
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

An End-to-End Simple Clustering Hierarchical Pooling Operation
for Graph Learning Based on Top-K Node Selection

Zhehan Zhao1 , Lu Bai1∗ , Ming Li2,3 , Lixin Cui4 ,
Hangyuan Du5∗ , Yue Wang4 and Edwin R. Hancock6

1School of Artificial Intelligence, Beijing Normal University, Beijing, China
2Zhejiang Institute of Optoelectronics, Jinhua, China

3Zhejiang Key Laboratory of Intelligent Education Technology and Application,
Zhejiang Normal University, Jinhua, China

4School of Information, Central University of Finance and Economics, Beijing, China
5School of Computer and Information Technology, Shanxi University, Taiyuan, China

6Department of Computer Science, University of York, York, United Kingdom
zhzhao@mail.bnu.edu.cn, bailu@bnu.edu.cn, duhangyuan@sxu.edu.cn

Abstract
Graph Neural Networks (GNNs) are powerful tools
for graph learning, but one of the important chal-
lenges is how to effectively extract representa-
tions for graph-level tasks. In this paper, we pro-
pose an end-to-end Simple Clustering Hierarchi-
cal Pooling (SCHPool) operation, which is based
on Top-K node selection for learning expressive
graph representations. Specifically, SCHPool con-
siders each node and its local neighborhood as a
cluster, and introduces a novel multi-view scoring
function to evaluate node importance. Based on
these scores, clusters centered around the Top-K
nodes are retained. This design eliminates the need
for complex clustering operations, significantly re-
ducing computational overhead. Furthermore, dur-
ing the coarsening process, SCHPool employs a
lightweight yet comprehensive attention mecha-
nism to adaptively aggregate both the node features
within clusters and the edge connectivity strengths
between clusters. This facilitates the construction
of more informative coarsened graphs, enhancing
model performance. Experimental results demon-
strate the effectiveness of the proposed model.

1 Introduction
Graph-structured data, such as social networks and molec-
ular structures, are prevalent in the real world. Some re-
searchers have employed graph kernel methods to process
such data by computing pairwise similarities between graphs
[Shervashidze et al., 2011; Bai et al., 2022a; Bai et al., 2024].
However, these methods typically lack support for end-to-end
training and incur high computational costs, making them dif-
ficult to scale to large graphs. With the continued advance-
ment of deep learning techniques, Graph Neural Networks

∗Corresponding Authors: Lu Bai and Hangyuan Du

(GNNs) have emerged as powerful tools for effectively pro-
cessing such non-Euclidean data. By simultaneously cap-
turing node features and complex topological relationships
between nodes, GNNs are able to generate meaningful low-
dimensional representations. This capability has led to their
widespread application in various fields, including knowl-
edge graphs [Schlichtkrull et al., 2018], recommendation sys-
tems [Wu et al., 2023], traffic prediction [Li et al., 2018], and
drug discovery [Sun et al., 2020].

One challenge arising in GNNs is to extract meaningful
representations for graph-level tasks [Bai et al., 2022b], such
as graph classification [Errica et al., 2020] and graph re-
gression [Bianchi et al., 2020]. To address this issue, vari-
ous graph pooling methods have been proposed, which can
generally be categorized into global pooling and hierarchical
pooling [Ju et al., 2024]. Global pooling [Bai et al., 2019;
Cui et al., 2024], similar to pooling operations in traditional
neural networks, applies a function to all node embeddings to
produce a graph-level representation. However, such methods
overlook the hierarchical characteristics inherent in graphs.

To overcome this shortcoming, researchers have proposed
hierarchical pooling operations, which extract hierarchical
characteristics of a graph by progressively compressing it.
Based on the compression method, hierarchical pooling op-
erations can be broadly divided into two categories, i.e., the
Top-K based strategy and the cluster-based strategy.

The Top-K based strategy employs scoring functions to
assess the importance of nodes, retaining the Top-K nodes
and their corresponding connections as the coarsened graph.
However, most existing methods rely on single-view evalua-
tions, which are prone to bias [Qu et al., 2017; Chen et al.,
2019]. Furthermore, information from different views often
varies significantly, making it crucial to leverage the collab-
oration of multiple views to learn robust node importance
scores. Although some multi-view methods have been in-
troduced [Zhang et al., 2023], they are limited by inherent
drawbacks of the Top-K based strategy. Specifically, direct
removal of nodes and edges in such methods often results in

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

…

Figure 1: The Architecture of the Proposed SCHPool Model.

a substantial loss of node information, impairing the connec-
tivity of the coarsened graph [Ju et al., 2024].

On the other hand, the cluster-based strategy assigns nodes
to different clusters using learnable assignment matrices [Liu
et al., 2023a], treating these clusters as nodes in the coarsened
graph. Although this strategy preserves all node and edge in-
formation, it is subject to several inherent limitations. First,
these methods are constrained by both time and memory com-
plexity, primarily due to the need for complex and dense as-
signment matrices, which typically incurs O(N2) complexity
[Baek et al., 2021]. Second, in some approaches, node fea-
tures are probabilistically divided into different clusters and
then directly summed to form cluster representations. This
assignment strategy can lead to influential nodes being split
across multiple clusters, while less influential nodes are as-
signed entirely to a single cluster, potentially resulting in the
latter dominating the cluster representations. Although some
studies have attempted to address this issue by completely
assigning nodes to clusters and applying attention-based ag-
gregation, they fail to provide a comprehensive evaluation of
node importance [Liu et al., 2022]. Third, when perform-
ing convolution on the coarsened graphs, edge connectiv-
ity strengths can naturally serve as attention weights, guid-
ing selective neighborhood information aggregation. How-
ever, previous methods typically aggregate edge connectiv-
ity strengths between clusters via simple summation, without
considering the importance of edge. This leads to aggregated
edge connectivity strengths that fail to accurately reflect the
influence of information propagation between clusters.

To address the aforementioned limitations, we propose an
end-to-end Simple Clustering Hierarchical Pooling (SCH-
Pool) operation based on Top-K node selection. Unlike pre-
vious cluster-based methods that rely on the computation of
complex and dense assignment matrices, SCHPool introduces
an innovative approach by directly treating each node and its
local neighborhood as a cluster. A multi-view scoring func-
tion is then employed to assess node importance from infor-
mational, structural, and semantic perspectives, and clusters
centered around the Top-K nodes are subsequently retained.
During the coarsening process, we employ a lightweight yet
comprehensive attention mechanism to adaptively aggregate
node features within clusters. This mechanism considers not
only the multi-view importance of each node, but also its rel-
ative position within the cluster. Moreover, the aggregation
weights of edges are computed based on the attention weights
of their connected nodes within the corresponding clusters.
The architecture of the proposed SCHPool is illustrated in
Figure 1, and main contributions are summarized as follows.

First, compared to the Top-K based strategy, SCHPool pre-
serves richer node and edge information. Moreover, SCH-
Pool introduces a novel multi-view scoring function, even
when the model degenerates into the Top-K based strategy,
it still outperforms existing Top-K based methods. Second,
compared to the cluster-based strategy, SCHPool eliminates
the need for computing complex and dense assignment ma-
trices, reducing the complexity to O(E + N). Moreover, it
incorporates a lightweight yet comprehensive attention mech-
anism to adaptively aggregate both node features within clus-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ters and edge connectivity strengths between clusters, leading
to more informative coarsened graphs. Third, we evaluated
the classification performance of the SCHPool, experimental
results demonstrate its effectiveness.

2 Related Works
2.1 The Global Pooling
Global pooling operations directly generate a graph represen-
tation from all node embeddings [Bai et al., 2023], which
are also known as readout functions. The foundational global
pooling methods are inspired by traditional pooling opera-
tions in Convolutional Neural Networks (CNNs), such as
Max-Pooling, Sum-Pooling, and Mean-Pooling, which ap-
ply permutation-invariant functions to node embeddings in
a graph [Duvenaud et al., 2015; Xu et al., 2019]. Set2Set
[Vinyals et al., 2016] implements global pooling by aggre-
gating node information through LSTMs [Hochreiter and
Schmidhuber, 1997]. To further enhance adaptability, GGS-
NN [Li et al., 2016] incorporates a soft attention mechanism
to assess node importance, computing the weighted sum of
node embeddings to form the graph representation. SortPool
[Zhang et al., 2018], on the other hand, ranks nodes based
on their structural positions within the graph, generating the
graph representation by processing the ordered node embed-
dings through CNNs. More recently, GMT [Baek et al.,
2021] captures node interactions through a multi-head atten-
tion mechanism, further improving the performance of global
pooling methods. However, these operations fail to account
for the hierarchical structures of graphs, which can result in
information loss and impair the performance of graph repre-
sentations [Knyazev et al., 2019; Bianchi and Lachi, 2023].

2.2 The Hierarchical Pooling
Hierarchical pooling methods capture the hierarchical struc-
ture of a graph by progressively coarsening it, which are
achieved through the Top-K based strategy and the cluster-
based strategy. Furthermore, it is important to note that these
methods still rely on readout functions to obtain the graph
representation from coarsened graphs.

The Top-K based strategy involves learning the impor-
tance values of nodes and retaining the Top-K nodes and their
connections as the coarsened graph. Different methods em-
ploy various approaches to assess node importance. Some
methods predict from a single view, such as scalar projec-
tion values in TopKPool [Gao and Ji, 2019] and self-attention
weights in SAGPool [Lee et al., 2019]. Other methods, such
as TAPool [Gao et al., 2021] and MVPool [Zhang et al.,
2023], generate scores from multiple views for a comprehen-
sive evaluation. Although these methods are efficient, they
suffer from inevitable information loss [Liu et al., 2023b].

The cluster-based strategy clusters the nodes and aggre-
gates them to form the coarsened graph. Existing operations
primarily focus on optimizing the clustering procedure. For
example, DiffPool [Ying et al., 2018] employs GNNs to gen-
erate assignment matrices. StructPool [Yuan and Ji, 2020]
utilizes conditional random fields to capture the relationships
among the assignments of different nodes, determining each

node’s assignment based on its own features and the assign-
ments of other nodes. MinCutPool [Bianchi et al., 2020]
leverages spectral clustering to group nodes, and SEP-G [Wu
et al., 2022] minimizes structural entropy to construct a cod-
ing tree from nodes to achieve effective hierarchical pooling.

However, these methods aggregate node features within
clusters merely through simply summation. To overcome this
limitation, ABDPool [Liu et al., 2022] and C2N-ABDP [Ye et
al., 2023] incorporate attention mechanisms into the aggrega-
tion process. Nevertheless, these attention mechanisms suffer
from two key limitations. First, they rely on a single perspec-
tive, restricting their ability to comprehensively evaluate node
importance. Second, they are incapable of capturing the im-
portance of edges. Furthermore, although these cluster-based
methods preserve the information of graphs completely, they
often suffer from low computational efficiency, which re-
stricts their scalability to large-scale graphs.

3 The Proposed Method
3.1 Preliminaries
We represent the input graph as G(0)(V (0), E(0)), where V
denotes the nodes and E denotes the edges. Since hierar-
chical pooling operations change the number of nodes and
edges at each pooling layer, we define the graph at the l-
th layer as G(l)(V (l), E(l)). The connectivity strengths be-
tween nodes of G(l) can be represented by an adjacency ma-
trix A(l) ∈ RNl×Nl , where Nl = |V (l)| is the number of
nodes at the l-th layer. X(l) ∈ RNl×dl represents the node
feature matrix, where dl is the feature dimension at l-th layer.
Moreover, we employ a Graph Neural Network (GNN) to ob-
tain the node embeddings matrix Z(l) ∈ RNl×dl

′
as

Z(l) = GNN(X(l), A(l)). (1)

3.2 The Multi-View Node Importance
The Informational Importance. Informational nodes play
a crucial role in characterizing graph signals. If a node’s in-
formation can be effectively predicted given the information
of its neighbors, it indicates that the node carries less unique
information, and therefore has a lower importance. We pro-
pose to leverage the neighborhood conditional entropy as a
metric for assessing the informational importance of nodes as

H(z
(l)
i |z(l)N (i)) = H(z

(l)
i)− I(z

(l)
i ; z

(l)
N (i)). (2)

where z
(l)
i represents the embedding of node i at l-th layer,

and N (i) denotes the set of its neighboring nodes. H(·) de-
notes entropy, and I(·) represents mutual information.

To simplify the computation, inspired by iPool [Gao et al.,
2022], we use neighborhood information gain as an approx-
imate empirical estimation of H(z

(l)
i |z(l)N (i)) (proved in the

Appendix A). We define the neighborhood information gain
γ as the Euclidean distance between a node embedding and
the embedding predicted by its neighbors, i.e.,

γ
(l)
i = ||z(l)i − f(z

(l)
N (i))||2. (3)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Considering the localization and smoothness properties of
graphs, we use a simple neighborhood normalization aggre-
gation function as the prediction function f(·). The normal-
ization process is defined as

Ā(l) = A(l) − diag(A(l)), ¯P (l) = D̄(l)
−1

Ā(l). (4)

where Ā(l) is the adjacency matrix with all self-loops re-
moved from A(l), and D̄(l) is the corresponding degree ma-
trix. Based on this, the prediction function f(·) performs
neighborhood aggregation as

f(z
(l)
N (i)) =

∑
j∈N (i)

(¯P (l))ijz
(l)
j . (5)

Moreover, we apply a non-linear activation function σ(·) to
transform the values into range [0, 1], i.e.,

θ
(l)
i = σ(γ

(l)
i). (6)

The Structural Importance. We identify structurally crit-
ical nodes in the graph based on their local connectivity.
Nodes embedded in denser and more stable local connections
are considered to play more significant roles within the graph.
Moreover, since SCHPool naturally treats each node and its
neighborhood as a cluster, this approach also implicitly iden-
tifies important clusters, thereby increasing their likelihood of
being retained during pooling. To quantify this, we adopt two
perspectives, summation and variance, to characterize the dis-
tribution of edge connectivity strengths within a node’s local
neighborhood, i.e., the cluster centered around it. Specifi-
cally, we first construct a mask matrix B(l) ∈ RNl×Nl , i.e.,

B
(l)
ij =

{
1 if d(i, j) ≤ H;

0 else.
(7)

where B
(l)
ij indicates whether node j belongs to the cluster

centered around node i (hereafter referred to as cluster i), and
H is a hyperparameter that represents the clustering range.

Next, we calculate the degree matrix R(l) ∈ RNl×Nl as

R
(l)
ij =

∑
k

B
(l)
ik A

(l)
kj ·B

(l)
ij . (8)

And it is important to note that the degree here only counts
connections between nodes within the same cluster. Conse-
quently, the total sum of edge connectivity strengths between
nodes within cluster i can be computed as

s
(l)
i =

∑
j

R
(l)
ij . (9)

Since directly calculating the variance of edge connectivity
strengths within a cluster is computationally expensive, we
approximate it using the variance of node degrees within the
cluster. Specifically, the number of nodes in cluster i is

n
(l)
i =

∑
j

B
(l)
ij , (10)

and the mean degree of nodes within the cluster i is

m
(l)
i =

s
(l)
i

n
(l)
i

, (11)

Then, the degree variance within the cluster i is calculated as

v
(l)
i =

1

n
(l)
i

∑
j

(R
(l)
ij −m

(l)
i)2. (12)

Consequently, the structural importance can be computed as

α
(l)
i = σ

(
s
(l)
i

1 + v
(l)
i

)
. (13)

The Semantic Importance. The semantic importance of a
node reflects the degree to which its embedding contributes
meaningful information to downstream tasks. To assess this,
inspired by SAGPool [Lee et al., 2019], we adopt a learnable
module (e.g., a multi-layer perceptron (MLP)) that assigns
self-attention weights to nodes in an end-to-end manner. This
enables the model to focus on the most discriminative nodes
within the graph. The semantic importance is computed as

β
(l)
i = σ(MLP(z

(l)
i)). (14)

The Multi-View Node Importance. These three perspec-
tives—informational, structural, and semantic—are comple-
mentary, each capturing a distinct aspect of node importance.
To facilitate their collaboration in generating more compre-
hensive and robust node importance scores, we introduce
three normalized trainable parameters (i.e., δ(l)x +δ

(l)
y +δ

(l)
z =

1), which serve as weights for each view. The final multi-view
node importance score is computed as

ω
(l)
i = δ(l)x θ

(l)
i + δ(l)y α

(l)
i + δ(l)z β

(l)
i . (15)

3.3 The Attention Mechanism
To construct more informative coarsened graphs, it is essen-
tial to aggregate node features within each cluster based on
their importance, thereby generating more expressive cluster
representations. Although we introduced the multi-view node
importance score (in Section 3.2), a global metric for assess-
ing node importance that remains consistent across all clus-
ters, it is not sufficiently comprehensive. Relying solely on
this score as the attention weight for node aggregation may
cause a highly important node to dominate the information in
its surrounding clusters, resulting in overly similar represen-
tations among neighboring clusters.

To address this issue, we introduce a new metric to assist in
evaluating node importance based on its structural role within
the corresponding cluster. Since our method forms clusters
around center nodes, we assign an importance weight to each
node according to its relative position within the cluster, i.e.,
its distance from the center node. This Position Importance
is then combined with the multi-view node importance to de-
termine the final attention weight of each node within the cor-
responding cluster. As a result, the attention weight of the
same node may vary across different clusters.

Specifically, for each distance h, we normalize the multi-
view importance scores of nodes that are h hops away from
the cluster center node j, which is defined as

M
(l)
h ij

=


exp(ω

(l)
i)∑

k∈Nh(j)
exp(ω

(l)
k)

, if d(i, j) = h;

0, else.

(16)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Then, we learn different position importance parameters
ϕ
(l)
h for nodes at varying distances from the center, and com-

bine them with the normalized multi-view node importance
scores to derive the node attention matrix M (l) ∈ RNl×Nl as

M (l) =
H∑

h=0

ϕ
(l)
h M

(l)
h . (17)

where
∑H

h=0 ϕ
(l)
h = 1, and H is a hyperparameter that repre-

sents the clustering range. M (l)
ij indicates the attention weight

of node i within the cluster centered at node j.

3.4 The Graph Pooling
To coarsen the graph at the l-th layer, we first extract the in-
dices of the Top-K nodes based on the multi-view node im-
portance scores ω(l) as

idx(l) = rank(ω(l), Nl+1). (18)

where Nl+1 = ⌈kNl⌉ represents the number of nodes in the
(l + 1)-th layer and k is the pooling ratio.

We then directly extract the corresponding columns from
the node attention matrix M (l) ∈ RNl×Nl using these indices
to construct the assignment matrix S(l) ∈ RNl×Nl+1 as

S(l) = M (l)(:, idx(l)). (19)

This operation eliminates the need for additional computa-
tional resources to learn assignment matrices, while directly
providing the attention weights for nodes within each cluster.

Then, we use this assignment matrix to perform node at-
tention aggregation within each cluster, obtaining the node
feature matrix X(l+1) ∈ RNl+1×dl

′
in the next layer as

X(l+1) = S(l)TZ(l). (20)

Since our approach allows a single node to belong to mul-
tiple clusters, the same edge may be associated with differ-
ent cluster pairs during edge aggregation. Therefore, the at-
tention coefficient for an edge should vary depending on the
clusters to which it connects. To simplify the computation,
we compute the attention weight for an edge as the product of
attention weights of the connected nodes within their respec-
tive clusters. In other words, we assume that the connections
between more important nodes are more significant. Thus,
the edge connectivity strength between clusters p and q in the
next layer can be computed as

A(l+1)
pq =

∑
i∈p, j∈q

(S
(l)
ip S

(l)
jq)A

(l)
ij . (21)

and the weighted aggregation adjacency matrix A(l+1) ∈
RNl+1×Nl+1 for the coarsened graph can be computed as

A(l+1) = S(l)TA(l)S(l). (22)

Method Assignment Matrix Computational Complexity①

DiffPool S = softmax(GNN(X,A)) O(KN2)
StructPool S : Minimize E(S) ② O(N3)

MinCutPool S = MLP(X) , minCUT loss ③ O((E +NK)K)
SEP-G S : Minimize HT (G) ④ O(2N + logN(E logN +N))

ABDPool S = argmax(GNN(X,A)) O(KN2)⑤

SCHPool S = M(:, idx)⑥ O(E +N)

① N and E denote the number of nodes and edges respectively, and K denotes the
number of nodes after pooling.

② E(·) is the Gibbs energy, including unary energy and pairwise energy.
③ minCUT loss consists of cut loss, which approximates the mincut problem, and

orthogonality loss, which spurs the assignments to be orthogonal.
④ HT (G) is the structural entropy for G on coding tree T .
⑤ Note that the complexity analysis is based on processing a single graph. Al-

though ABDPool and DiffPool have equivalent theoretical complexities, ABD-
Pool computes node attention through iterative processing of each graph, which
prevents parallelization. As a result, its practical computational efficiency is sig-
nificantly lower than that of DiffPool.

⑥ M denotes the node attention matrix, as defined in Eq. (17).

Table 1: Comparison of SCHPool and Other Cluster-based Methods.

3.5 The Computational Complexity
Unlike previous cluster-based hierarchical pooling methods
(as summarized in Table 1), both the adjacency and assign-
ment matrices of the SCHPool can be stored and computed
using sparse tensors, reducing the computational complexity
to O(E + N). More specifically, the complexity of GNN
operation is O(EF +NFF ′) ≈ O(E +N), where the fea-
ture dimensions F and F ′ are constants. The computation of
informational importance involves operations of complexity
O(EF ′) ≈ O(E), while semantic importance requires only
O(NF ′) ≈ O(N). Structural importance involves multiply-
ing two sparse matrices, with complexity O(E · dB), where
dB is the average number of non-zero elements per column in
matrix B. Since dB is typically small and bounded, the com-
plexity can be approximated as O(E). During the pooling
stage, no additional computations are needed for the sparse
assignment matrix S. Node aggregation exhibits a complex-
ity of O(ESF

′) ≈ O(ES), where ES < E. Edge aggre-
gation involves two sparse matrix multiplications and thus
shares the same complexity as the structural importance com-
putation, i.e., approximately O(E). In summary, the overall
computational complexity of SCHPool is O(E +N).

4 Experiments
We empirically evaluate the proposed method against other
deep learning approaches for graph classification on nine
benchmarks, including D&D [Dobson and Doig, 2003],
PROTEINS [Borgwardt et al., 2005], NCI1, NCI109 [Wale et
al., 2008], FRANKENSTEIN [Orsini et al., 2015], IMDB-B,
IMDB-M, COLLAB, and REDDIT-B [Yanardag and Vish-
wanathan, 2015]. Detailed statistics are shown in the Table 2.
Note that when nodes in a graph lack labels or features, the
node degree can be used as the label.

4.1 Baselines and Experimental Settings
We adopt eight hierarchical pooling methods as baselines
for comparison, which include three Top-K based methods:
SAGPool(H) [Lee et al., 2019], TopKPool [Gao and Ji, 2019],
and ASAP [Ranjan et al., 2020], as well as five cluster-based
methods: DiffPool [Ying et al., 2018], StructPool [Yuan and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset Graphs Classes Vertices(Avg.) Edges(Avg.) Edge Density(Avg.) Clustering coefficient(Avg.) Labels/Attributes Domain
D&D 1178 2 284.32 715.66 0.028 0.480 Labels Biochemical

PROTEINS 1113 2 39.06 72.82 0.212 0.513 Labels Biochemical
NCI1 4110 2 29.87 32.30 0.089 0.003 Labels Biochemical

NCI109 4127 2 29.68 32.13 0.089 0.003 Labels Biochemical
FRANKENSTEIN 4337 2 16.90 17.88 0.171 0.011 Attributes Biochemical

IMDB-B 1000 2 19.77 96.53 0.521 0.947 - Social
IMDB-M 1500 3 13.00 65.94 0.772 0.969 - Social
COLLAB 5000 3 74.49 2457.78 0.509 0.891 - Social

REDDIT-B 2000 2 429.63 497.75 0.022 0.059 - Social

Table 2: Dataset Statistics.

D&D PROTEINS NCI1 NCI109 FRANKENSTEIN IMDB-B IMDB-M COLLAB REDDIT-B
Set2Set 71.94 ± 0.56 73.27 ± 0.85 68.55 ± 1.92 61.04 ± 2.69 61.46 ± 0.47 72.90 ± 0.75 50.19 ± 0.39 79.55 ± 0.39 -
SortPool 75.58 ± 0.72 73.17 ± 0.88 73.82 ± 1.96 68.59 ± 0.67 63.44 ± 0.65 72.12 ± 1.12 48.18 ± 0.83 77.87 ± 0.47 76.02 ± 1.73
SAGPool(G) 71.54 ± 0.91 72.02 ± 1.08 74.18 ± 1.20 74.06 ± 0.78 62.57 ± 0.60 72.16 ± 0.88 49.47 ± 0.56 78.85 ± 0.56 74.45 ± 1.73
GMT 78.72 ± 0.59 75.09 ± 0.59 76.35 ± 2.62 74.87 ± 0.47 62.69 ± 0.25 73.48 ± 0.76 50.66 ± 0.82 80.74 ± 0.54 -

SAGPool(H) 74.72 ± 0.82 71.56 ± 1.49 67.45 ± 1.11 67.86 ± 1.41 61.73 ± 0.76 72.55 ± 1.28 50.23 ± 0.44 78.03 ± 0.31 75.53 ± 3.53
TopKPool 73.63 ± 0.55 70.48 ± 1.01 67.02 ± 2.25 66.12 ± 1.60 61.46 ± 0.84 71.58 ± 0.95 48.59 ± 0.72 77.58 ± 0.85 85.12 ± 0.34
ASAP 76.58 ± 1.04 73.92 ± 0.63 71.48 ± 0.42 70.07 ± 0.55 66.26 ± 0.47 72.81 ± 0.50 50.78 ± 0.75 78.64 ± 0.50 -

DiffPool 77.56 ± 0.41 73.03 ± 1.00 62.32 ± 1.90 61.98 ± 1.98 60.60 ± 1.62 73.14 ± 0.70 51.31 ± 0.72 78.68 ± 0.43 82.12 ± 1.06
StructPool 78.45 ± 0.40 75.16 ± 0.86 78.64 ± 1.53 - - 72.06 ± 0.64 50.23 ± 0.53 77.27 ± 0.51 -
MinCutPool 78.22 ± 0.54 74.72 ± 0.48 74.25 ± 0.86 74.05 ± 2.48 61.65 ± 0.72 72.65 ± 0.75 51.04 ± 0.70 80.87 ± 0.34 -
SEP-G 77.98 ± 0.57 76.42 ± 0.39 78.35 ± 0.33 73.17 ± 0.42 - 74.12 ± 0.56 51.53 ± 0.65 81.28 ± 0.15 -
ABDPool 74.13 ± 0.52 73.24 ± 0.91 71.54 ± 1.28 71.78 ± 1.35 - 70.58 ± 0.71 50.63 ± 1.47 - 82.75 ± 0.82

SCHPool 78.79 ± 0.31 77.09 ± 0.13 77.22 ± 0.11 75.91 ± 0.20 69.53 ± 0.20 74.45 ± 0.28 53.02 ± 0.15 81.96 ± 0.08 85.82 ± 0.24

Table 3: Classification Accuracy (In % ± Standard Error) for Comparisons.

Hyperparameter Range
Learning rate 5e-3, 1e-3, 5e-4
Pooling ratio 0.25, 0.5, 0.8
Pooling layer 1, 2, 3, 4

Clustering range 1, 2

Table 4: The Grid Search Space for the Hyperparameters.

Ji, 2020], MinCutPool [Bianchi et al., 2020], SEP-G [Wu
et al., 2022], and ABDPool [Liu et al., 2022]. Moreover,
we consider four global pooling methods for comparison:
Set2Set [Vinyals et al., 2016], SortPool [Zhang et al., 2018],
SAGPool(G) [Lee et al., 2019], and GMT [Baek et al., 2021].

In our experiments, we employ 10-fold cross-validation for
evaluation and report the average accuracy along with the
standard deviation over 10 runs. For the proposed SCHPool,
we utilize a 3-layer GNN model with an output dimension
of 64 to generate node embeddings. Furthermore, we per-
form hyperparameter tuning using a grid search strategy (as
detailed in the Table 4). Our code is publicly available.1

4.2 Results and Discussions
Table 3 shows that the proposed SCHPool outperforms all
alternative methods on eight of the nine datasets, particularly
the FRANKENSTEIN dataset, indicating that our method ex-
cels on datasets with node attributes. The only exception is
the NCI1 dataset, where the accuracy of two cluster-based hi-
erarchical pooling methods, StructPool and SEP-G, is slightly
higher than that of SCHPool. The effectiveness of SCHPool
can be attributed to three key factors.

1https://github.com/zhzhaoo/SCHPool

PROTEINS FRANKENSTEIN IMDB-M
Top-K based 76.38 ± 0.16 67.94 ± 0.31 52.77 ± 0.18

Cluster based 77.09 ± 0.13 69.53 ± 0.20 53.02 ± 0.15

Table 5: Classification Accuracy (In % ± Standard Error) across
Different Hierarchical Pooling Strategies.

First, unlike global pooling methods, SCHPool is able to
capture hierarchical structural characteristics of the graph, re-
sulting in a more refined graph representation. Second, com-
pared to Top-K based pooling methods, SCHPool preserves
more node information and generates coarsened graphs with
better connectivity. Furthermore, SCHPool introduces an
effective multi-view scoring function to evaluate node im-
portance. Even when the model degenerates into the Top-
K based strategy, it still outperforms existing Top-K based
methods (as shown in Table 5). Third, in contrast to pre-
vious cluster-based pooling methods, SCHPool integrates a
comprehensive attention mechanism to adaptively aggregate
node features within clusters and edge connectivity strengths
between clusters. This enables the construction of more infor-
mative coarsened graphs, enhancing the model performance.
Thus, the proposed SCHPool model outperforms previous
methods on most datasets.

4.3 The Ablation Study
To further evaluate the effectiveness of each component in
the proposed SCHPool, we perform ablation experiments
on three representative datasets: PROTEINS (from the bio-
chemical domain with node labels), FRANKENSTEIN (from
the biochemical domain with node attributes), and IMDB-M
(from the social domain without node labels and attributes).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

PROTEINS FRANKENSTEIN IMDB-M
Informational 76.63 ± 0.20 68.66 ± 0.31 52.85 ± 0.07

Structural 75.89 ± 0.36 68.65 ± 0.18 52.31 ± 0.24
Semantic 75.67 ± 0.11 68.73 ± 0.16 52.75 ± 0.24

w/o Informational 76.17 ± 0.09 68.99 ± 0.21 52.78 ± 0.17
w/o Structural 76.42 ± 0.25 68.59 ± 0.13 52.83 ± 0.16
w/o Semantic 76.67 ± 0.24 69.39 ± 0.23 52.87 ± 0.12
Multi-View 77.09 ± 0.13 69.53 ± 0.20 53.02 ± 0.15

Table 6: Classification Accuracy (In % ± Standard Error) for Vali-
dating the Effectiveness of the Multi-View Node Scoring Function.

PROTEINS FRANKENSTEIN IMDB-M
w/o Att. Mech. 75.78 ± 0.59 68.96 ± 0.23 52.21 ± 0.13

Att. Mech. (w/o Pos.) 76.50 ± 0.30 68.77 ± 0.13 52.81 ± 0.19
Attention Mechanism 77.09 ± 0.13 69.53 ± 0.20 53.02 ± 0.15

Table 7: Classification Accuracy (In % ± Standard Error) for Vali-
dating the Effectiveness of the Attention Mechanism.

We assess the effectiveness of the different views in the
multi-view node scoring function. The results, as shown in
Table 6, indicate that each view contributes positively, with
the best performance achieved when all views are combined.
Table 7 demonstrates the effectiveness of our proposed at-
tention mechanism. Additionally, the attention mechanism
incorporating position importance outperforms the one based
solely on multi-view node importance.

4.4 The Efficiency Analysis
To evaluate the efficiency of our model, we record the average
training time per epoch and memory usage on the IMDB-M,
NCI1, D&D, and COLLAB datasets. These datasets were
chosen for their varying graph quantities and sizes, as de-
tailed in the Table 2. We compare our proposed SCHPool
with four end-to-end cluster-based hierarchical pooling meth-
ods, including Diffpool, StructPool, MinCutPool, and ABD-
Pool. The clustering process in SEP-G is preprocessed, mak-
ing it unsuitable for a fair comparison with these methods.
To ensure a fair comparison, we set the pooling ratio at 0.25
and the number of pooling layers to 2 for methods that re-
quire manually specified hyperparameters during pooling, in-
cluding Diffpool, ABDPool and SCHPool. All models were
trained under identical conditions, using a batch size of 128
on a single RTX 2080 Ti GPU (12GB).

As shown in Table 8, our model significantly outperforms
all other end-to-end cluster-based pooling methods in terms
of runtime, as our approach eliminates the need for com-
puting complex and dense assignment matrices. As a re-
sult, both adjacency and assignment matrices can be stored
and computed using sparse tensors. In terms of memory
usage, our method also demonstrates an advantage on most
datasets. However, on the COLLAB dataset, the memory us-
age is notably higher. This is attributed to the dense edges
in the graphs of this dataset (with an average edge density
of 0.509), where using sparse matrices can result in greater
memory overhead compared to dense matrices, due to the ad-
ditional storage required for the indices of non-zero elements.
Nevertheless, despite the increased memory usage, the use of
sparse tensors significantly enhances the efficiency.

IMDB-M NCI1 D&D COLLAB

Diffpool 0.75s 1.88s 5.26s 14.65s
326M 356M 2302M 1332M

StructPool 7.12s 26.72s - 85.11s
260M 466M OOM 2448M

MinCutPool 1.06s 3.09s - 29.97s
864M 356M OOM 2860M

ABDPool 22.16s 88.87s 147.78s 189.43s
938M 844M 3144M 2194M

SCHPool 0.72s 1.84s 0.64s 4.17s
290M 284M 1058M 9214M

Table 8: Average Training Time per Epoch and GPU Memory Con-
sumption across Different Cluster-based Pooling Methods, with the
Best and Second-Best Results Highlighted in Bold and Underlined,
Respectively. OOM means Out of Memory.

Edge Density
#Graphs #Nodes 0.01 0.1 0.2 0.4

1000 100 0.30s 0.31s 0.36s 0.45s
414MB 470MB 540MB 942MB

1000 500 0.39s 1.47s 2.28s -
790MB 4842MB 16104MB OOM

5000 100 1.50s 1.53s 1.65s 2.01s
414MB 470MB 546MB 944MB

5000 500 1.83s 7.16s 11.28s -
792MB 4852MB 16118MB OOM

Table 9: Average Training Time per Epoch and GPU Memory Con-
sumption in Synthetic Graph Datasets.

Furthermore, we generate synthetic graph datasets with
varying graph quantities, sizes, and edge densities, as shown
in Table 9. All experiments used fixed hyperparameters on an
RTX 3090 GPU (24GB). The results show that our method’s
memory usage scales primarily with the number of edges,
remaining efficient for sparse graphs common in real-world
scenarios. Moreover, the runtime increases marginally with
graph size or quantity, demonstrating the method’s excep-
tional computational efficiency.

4.5 Hyperparameter Sensitivity Analysis
In this section, we conduct three sensitivity analyses to eval-
uate the impact of hyperparameters on the proposed SCH-
Pool. First, we examine the effect of the pooling ratio on the
D&D, IMDB-M, and REDDIT-B datasets, using pooling ra-
tios k ∈ {0.25, 0.5, 0.8}. The results in Figure 2 show that
datasets with lower clustering coefficients, such as REDDIT-
B, benefit from higher pooling ratios. This is because the
nodes in these graphs are sparsely distributed, leading to clus-
ters that contain less node information. A smaller pooling ra-
tio causes a rapid reduction in graph size, resulting in the loss
of node information, thereby degrading model performance.

Next, we investigate the impact of the number of pooling
layers on the D&D and IMDB-B datasets, with pooling lay-
ers L ∈ {1, 2, 3, 4} (as shown in Figure 3). The results sug-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0.25 0.5 0.8
77

78

79

A
cc

ur
ac

y
(%

)
D&D

0.25 0.5 0.8
Pooling Ratio

52

53

54 IMDB-M

0.25 0.5 0.8
84

85

86

REDDIT-B

Figure 2: Sensitivity Analysis of the Pooling Ratio in the SCHPool.

1 2 3 4
76.5

77.0

77.5

78.0

78.5

A
cc

ur
ac

y
(%

)

D&D
Clustering Range = 1
Clustering Range = 2

1 2 3 4
The Number of Pooling Layer

73.5

74.0

74.5

75.0

75.5

A
cc

ur
ac

y
(%

)

IMDB-B
Clustering Range = 1
Clustering Range = 2

Figure 3: Sensitivity Analysis of the Pooling Layer and Clustering
Range in the SCHPool.

gest that the optimal number of pooling layers is related to
the graph size. For larger graphs, such as those on the D&D
dataset, more pooling layers are required to capture the struc-
tural characteristics of the graph.

Finally, we assess the influence of the clustering range on
model performance by testing ranges H ∈ {1, 2} on the D&D
and IMDB-B datasets. As shown in Figure 3, graphs with
higher average clustering coefficients, such as IMDB-B, ben-
efit from a smaller clustering range due to denser node con-
nections. A larger clustering range, in contrast, may incorpo-
rate irrelevant node information into the clusters, compromis-
ing locality and impairing model performance.

5 Conclusion
In this paper, we have proposed a novel hierarchical pool-
ing method, SCHPool, for graph classification. Unlike exist-
ing cluster-based pooling approaches, the proposed SCHPool
eliminates the need to compute complex and dense assign-
ment matrices, significantly improving the computational ef-
ficiency. Moreover, it integrates a lightweight yet multi-view
attention mechanism that adaptively aggregates both the node
features within clusters and the edge connectivity strengths
between clusters, resulting in more informative coarsened
graphs and further enhancing model performance. Experi-
ments demonstrate the effectiveness of the proposed method.

A Proof
Under the assumption that the components of the neighbor-
hood conditional distribution of each node are independent
and follow a Gaussian distribution, i.e,

p(z
(l)
i |z(l)N (i)) =

1√
2πσ

(l)
i

2
exp

− (z
(l)
i − µ

(l)
i)2

2σ
(l)
i

2

 ,

with
µ
(l)
i = [µ

(l)
i 1, µ

(l)
i 2, ..., µ

(l)
i d] = f(z

(l)
N (i)).

The neighborhood information gain of each node can be
served as an approximate empirical estimation of its neigh-
borhood conditional entropy.

Proof.

H(z
(l)
i |z(l)N (i))

= E[−log p(z
(l)
i |z(l)N (i))]

= E[−log
d∏

c=1

p(z
(l)
i c|z

(l)
N (i))]

≈ 1

m

m∑
k=1

−log
d∏

c=1

p(z
(l)
i

(k)

c |z(l)N (i)

(k)
)

=
1

m

m∑
k=1

d∑
c=1

−log p(z
(l)
i

(k)

c |z(l)N (i)

(k)
)

=
1

m

m∑
k=1

d∑
c=1

 (z(l)i

(k)

c − µ
(l)
i

(k)

c)2

2σ
(l)
i

2 + log

√
2πσ

(l)
i

2


=

1

2mσ
(l)
i

2

m∑
k=1

(||z(l)i

(k)
− µ

(l)
i

(k)
||2)2 + d log

√
2πσ

(l)
i

2

≈ 1

2σ
(l)
i

2 (||z
(l)
i − µ

(l)
i ||2)2 +

d

2
log2πσ

(l)
i

2

=
1

2σ
(l)
i

2 (||z
(l)
i − f(z

(l)
N (i))||2)

2 + d log
√
2πσ

(l)
i

=
1

2σ
(l)
i

2 γ
(l)
i

2
+ d log

√
2πσ

(l)
i

Acknowledgments
This work is supported by the National Natural Science
Foundation of China under Grants T2122020, 61602535,
U21A20473, and 62172370. This work is also supported in
part by the Humanity and Social Science Foundation of Min-
istry of Education (24YJAZH022), and the Program for In-
novation Research in the Central University of Finance and
Economics.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Baek et al., 2021] Jinheon Baek, Minki Kang, and Sung Ju

Hwang. Accurate learning of graph representations with
graph multiset pooling. In ICLR, 2021.

[Bai et al., 2019] Lu Bai, Yuhang Jiao, Lixin Cui, and Ed-
win R. Hancock. Learning aligned-spatial graph convolu-
tional networks for graph classification. In ECML-PKDD,
volume 11906, pages 464–482, 2019.

[Bai et al., 2022a] Lu Bai, Lixin Cui, and Edwin R. Han-
cock. A hierarchical transitive-aligned graph kernel for
un-attributed graphs. In ICML, volume 162, pages 1327–
1336, 2022.

[Bai et al., 2022b] Lu Bai, Lixin Cui, Yuhang Jiao, Luca
Rossi, and Edwin R. Hancock. Learning backtrackless
aligned-spatial graph convolutional networks for graph
classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(2):783–798, 2022.

[Bai et al., 2023] Lu Bai, Yuhang Jiao, Lixin Cui, Luca
Rossi, Yue Wang, Philip S. Yu, and Edwin R. Hancock.
Learning graph convolutional networks based on quan-
tum vertex information propagation. IEEE Transactions
on Knowledge and Data Engineering, 35(2):1747–1760,
2023.

[Bai et al., 2024] Lu Bai, Lixin Cui, Yue Wang, Ming Li,
Jing Li, Philip S. Yu, and Edwin R. Hancock. HAQJSK:
hierarchical-aligned quantum jensen-shannon kernels for
graph classification. IEEE Transactions on Knowledge
and Data Engineering, 36(11):6370–6384, 2024.

[Bianchi and Lachi, 2023] Filippo Maria Bianchi and Veron-
ica Lachi. The expressive power of pooling in graph neural
networks. In NeurIPS, pages 71603–71618, 2023.

[Bianchi et al., 2020] Filippo Maria Bianchi, Daniele Grat-
tarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In ICML, volume 119,
pages 874–883, 2020.

[Borgwardt et al., 2005] Karsten M. Borgwardt, Cheng Soon
Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexan-
der J. Smola, and Hans-Peter Kriegel. Protein function
prediction via graph kernels. In ISMB, pages 47–56, 2005.

[Chen et al., 2019] Hongxu Chen, Hongzhi Yin, Tong Chen,
Quoc Viet Hung Nguyen, Wen-Chih Peng, and Xue Li.
Exploiting centrality information with graph convolutions
for network representation learning. In ICDE, pages 590–
601, 2019.

[Cui et al., 2024] Lixin Cui, Lu Bai, Xiao Bai, Yue Wang,
and Edwin R. Hancock. Learning aligned vertex con-
volutional networks for graph classification. IEEE
Transactions on Neural Networks and Learning Systems,
35(4):4423–4437, 2024.

[Dobson and Doig, 2003] Paul D Dobson and Andrew J
Doig. Distinguishing enzyme structures from non-
enzymes without alignments. Journal of molecular biol-
ogy, 330(4):771–783, 2003.

[Duvenaud et al., 2015] David Duvenaud, Dougal Maclau-
rin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik,
and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NeurIPS, pages
2224–2232, 2015.

[Errica et al., 2020] Federico Errica, Marco Podda, Davide
Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In ICLR, 2020.

[Gao and Ji, 2019] Hongyang Gao and Shuiwang Ji. Graph
u-nets. In ICML, volume 97, pages 2083–2092, 2019.

[Gao et al., 2021] Hongyang Gao, Yi Liu, and Shuiwang Ji.
Topology-aware graph pooling networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
43(12):4512–4518, 2021.

[Gao et al., 2022] Xing Gao, Wenrui Dai, Chenglin Li,
Hongkai Xiong, and Pascal Frossard. ipool - information-
based pooling in hierarchical graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems,
33(9):5032–5044, 2022.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[Ju et al., 2024] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu,
Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao Shen,
Fang Sun, Zhiping Xiao, Junwei Yang, Jingyang Yuan,
Yusheng Zhao, Yifan Wang, Xiao Luo, and Ming Zhang.
A comprehensive survey on deep graph representation
learning. Neural Networks, 173:106207, 2024.

[Knyazev et al., 2019] Boris Knyazev, Graham W. Taylor,
and Mohamed R. Amer. Understanding attention and gen-
eralization in graph neural networks. In NeurIPS, pages
4204–4214, 2019.

[Lee et al., 2019] Junhyun Lee, Inyeop Lee, and Jaewoo
Kang. Self-attention graph pooling. In ICML, volume 97,
pages 3734–3743, 2019.

[Li et al., 2016] Yujia Li, Daniel Tarlow, Marc
Brockschmidt, and Richard S. Zemel. Gated graph
sequence neural networks. In ICLR, 2016.

[Li et al., 2018] Yaguang Li, Rose Yu, Cyrus Shahabi, and
Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In ICLR, 2018.

[Liu et al., 2022] Yue Liu, Lixin Cui, Yue Wang, and Lu Bai.
Abdpool: Attention-based differentiable pooling. In ICPR,
pages 3021–3026, 2022.

[Liu et al., 2023a] Chuang Liu, Yibing Zhan, Jia Wu, Chang
Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: Progress, chal-
lenges, and opportunities. In IJCAI, pages 6712–6722,
2023.

[Liu et al., 2023b] Chuang Liu, Yibing Zhan, Baosheng Yu,
Liu Liu, Bo Du, Wenbin Hu, and Tongliang Liu. On
exploring node-feature and graph-structure diversities for
node drop graph pooling. Neural Networks, 167:559–571,
2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Orsini et al., 2015] Francesco Orsini, Paolo Frasconi, and
Luc De Raedt. Graph invariant kernels. In IJCAI, pages
3756–3762, 2015.

[Qu et al., 2017] Meng Qu, Jian Tang, Jingbo Shang, Xiang
Ren, Ming Zhang, and Jiawei Han. An attention-based
collaboration framework for multi-view network represen-
tation learning. In CIKM, pages 1767–1776, 2017.

[Ranjan et al., 2020] Ekagra Ranjan, Soumya Sanyal, and
Partha P. Talukdar. ASAP: adaptive structure aware pool-
ing for learning hierarchical graph representations. In
AAAI, pages 5470–5477, 2020.

[Schlichtkrull et al., 2018] Michael Sejr Schlichtkrull,
Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with
graph convolutional networks. In ESWC, volume 10843,
pages 593–607, 2018.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12:2539–2561,
2011.

[Sun et al., 2020] Mengying Sun, Sendong Zhao, Coryan-
dar Gilvary, Olivier Elemento, Jiayu Zhou, and Fei Wang.
Graph convolutional networks for computational drug de-
velopment and discovery. Briefings in Bioinformatics,
21(3):919–935, 2020.

[Vinyals et al., 2016] Oriol Vinyals, Samy Bengio, and Man-
junath Kudlur. Order matters: Sequence to sequence for
sets. In ICLR, 2016.

[Wale et al., 2008] Nikil Wale, Ian A. Watson, and George
Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and In-
formation Systems, 14(3):347–375, 2008.

[Wu et al., 2022] Junran Wu, Xueyuan Chen, Ke Xu, and
Shangzhe Li. Structural entropy guided graph hierarchi-
cal pooling. In ICML, volume 162, pages 24017–24030,
2022.

[Wu et al., 2023] Shiwen Wu, Fei Sun, Wentao Zhang,
Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: A survey. ACM Computing Surveys,
55(5):97:1–97:37, 2023.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? In ICLR, 2019.

[Yanardag and Vishwanathan, 2015] Pinar Yanardag and
S. V. N. Vishwanathan. Deep graph kernels. In SIGKDD,
pages 1365–1374, 2015.

[Ye et al., 2023] Rongji Ye, Lixin Cui, Luca Rossi, Yue
Wang, Zhuo Xu, Lu Bai, and Edwin R. Hancock.
C2N-ABDP: cluster-to-node attention-based differen-
tiable pooling. In GbRPR, volume 14121, pages 70–80,
2023.

[Ying et al., 2018] Zhitao Ying, Jiaxuan You, Christopher
Morris, Xiang Ren, William L. Hamilton, and Jure

Leskovec. Hierarchical graph representation learning with
differentiable pooling. In NeurIPS, pages 4805–4815,
2018.

[Yuan and Ji, 2020] Hao Yuan and Shuiwang Ji. Structpool:
Structured graph pooling via conditional random fields. In
ICLR, 2020.

[Zhang et al., 2018] Muhan Zhang, Zhicheng Cui, Marion
Neumann, and Yixin Chen. An end-to-end deep learn-
ing architecture for graph classification. In AAAI, pages
4438–4445, 2018.

[Zhang et al., 2023] Zhen Zhang, Jiajun Bu, Martin Ester,
Jianfeng Zhang, Zhao Li, Chengwei Yao, Huifen Dai, Zhi
Yu, and Can Wang. Hierarchical multi-view graph pooling
with structure learning. IEEE Transactions on Knowledge
and Data Engineering, 35(1):545–559, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

