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Abstract

Contextual Inverse Optimization (CIO) is a gener-
alized framework of the predict-then-optimize ap-
proach, also referred to as decision-focused learn-
ing or contextual optimization, aiming to learn a
model that predicts the unknown parameters of a
nominal optimization problem using related co-
variates without compromising the solution quality.
Unlike the predict-then-optimize approach, which
assumes access to datasets containing realized un-
known parameters, CIO considers a setting where
only historical optimal solutions are available. Pre-
vious work has primarily focused on CIO under lin-
ear programming problems and proposed methods
based on optimality conditions. In this study, we
propose a general algorithm based on inverse opti-
mization as a more general approach that does not
require optimality conditions. To validate its effec-
tiveness, we apply the proposed method to multi-
ple CIO problems and demonstrate that it performs
comparably to or better than existing predict-then-
optimize methods, even without ground-truth un-
known parameters.

1 Introduction

In many decision-making problems modeled as optimization
problems, a decision-maker frequently suffers from the fact
that some parameters of the optimization model contain un-
certainty. For instance, a road planner predicts traffic demand
based on information about weather conditions or time of day
and presents an optimal route to drivers based on the fore-
cast results. The predict-then-optimize paradigm [El Balghiti
et al., 2019; Elmachtoub and Grigas, 2022] studies a setting
where the decision-maker has access to a history of covari-
ates which is correlated with the unknown parameter of the
optimization model and the realization of the unknown pa-
rameters in the past, and the objective is to learn a model that
predicts unknown parameters which leads to a better quality
of decisions.

One might think that it is sufficient to build a prediction
model by using existing statistical or machine learning meth-
ods, such as ridge regression, and then subsequently perform
an optimization process with the output of the trained model.
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Figure 1: The history of a mean squared loss (left) and a relative
regret (right) for a shortest path problem trained by ridge regression.
The blue (orange) line is the result of training (test) data, and the
error bands represent =1 of the standard deviation from the aver-
age. These results imply that the naive prediction method does not
contribute to the quality of the decision of the nominal optimization
problem.

Figure 1 shows that such a typical two-stage framework fails
to produce a high-quality decision. On the left-hand side of
Figure 1, the history of the mean squared loss is shown for
predicting the coefficient vector of the shortest path problem.
The right-hand side of Figure 1 shows a history of relative
regrets, which represents the difference between the true op-
timal value and the objective value calculated by the solution
of an optimization problem whose unknown parameters are
predicted by a trained model. It can be observed that a model
trained using the mean squared error does not significantly
contribute to improving the solution quality. Indeed, the re-
gret on the test data (orange line) shows little improvement
from the initial parameters.

Besides a predict-then-optimize paradigm, methodologies
to support high-quality decision-making in the presence of
uncertainty by integrating machine learning and optimiza-
tion methods have been extensively studied in the name
of contextual optimization [Hu er al., 2022; Sadana et al.,
2024], decision-focused learning [Amos and Kolter, 2017;
Wilder e al., 2019; Mandi et al., 2022] and prescriptive anal-
ysis [Bertsimas and Kallus, 2020].

The paradigms mentioned above consider a situation in
which the available data contains the realized unknown op-
timization parameters to be predicted. In contrast, research
on what is called contextual inverse optimization, which con-
siders a more general situation in which the realized opti-
mal solutions to the nominal optimization problem of interest
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are available, has attracted much attention [Sun et al., 2023;
Besbes et al., 2023; Mishra et al., 2024].

Prior work on contextual inverse optimization [Sun et al.,
2023; Mishra et al., 2024] has basically focused on linear pro-
gramming problems and proposed learning methods based on
the optimality conditions. These methods are fundamentally
limited to linear programming problems to which optimality
conditions can be applicable, and cannot be directly applied
to more general problems, such as integer programming prob-
lems, where the feasible region is defined as a subspace of
discrete space.

In this paper, to address the limitation of the optimization
problem that can be handled in the existing methods for con-
textual inverse optimization, we propose a general method for
solving contextual inverse optimization problems involving
integer programming problems that do not explicitly require
the optimality conditions.

1.1 Contributions
The contributions of this study are summarized as follows:

1. We provide a method for solving contextual inverse op-
timization problems. Unlike existing work for contex-
tual inverse optimization [Sun er al., 2023; Mishra er
al., 2024], the proposed method is not limited to lin-
ear programs and can be applied to any linear objec-
tive optimization problem, including integer programs
in which inverse optimization can be applicable. Fur-
thermore, unlike existing predict-then-optimize meth-
ods, our method does not require hyperparameter tun-
ing for the learning rate. As a result, the model can be
trained in fewer epochs compared to traditional methods.

2. The proposed method employs an inverse optimization
algorithm as an oracle. This study demonstrates that in-
verse optimization can be effectively utilized as an algo-
rithm for contextual inverse optimization problems. It is
known that inverse optimization can be efficiently solved
for specific problems like the knapsack problem. As al-
gorithms for inverse optimization continue to advance, it
is expected that the proposed method will also improve.

3. We empirically examine the effectiveness of the pro-
posed method for several contextual integer optimiza-
tion problems. Although our method does not need the
ground-truth unknown parameters of the nominal opti-
mization problem, the performance is competitive with
existing methods such as smart, predict-then-optimize
[El Balghiti er al., 2019] that require the unknown pa-
rameters and perturbed-based method [Berthet er al.,
2020]. Additionally, while the proposed method re-
quires more computation time per iteration than existing
methods, we found that the overall computational time
is comparable with that of existing methods because it
converges after a small number of iterations.

1.2 Notation

Let n be a positive integer. Define N as a set of positive in-
tegers. Let R™ and Z" be the set of real-valued vectors of
dimension n and the set of integer vectors of dimension n,

respectively. Additionally, let R” and Z’} be a set of non-
negative real-valued vectors of dimension n and a set of non-
negative integer vectors of dimension n, respectively. Let [n]
be a finite set {1,2,...,n}. We use lowercase bold letters
for vectors and uppercase bold letters for matrices. Let I,, be
an identity matrix of size n and O be a zero matrix of appro-
priate size. For a vector & € R", the symbol ||-|| denotes a
general norm on R", ||-||,, denotes the p-norm for p > 1 on
R™, and |||~ denotes the maximum norm on R™.

2 Problem Statement

Let n and d be positive integers. Given a feasible region X' C
7™, consider an integer programming problem! (IP) which is
formulated as follows:

IP(c, X): maximize c¢'x (la)
subjectto x € X CZ", (1b)

where x € X is a decision variable and ¢ € C is an un-
known parameter vector. Here, C C R" is a domain in which
the vector ¢ lives. Let *(¢) € X be an optimal solution to
the IP(¢, X'). The exact value of a vector ¢ is not known in
advance, but a covariate z € R? correlated with ¢ is avail-
able. In other words, we have access to a historical dataset
Dy = {(z;, :cj)}ilil, which consists of a pair of a covariate
and an optimal solution. Here, for any ¢ € [N], } is an opti-
mal solution to the IP(¢;, X'), where ¢; is the true cost vector
realized when the covariate is z;.

In contrast to the predict-then-optimize setting, the contex-
tual inverse optimization setting is more challenging because
true cost vectors are not included in the dataset. Thus, even
simple two-stage methods cannot be directly applied. Indeed,
the predict-then-optimize setting can be reduced to the con-
textual inverse optimization setting by solving the optimiza-
tion problem for the true cost vectors included in the dataset.

The primary objective of the contextual inverse optimiza-
tion setting is to obtain a prediction model that maps a covari-
ate to an unknown coefficient vector of a nominal optimiza-
tion problem, which leads to a quality decision. Denote the
prediction model by f(+;®): R? — C where © is a model
parameter to be trained by some methods.

In the typical supervised learning setting, the performance
metric is considered how close the predicted cost Cpeq =
f(z;©) is to the true cost c¢. However, in the problem set-
ting described above, the ultimate goal is to obtain an optimal
solution &*(cpreq) that is close to the optimal solution x*(c).
To measure how well the prediction model performs, the re-
gret for the maximization problem in Eq. (1) is defined as

Regret(cpreq; €) := cTw*(c) - cTw*(cpred), 2)

which measures the difference between the optimal objective
value ¢ " z*(c) and the objective value ¢ z* (cpreq) When the
decision is &*(Cpreq) With ground truth c. Note that the metric
becomes 0 when the optimal solution with the predicted cost
vector is identical to that of the true optimal solution.

"This study can naturally be extended to mixed-integer linear
programming problems; however, in this paper, we focus on inte-
ger programming problems.
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3 Algorithm

Denote the integer programming problem of interest by
IP(e, X) formulated in Eq. (1) where X C Z" is a feasible
region and ¢ € R" is a cost vector of the objective function.
Let 2° € X be a feasible solution to the problem IP(c, ).
For a reference vector » € R", the inverse optimization prob-
lem is defined as the following optimization problem:

IOP(r, 2% |-|) : (3a)
lq — | (3b)

minimize
q

subjectto z’ € argmax{q'y |y X}, (3o
gEeR" (3d)

Notice that the optimal solution to the above optimization
problem in Eq. (3) determines the optimal profit vector g*
that minimizes the distance from a given  with respect to a
norm ||-|| such that a given feasible solution z° be an optimal
solution to the modified optimization problem IP(g*, X).

Using an available dataset Dy = {(z;, w;‘)}f\il, we aim
to find a model parameter ®* so that the optimal solution to
TP (Chew, X), where Cpew = f(Znew; %), is close to the opti-
mal solution to IP(¢pew, X'). Here, zney is a new observation
of the context, and cyey is a ground-truth cost vector of IP of
interest. In light of the above, for each data point (zi,x}), we
first predict a cost vector by the current model ¢; = f (zz, Q)
and obtain a perturbed vector ¢; , = ¢; + € where g5 ~
N(0,01,) forsome o > 0and k = 1,2,..., M. Then, we
solve the inverse optimization problem in Eq. (3) for each per-
turbed cost vector, and obtain their solutions gq; i for k € [M].
Finally, we update the current model parameter as the optimal
solution to the following optimization problem:

N
lef 2;© ai,klli}, “

(OIS argmln{ Z
C IR{" are optimal solutions to

1=

where {aivk}ie[N],ke[M]
IOP(¢; i, *, ||-]|) for some norm ||-|| in Eq. (3). We present
the pseudocode of the proposed algorithm to solve the con-
textual inverse optimization in Algorithm 1.

The proposed update rule in Eq. (4) is related to minimize
the loss function defined by K(@) = E¢za)~p [(O; 2, )]
where 1(©;z,2) = §Equp, [[f(20) - ()H]
Here, P and P,, denote the underlying distribution of the data
and the distribution on the set of all coefficient vectors whose
optimal solution to IP (¢, X) is @, respectively. By minimiz-
ing ¢(©®), it is expected that minimizing the model parameter
® can be obtained to prescribe a high-quality solution based
on the new context z.

3.1 Linear Model Case

We discuss the case of a linear model f(z;®) = z© where
z € R4, Let £(©) be an objective function of the convex
quadratic optimization problem in Eq. (4). Taking gradient of
the objective function of the problem in Eq. (4), £(®), with
respect to ©®, we have

N
Vel(®) =) +

i=1

M
z zl® — @Tk)
k=1

Algorithm 1: Algorithm for Contextual Inverse Opti-
mization Problem (full batch size)

Input: Dataset Dy = {(z;,z})}¥ 1, IOP(-, -, ||-||) as
anoracle, T > 0,0 > 0, M > 0, and O.
Output: Model parameter ©.
Initialization: Set ¢ « 0, and ©*) + ©,,.
1 whilet < T do

fori=1,2,...,N do
Ei $— f(Zl,(")(t))
fork=1,2,...,M do

D 2 yol,).
chyk —c; + E~k
ik < 1OP(cik, 7, [|)-

R T Y N ]

L Draw g5, ~ N (0

s | Update ©® by Eq. (4).
9 | Updatet < ¢+ 1.

10 return ©(1)

Define §; = 7 S.p; @ik Then, by introducing ma-

trices Z = [le,zQT,...,zMT € RV*d and Q =

(@1, G, - - -, qn] € RPN, we have
Vel(®)=2'20-27Q .

By solving a linear system Vg £(®) = O under the con-
dition that Z T Z is invertible, we have the following closed
form for the optimization problem of Eq. (4):

o =(2'2)"'2"q" . (5)

Unlike learning-based methods, the proposed method does
not require setting a learning rate, which eliminates the need
for hyperparameter tuning. Algorithm 1 has two parameters,
M and o, but we confirm that setting both to 1 achieves suf-
ficiently high performance in Section 4.

3.2 Inverse Integer Programming Problem

To implement Algorithm 1, it is necessary to have an inverse
optimization oracle IOP(-, -, ||-[|) for some norm ||-||. Below,
we review the prior work on solving inverse problems for in-
teger programs [Ahuja and Orlin, 2000; Heuberger, 2004].

The inverse integer programming problems under ¢; norm
are known to be reformulated into a linear programming
problem [Schaefer, 2009]. However, the number of both
decision variables and constants grows exponentially, which
makes it impractical to solve in a realistic time. It has been
shown in [Wang, 2009] and [Bulut and Ralphs, 2021] that
inverse integer programming problems can be solved by a
cutting-plane method. Given 2° and a reference point , the
cutting-plane algorithm solves the following problem at the
tth iteration:

lg — || (6a)

minimize
q
subjectto q'x < q'x’ V€&, (6b)
where & = {x',x?,... 2"} is the optimal solutions gen-
erated in the previous iterations so far. After obtaining the



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 2: A Cutting-Plane Algorithm for Inverse
Integer Programming Problem (c.f., [Wang, 2009])

Input: Integer program IP (¢, X'), feasible solution
x" € X, and reference point 7.
Output: Cost vector g such that the optimal solution
to revised problem IP(q, X) is x°.
1 Initialization: Set g; = r, 1 be an optimal solution
to problem in Eq. (7), &, < {x1}, and t + 1.
2 while ¢/ (' — 2°) > 0do
3 Solve optimization problem (6) and obtain g;.
4 Solve integer program (7) and obtain x;.
5 Update &1 < & U {x;}and t « t + 1.

¢ return q;.

optimal solution g; to the problem (6), the algorithm solves
the following integer programming problem:

maximize ¢, x. (7)
xeX

If the condition g, (@' — ) < 0 satisfies, then the algo-
rithm terminates and outputs g; as an optimal solution to
the inverse optimization problem; otherwise update &1 =
& U {x'} and repeat the above procedure. We present the
pseudo-code of the cutting plane algorithm in 2. It has been
proven that Algorithm 2 terminates in a finite number of iter-
ations and outputs an optimal solution to the inverse integer
programming problem [Wang, 2009, Theorem 1, Theorem 2].

Note that inverse optimization for mixed-integer program-
ming problems has also been studied, and algorithms based
on the branch-and-bound [Wang, 2013] and cutting-plane
method [Bulut and Ralphs, 2021; Bodur et al., 2022] have
been proposed. Thus, the proposed method can be naturally
extended to solve contextual inverse mixed-integer program-
ming problems.

3.3 Inverse Optimization of Specific Problems

In Section 3.2, we have discussed that any inverse optimiza-
tion problems can be solved by the cutting-plane algorithm.
However, the cutting-plane algorithm may not be efficient be-
cause it requires solving optimization problems iteratively as
a subproblem at each iteration (c.f., line 3 and 4 in Algo-
rithm 2). In this subsection, we discuss that inverse opti-
mization problems can be solved more efficiently by consid-
ering the specific structure of the target optimization problem.
Here, we take the {0, 1}-knapsack problem as an example
[Roland er al., 2013], but other optimization problems, such
as shortest path problems [Burton and Toint, 1992; Call and
Holmberg, 2011] and matching problems [Zhang et al., 1999;
Huang and Liu, 1999], have also been studied. It should be
mentioned that the knapsack problem is an important combi-
natorial optimization problem because it can be used to model
resource allocation under constraints, providing a foundation
for optimizing decisions in finance, logistics, and scheduling
through combinatorial optimization techniques.

Consider the {0, 1}-knapsack problem in which a decision
maker selects a pair of given n items numbered as Z = [n]

with the aim of maximizing the sum of utility under a ca-
pacity constraint. Formally, the {0, 1}-knapsack problem is
formulated as follows:

maximize c'x (8a)
subjectto w '@ < W, (8b)
xz; €{0,1} VieZ, (8¢)

where ¢ = (¢;)_; is a utility of items, w = (w;)?, is items
weights, and W € N is a maximum weight capacity.

Let g;(1t) € R be the maximum utility that can be achieved
when considering the first ¢ items of the set of items Z and a
capacity p € {0,1,..., W}. The value of g;(u) can be deter-
mined through the optimal value of the following combinato-
rial optimization problem:

gi(p) = maximize ¢’z
x

subject to ijxj < u,
j=1
z; € {0, 1}
The optimal value to the original {0, 1}-knapsack problem in
Eq. (8) is equivalent to finding the value of g,,(W). Notice

that the {0, 1}-knapsack problem can be solved by the dy-
namic programming formulated as

oy o Jgima(p) i <wg,
9ilk) = {max {9i-1(1), gi—1(p — w;) + ¢i}

Vi € [i].

if > wy,

with the initial state g1 () = 0 for p € {0,1,...,w; — 1}
and g1 (1) = ¢ for p € {wy,wy +1,...,W}. This dy-
namic programming approach can be reduced to a linear pro-
gramming problem to minimize g,,(7/') under the set of lin-
ear constraints of g;(u) for i € [n], p € {0,1,...,W}.
For a given feasible solution z° € R" and a reference point
r € R”™, [Roland et al., 2013] has shown that the following
linear programming problem finds a vector d* € R’} with

(¢*)"x° = max {(¢*) " | « € X'} under some norm |-||:

minimize ||q — || (10a)

a,(9i (1)) i,

subjectto  »  g;z§ > gn (W), (10b)
jez
The set of constraints of g;(u), (10c)
q>0. (10d)

where q € R"} and (g;(pt)),,, are decision variables. In case
we take ||-|| as ¢1 norm or ¢, norm, the above problem is
reduced to be a linear programming problem.

4 Numerical Experiments

To investigate the effectiveness of the proposed method, we
conducted numerical experiments on several optimization
problems and compared the proposed method against the ex-
isting methods for a predict-then-optimize framework.
Specifically, we consider the {0, 1}-knapsack problem for-
mulated in Eq. (8) and the diverse bipartite matching problem
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adapted in [Ferber er al., 2020] following the synthetic data
generation process studied in [Elmachtoub and Grigas, 2022].
As for existing methods, we employed a ridge regression as a
two-stage approach (2s), smart predict-then-optimize (spo+)
[Elmachtoub and Grigas, 20221, differentiation of black box
combinatorial solvers (dbb) [Vlastelica et al., 2020], a noise
contrastive estimation approach (nce) [Mulamba er al., 2021],
a learning to rank approach (ltr) [Mandi er al., 2022], and a
perturbed optimizers approach (pfy) [Berthet ez al., 2020].

We implemented all the existing methods by using the
pyepo package [Tang and Khalil, 2024] and trained all
the methods for 100 number of epochs with the full batch
size. For existing methods, we employed Adam optimizer
[Kingma and Ba, 2014] with a learning rate n = 1072 to
minimize each loss function. For the learning to rank meth-
ods, we employed pairwise loss and listwise loss, and we set
the ratio of calling the optimization oracle as 0.5. For the
perturbed optimizer approach, we set both the number of per-
turbations and the amplitude of the perturbation as 1. For
the proposed method (Algorithm 1), we set T = 100, M =
1, 0 = 1, and we solve the inverse optimization problem
by the optimization problem given in Eq. (10) for a {0, 1}-
knapsack problem and the cutting-plane algorithm (Algo-
rithm 2) for a diverse bipartite matching problem. For both
methods, we use the linear model, f(z; @) = 20, to predict
a coefficient vector.

It should be mentioned that several approaches to contex-
tual inverse optimization problems have been proposed [Sun
et al., 2023; Mishra et al., 2024]; however, these methods are
limited to linear programming problems (and quadratic pro-
grams) to which optimality conditions can be exploited, and
thus we excluded these methods in this experiment.

Experimental programs were implemented in Python 3.11
and run on a Windows 10 PC with an Intel(R) Xeon(R) W-
1270 CPU 3.40 GHz and 64 GB RAM. For both the existing
and proposed methods, we used the Gurobi Optimizer 11.0.2
[Gurobi Optimization, LLC, 2024] to solve the optimization
problems.

4.1 Problem Description

Since we have already described the {0, 1}-knapsack prob-
lem in Section 3.3, we omit the problem description here. We
present the problem definition of the diverse bipartite match-
ing problem adapted in [Ferber er al., 2020], in which the
objective is to find an optimal matching between the scien-
tific publications with the desired proportion. This problem
is formulated as the following integer programming problem:

maxgcmize Z Z Ci i Ti (11a)
i€EN1 jEN,
subjectto = € X(m, p,q), (11b)

where N; and N, are the sets of nodes representing sci-
entific publications, X'(m,p,q) is a feasible set, and ¢ =
(¢i,j)vieN, vjen, is a reward matrix which indicates the like-
lihood that a link between each pair of nodes from N; to No
exists. Also, m = (m; j)vien, vjen, is a binary matrix indi-
cating the relationship between publications, and p, ¢ € [0, 1]

are proportions of sharing each field. The formal description
of the constraints is referred to [Ferber ef al., 2020].

4.2 Synthetic Data Generation

Next, we provide the synthetic data generation process for the
optimization problems to be solved. A vector of a covariate
z € R? is generated from the normal distribution Ny, 0'?)
with a mean ¢ = 0 and variance 02 = 1, and a coefficient
vector ¢ € R" is generated from a polynomial mapping from
the covariates with additional noise. Formally, each element
of the cost vector is generated as per the following model:

5 1 deg

where deg > 0 is a fixed positive integer representing a poly-
nomial degree, B* € R™*4 ig a latent true coefficient matrix
whose each entry By, (k € [n],l € [d]) takes 1 with probabil-
ity 0.5 and 0 with probability 0.5, and ¢; is a multiplicative
noise term that is sampled from the uniform distribution on
[1 —&,1 + 2] for some constant parameter € > 0.

For the {0, 1}-knapsack problem in Eq. (8), we set the
dimensionality of the covariates as d = 5, the number of
items as n = 20, and the maximum capacity of the knap-
sack as W = 30. The utility vector of each item c is gen-
erated according to the polynomial model in Eq. (12). The
weights of each item are generated as w; = | 1o5u;] where
u; ~ Unif({300, 301, ...,799}).

For the diverse bipartite matching problem in Eq. (11), we
set the dimensionality of the covariates as d = 5, the number
of nodes in Ny and Ny as |[N1| = |Nz2| = 5, the desired pro-
portion as p = ¢ = 0.25, and the reward matrix c is generated
according to the polynomial model in Eq. (12). Note that the
original bipartite matching problem [Ferber et al., 2020] is
formulated on graphs sampled from the CORA citation net-
work dataset [Sen er al., 2008], but we consider the synthetic
data generation process because the size of the original opti-
mization problem is large, so that the proposed method does
not work in realistic time.

For the experiments, we first construct a dataset consists
of Dy = {(zi,¢i, )}, where {2;}Y, and {¢;} ¥, are
generated by the above procedure, and {z}} Y, are the opti-
mal solutions to the optimization problem of interest when

the unknown parameters are given by {ci}é\il. Existing

predict-then-optimize methods require Dy = {(z;,¢;)}Y,
as the dataset, whereas our method only require Dy =
{(z;,z¥)},. For all experiments, we set the number of
training samples as N = 1000 and the number of test samples

as N = 1000.

‘€5, (12)

4.3 Performance Metrics

In this numerical experiment, especially for a maximization
problem, we consider relative regret as a performance mea-
sure. For the predicted coefficient vector ¢ of the objective
function, the relative regret is defined as

c'xz*(c) —c'z*(¢)

cz*(c) ’

Rel-Regret(c; ¢) := (13)
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Figure 2: The history of relative regret for the {0, 1}-knapsack problem with a polynomial degree deg € {2,4} (2a, 2b) and for the diverse
bipartite matching problem with a polynomial degree deg € {2, 4} (2c, 2d). The left figures of both (2a, 2b) and (2c, 2d) show the result for
training data (n = 1000), and the right figure shows the result for test data (n = 1000).

where ¢ and *(+) are the true coefficient vector and the opti-

mal solution, respectively. For the dataset D N, We report the
average and standard deviation of the relative regret.

4.4 Results

Performance In Figure 2, we show the history of an aver-
age of relative regret in Eq. (13) for each method to the {0, 1}-
knapsack problem with a polynomial degree deg € {2,4}
(Figures (2a,2b)) and the diverse bipartite matching problem
with deg € {2,4} (Figures (2¢c, 2d)), respectively. The er-
ror bands represent an interval +1 of the standard deviation
from the average. Regarding the proposed method, we report
the results of Algorithm 1 with IOP(-, -, ||-||1) for the {0, 1}-
knapsack problem, and Algorithm 1 with IOP(:, -, ||-||c) for
the diverse bipartite matching problem.

As an overall trend, we can see that the proposed method
shows a rapid decrease in relative regret in the early stages
of learning compared to other predict-then-optimize meth-
ods. This is because the proposed method is not a learning-
based method, and thus it does not require the learning rate
tuning. Among the existing methods, spo+ and pfy perform
well, which is consistent with the results reported in numer-
ical experiments in prior work (e.g., [Mandi er al., 2022;
Sun et al., 2023; Mishra et al., 2024]). spo+ is the best
for the diverse bipartite matching problem. In addition, pfy
shows good performance, but the results show unstable when
deg = 2 for both problems. Finally, we emphasize again
that our proposed method does not need information about
the true cost vectors, unlike all other predict-then-optimize
methods, except for the perturbed method. Nevertheless, it is
remarkable that the proposed method is competitive with the
baseline methods.

Computational time From Figure 2, we observe that the
proposed method performs as well as or better than existing
methods. However, the proposed method needs to solve an in-
verse optimization problem at each epoch, which is expected
to result in higher computational costs compared to existing
methods. Therefore, we summarized the computational time
per epoch in seconds for each method in Table 1. Although
the proposed method incurs several tens of times the compu-
tational cost compared to existing methods, it has the advan-
tage of demonstrating high performance in the early stages of
training, as shown in Figure 2.

Effect of M in Algorithm 1 So far, we have reported the
results of the proposed method with parameter M = 1. Here,
we examine how Algorithm 1 performs across different val-
ues of M. In this experiment, we set the maximum number
of epochs as 7' = 10. Table 2 presents the mean and standard
deviation of the relative regret, and the computational time
per epoch for the proposed method with M setto 1, 2, 5, and
10. The results demonstrate that increasing the value of M
does not significantly change the performance of the result-
ing model, which suggests that setting M = 1 is sufficient
for practical applications.

5 Related Work

This section provides related work that aims to incorporate
contextual information about a nominal optimization problem
into the learning process for a prediction model. We review
the methods for contextual inverse optimization. For a com-
prehensive overview of contextual optimization and decision-
focused learning, we refer the reader to review papers [Mandi
et al., 2024; Sadana et al., 2024].

Contextual inverse optimization is a field that aims to learn
a prediction model for unknown parameters of nominal opti-
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Existing methods

Algorithm 1

Problem 2s spo+  ltr (pairwise) It (listwise)  nce dbb pfy 111 Il ]l co
Knapsack 1.78 2.33 14.17 2.21 2.17 3.16 2.44 52.80 87.71 59.90
(0.20) (0.18) 3.79) (0.38) (0.41) (0.19) (0.18) (22.51) (30.00) (39.26)
Matching 12.03 17.89 16.68 14.66 15.01 2373 1922 147.15 135.14 87.11
(1.25) (1.30) (3.53) (3.22) (3.26) (1.28) (1.57) (18.27) (19.46) (14.33)
Table 1: Computational time (average and standard deviation) per epoch in seconds of existing methods and Algorithm 1.
Algorithm 1 with IOP(-,-.||-|[1)  Algorithm 1 with IOP(-,-.||-||2)  Algorithm 1 with IOP(, -, ||| c0)
Problem )M  Rel-Regret CPU time (s) Rel-Regret CPU time (s) Rel-Regret CPU time (s)
Knapsack 1 9.80e-02 59.1 1.02e-01 65.5 1.09e-01 38.4
(4.78e-02) 47.4) (4.79e-02) 3.2) (5.03e-02) 2.4
2 9.86e-02 104.0 1.03e-01 116.2 1.08e-01 106.1
(4.72e-02) (86.4) (4.64e-02) 6.7 (4.76e-02) (72.1)
b) 9.64e-02 175.2 1.00e-01 283.6 1.07e-01 152.8
(4.78e-02) 17.1) (4.62e-02) (14.6) (4.80e-02) 6.7)
10 9.69e-02 445.3 1.02e-01 615.5 1.09e-01 364.1
(4.68e-02) (38.1) (4.64e-02) 17.5) (4.80e-02) (15.7)

Table 2: Relative regrets (average and standard deviation) on test data at the final epoch (10 epoch) of Algorithm 1 with M € {1,2,5,10}
for {0, 1}-knapsack problem, and computational time (average and standard deviation) per epoch in seconds.

mization problems using only a historical dataset containing
contextual information and corresponding optimal solutions.
This framework generalizes contextual optimization, where
the historical dataset contains ground-truth unknown param-
eters that need to be predicted.

For contextual inverse linear programming problems, [Sun
et al., 2023] proposed a learning method referred to as max-
imum optimality margin, which is based on the reduced cost
optimality condition [Luenberger and Ye, 2008] under the as-
sumption that the target linear program is non-degenerate. Al-
though any linear programming problems can be converted to
non-generate problems by adding an arbitrarily small pertur-
bation as the authors of [Sun et al., 2023] have remarked, it
is not trivial that the optimal basis and its complement can
be obtained by the given optimal solution. Subsequently,
[Mishra et al., 2024] proposed a method of alternating projec-
tions onto convex sets that employs the Karush-Kuhn-Tucker
(KKT) condition for linear programs. They constructed the
convex set C' such that the given optimal solution x* is an
optimal solution to the linear program whose coefficient vec-
tor belongs to the element of C'. This approach enables us to
apply it to general contextual linear optimization problems.

Exceptionally, [Berthet er al., 2020] studied a general
framework for transforming discrete optimizations into dif-
ferentiable operations based on stochastic smoothing to pre-
vent the machine learning pipeline from being broken by
discrete decisions. Unlike other research on contextual in-
verse optimization, this framework can be applied as learning
method for arbitrary contextual inverse optimization with a
linear objective function. This study also shows the connec-
tion with Fenchel-Young losses studied in [Blondel, 2019].

6 Concluding Remarks

In this paper, we have proposed a general method for solv-
ing contextual inverse optimization problems. The proposed
method is not limited to linear programming problems as
studied in prior work [Sun et al., 2023; Mishra et al., 2024],
and can be applied to any linear objective optimization prob-
lems, including integer programming problems in which in-
verse optimization can be employed. We have shown that the
proposed algorithm corresponds to an algorithm that mini-
mizes the loss function with respect to solution quality. More-
over, we have demonstrated the effectiveness of the proposed
method for several contextual inverse optimization problems,
and the results imply that the performance of the proposed
method is competitive with existing predict-then-optimize
methods including SPO [Elmachtoub and Grigas, 2022] even
though our method does not need the ground-truth unknown
parameters of the nominal optimization problem.

For future work, we would like to mention three directions.
First, the proposed method requires solving inverse optimiza-
tion problems exactly, which poses a challenge in terms of
scalability. Therefore, we are interested in developing fast al-
gorithms to solve inverse optimization through relaxation or
other techniques. Second, it would be interesting to extend a
theoretical analysis of the proposed method. Specifically, it is
an important issue to theoretically guarantee that the optimal
solutions prescribed by the model obtained through the pro-
posed method match the true optimal solutions. Finally, this
study considered situations in which we can access the true
optimal solution, but in reality, it is common that noisy solu-
tions are observed. Based on this, we would like to develop
an algorithm for CIO when a sub-optimal solution is given.
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