing appropriate parameters {pt} and {θt}. In
particular, choosing pt = max{ 4

t−t1+3
√
n
, 4
n+3} and θt =

2
pt(t−t1+3

√
n)

for t > t1 (same as in Theorem 1) can satisfy
(8) for any t > t1 + 1. Combining this choice of {pt} and
{θt} with Lemma 2 and summing up from iteration t1 + 1 to
t, we obtain the following Lemma 3.
Lemma 3. Suppose Assumption 1 holds. For t > t1, let
pt = max{ 4

t−t1+3
√
n
, 4
n+3}, θt = 2

pt(t−t1+3
√
n)

, ηt ≤ 1
3L

and αt = θt. Then the following equation holds for SIFAR
(Algorithm 1) for any iteration t > t1 + 1:

E
[

ηt−1

pt−1θ2t−1

(
f(wt)− f(x∗)

)]
≤ E

[
(1− pt1+1θt1+1)ηt1+1

pt1+1θ2t1+1

(
f(wt1+1)− f(x∗)

)
+

1

2

(
∥xt1+1 − x∗∥2 − ∥xt − x∗∥2

)]
. (9)

Also note that we can bound the term f(x0) − f(x∗)
in (6) as f(x0) − f(x∗) ≤ L

2 ∥x0 − x ∗ ∥2 according to
the L-smoothness of f (Assumption 1). Now, we combine
Lemma 1 and Lemma 3 to finish the proof for the main Theo-
rem 1, i.e., by plugging (6) into (9) and plugging in the value
of parameters, we can obtain, for any iteration t > t1 + 1,

E[f(wt)− f(x∗)] ≤ 32∥x0 − x∗∥2

ηt−1pt−1(t− t1 + 3
√
n)2

.

6 Experiments
In this section, we present the numerical experiments of SI-
FAR (Algorithm 1) compared with previous state-of-the-art
Varag [Lan et al., 2019]. We also present the standard gradi-
ent descent (GD) as a benchmark for demonstrating the per-
formance of these algorithms. The theoretical convergence
results of these algorithms can be found in Table 1.

In the experiments, we consider the following logistic re-
gression problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

log
(
1 + exp(−bia

⊤
i x)

)
, (10)
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Figure 1: The convergence performance of GD, Varag and SIFAR under different datasets.

where {ai, bi}ni=1 ∈ Rd × {±1} are data samples. All
datasets used in our experiments are downloaded from LIB-
SVM [Chang and Lin, 2011]. We also point out that we di-
rectly use the parameter settings according to the theoretical
convergence theorems or corollaries of these algorithms, i.e.,
we do not tune any hyperparameters. Note that for the lo-
gistic function in (10), one can precompute the smoothness
parameter L satisfying Assumption 1, i.e., L ≤ 1/4 if the
data samples are normalized. Given the parameter L, we are
ready to set all other hyperparameters for GD (see Corollary
2.1.2 in [Nesterov, 2004]), for Varag (see Theorem 1 in [Lan
et al., 2019]) and for SIFAR (see our Theorem 1). Note that
all of these three algorithms only require L for setting their
(hyper)parameters.

In Figure 1, the x-axis and y-axis represent the number of
data passes (i.e., we compute n stochastic gradients for each
data pass) and the training loss, respectively. The numeri-
cal results presented in Figure 1 are conducted on different
datasets. Each plot corresponds to one dataset (six datasets
in total). The experimental results show that SIFAR indeed
converges faster than Varag [Lan et al., 2019] in the earlier
stage (moderate convergence error), validating our theoret-
ical results (see the second column of Table 2 and its Re-
mark). More importantly, SIFAR is the first accelerated algo-
rithm which can obtain the optimal convergence result O(n)
in this range. Besides, SIFAR also enjoys a simpler loopless
algorithmic structure while Varag uses an double-loop struc-
ture.

7 Conclusion
In this paper, we propose a faster loopless accelerated
variance-reduced gradient method SIFAR, for solving both

general convex and strongly convex finite-sum problems.
The proposed SIFAR takes an important step towards the
ultimate limit of accelerated methods to close the gap be-
tween the upper and lower bound. In particular, SIFAR
achieves the first optimal convergence rate O(n) match-
ing the lower bound Ω(n) for large-scale general convex
problems. Besides, it also achieves the optimal conver-
gence rate O

(
(n +

√
nL
µ ) log 1

ϵ

)
matching the lower bound

Ω
(
(n +

√
nL
µ ) log 1

ϵ

)
for strongly convex problems. More-

over, we provide a novel dynamic multi-stage convergence
analysis utilizing the simpler loopless algorithmic structure,
which is the key for improving previous results to the op-
timal rates. Numerical experiments validate our theoretical
results and confirm the practical superiority of SIFAR. Our
new theoretical rates and convergence analysis can also lead
to key improvements for other related distributed and fed-
erated optimization problems, e.g., [Li and Richtárik, 2020;
Li and Richtárik, 2021; Zhao et al., 2021; Zhao et al., 2024;
Bao et al., 2025].
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