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Abstract
Since the collection of labeled gaze data is la-
borious and time-consuming, methods which can
learn generalizable features by leveraging large-
scale available unlabeled data are desirable. In re-
cent years, we have witnessed the tremendous ca-
pabilities of diffusion models in generating images
as well as their potential in feature representation
learning. In this paper, we investigate whether they
can acquire discriminative representations for gaze
estimation via generative pre-training. To achieve
this goal, we propose a self-supervised learning
framework with diffusion models for gaze estima-
tion, called GazeDiff. Specifically, we utilize a con-
ditional diffusion model to generate target image
with gaze direction specified by the reference im-
age as the pre-training task. To facilitate the dif-
fusion model to learn gaze related features as con-
dition, we propose a disentangling feature learning
strategy, which first learns appearance feature, head
pose feature, and eye direction feature respectively,
and then combines them as the conditional features.
Extensive experiments demonstrate denoising dif-
fusion models are also good general gaze feature
learners.

1 Introduction
Gaze estimation is the task of measuring the gaze direc-
tion of a human in an image. It has been widely ap-
plied in human-computer interaction [Zhang et al., 2017a;
Sugano et al., 2016; Park et al., 2021], augmented real-
ity [Padmanaban et al., 2017] and driver monitoring sys-
tem [Mavely et al., 2017]. With the rapid development of
deep learning technologies, appearance-based gaze estima-
tions have achieved remarkable breakthroughs and promising
performances.

Although deep learning methods have shown promising re-
sults for gaze estimation. Training a well-performed model
needs sufficiently large and diverse labeled data, covering a
wide range of gaze directions, appearances, and head poses,
which is very laborious and time-consuming. The limited la-
beled data hinders the development of gaze estimation meth-
ods. When trained on only a small amount of annotated

samples, supervised learning methods are easy to overfit the
training data, and their performance significantly degrades
when encounter a new scenario with different data distribu-
tion. Therefore, methods which facilitate training with lim-
ited gaze annotations are highly desirable.

Self-supervised learning (SSL) has proven successful at
learning generalizable features by leveraging large-scale
available unlabeled data. Some researchers use the SSL tech-
niques (e.g. contrastive learning [Du et al., 2023; Jindal and
Manduchi, 2023] and cross-encoder disentangling [Sun et al.,
2021]) to tackle the issue of data scarcity in the field of gaze
estimation, and have achieved promising results. However,
most of them are not generative pre-training methods. Re-
cently, we have witnessed remarkable progress at the gen-
erative domain, especially with diffusion modeling proving
to be a powerful technique which can create vivid imagery
of astonishing realism. Following the idea, which considers
the ability to create is among the highest manifestations of
learning, more recently, a few researchers [Chen et al., 2024;
Xiang et al., 2023] start to explore the representational capac-
ity of diffusion models, and show promising results. How-
ever, its representational capacity for gaze estimation is still
unexplored.

To verify whether denoising diffusion models are good
general gaze feature learners, in this paper, we propose an
unsupervised gaze representation learning framework based
on diffusion modeling as shown in Figure 1. Our intuition is
that if the network learns how to generate target images with
gaze direction corresponding to the reference images, then it
has learned to extract gaze-related features from given refer-
ence images. Specifically, we utilize a conditional diffusion
model to generate target image with gaze direction specified
by the reference image as the pre-training task. The refer-
ence image goes through a feature extractor and gets a latent
feature as the condition. If we utilize the target image as the
reference image, then it behaves more like an autoencoder,
without focusing on extracting gaze-related features, which
goes against our original intention. To make the extractor
learn meaningful features for gaze direction control, we pro-
pose a disentangling feature learning strategy. Considering
gaze direction is mainly influenced by head pose and eye di-
rection (as illustrated in supplementary material Figure 1), a
image with same identity as the target image but with differ-
ent gaze directions is used as input to extract the appearance
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feature. The eye region of the target image is used as input
to extract the eye direction feature, and the target image with
Gaussian blur augmentation is used as the input to extract the
head pose feature. Finally these features are combined as the
conditional features to guide the target image generation.

In summary, the contributions of our work are as follows:

• We are the first to propose a self-supervised learning
framework based on diffusion modeling for gaze estima-
tion. It leverages the powerful generative ability of diffu-
sion models to enhance the gaze representation learning.

• To facilitate the diffusion model to learn gaze related
features as condition to control the gaze direction of gen-
erated image accurately, we design a disentangling fea-
ture learning strategy. It can learn appearance feature,
head pose feature, and eye direction feature respectively,
and combine them as the conditional features.

• Our method achieves the state-of-the-art performance in
extensive evaluation settings, which demonstrates that,
denoising diffusion models are also good general gaze
feature learners.

2 Related Work

Appearance-based Gaze Estimation
Result from the availability of large-scale datasets [Zhang et
al., 2020; Park et al., 2020; Krafka et al., 2016] and dra-
matic improvements in computing power, appearance-based
gaze estimation methods have received widespread attention
and achieved remarkable performance. However, these meth-
ods still suffer from obvious performance deterioration on
cross-dataset evaluation, owing to the data distribution shifts.
The common approach is to learn a more generalizable gaze
representation. Such as, PureGaze [Cheng and Bao, 2022]
and [Xu et al., 2023] improve robustness to unfavorable in-
terference through adversarial learning. CLIP-Gaze [Yin et
al., 2024c] and LG-Gaze [Yin et al., 2025] exploit visual
language models to strengthen feature representation. GLA
[Zeng et al., 2025] further eliminates label distribution shifts.
And [Wang and Yin, 2025; Yin et al., 2024b] aligns fea-
ture distribution at test time to improve target domain per-
formance. But these methods are still limited by the diver-
sity of training datasets. In addition, [Ruzzi et al., 2023;
Yin et al., 2024a] generates data with gaze annotations to im-
prove sample diversity, but the realness of generated data can-
not be guaranteed. There are still certain risk in transfering to
unseed domains. So that, fully utilizing massive amounts of
unlabeled data for self-supervised learning has gradually be-
come popular.

Gaze Self-supervised Learning
Contrastive learning is widely popular due to its superior per-
formance in self-supervised learning. It maximizes mutual
information between latent representations to promote the
discrimination ability of feature extractor [Bachman et al.,
2019]. Inspired by this idea, GazeCLR [Jindal and Manduchi,
2023] and ConGaze [Du et al., 2023] construct various con-
trastive tasks to learn effective gaze representation. On the
other hand, [Yu and Odobez, 2020] learns low-dimensional

gaze representation by gaze redirection, [Sun et al., 2021]
proposes latent-code-swapping mechanism to decouple eye
features and gaze features. Furthermore, MV-DE [Bao and
Lu, 2024] draws upon multi-view constraints and designs a
multi-view gaze representation swapping strategy to derive
gaze-related feature. Nevertheless, most of them are not gen-
erative pre-training methods. Following the idea, which con-
siders the ability to create is among the highest manifesta-
tions of learning. A few researchers start to explore the repre-
sentational capacity of diffusion models, and show promising
results. However, its representational capacity for gaze esti-
mation is still unexplored.

Denoising Diffusion Models as Feature Learners
Since the advent of denoising diffusion model, marked break-
throughs have been made in numerous tasks and modalities.
Based on its powerful generative capacity, some works [Clark
and Jaini, 2024] explored the representation ability of diffu-
sion model. l-DAE [Chen et al., 2024], DDAE [Xiang et
al., 2023] and DiffMAE [Wei et al., 2023] auto encode the
same image to derive visual representation capability, the fi-
nal feature learner is detached from a part of the diffusion
model. Meanwhile, SODA [Hudson et al., 2024] is proposed
to generate novel images from another image and consists
of an encoder and denoiser. It considers images as different
views that relate visually or semantically, which significantly
enhances the encoder’s representation skills. Inspired by its
success, we explore the potential of diffusion-based represen-
tation learning for gaze estimation, and propose an efficient
self-supervised framework to learn general gaze representa-
tions.

3 Prilimilary
Our research is based on Denoising Diffusion Model (DDM)
[Sohl-Dickstein et al., 2015; Ho et al., 2020]. DDM can be
briefly considered to contain a pair of forward and backward
Markov chains. The forward process starts from a clean data
x0 and sequentially adds noise to it. At a specific time step t,
the noised data xt can be formulated by:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, t ∈ {0, ..., T} (1)

where ᾱt defines the scaling factors of the signal and noise
[Ho et al., 2020], ϵ ∈ N (0, I) is the sampled Gaussian noise.

The backward process performs image denoising in order
to recover the clean data. Specifically, DDM employs train-
able network to estimate ϵt by minimizing:

Ldenoise = Ext,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(2)

where ϵθ(·) is a function approximator intended to predict
ϵ from xt. Therefore, DDM can generate realistic images
from noise signal as ϵθ(·) be iteratively applied. Similar to
other types of generative models [Mirza and Osindero, 2014],
DDM also are capable of modeling conditional distributions
of the form p(x|y) [Rombach et al., 2022]. This can be im-
plemented by adding condition c into ϵθ(xt, t, c). Based on
the additional condition c, DDM can generate the images we
need instead of the images with random content.
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Backbone FC

Gaze Feature Extractor

Decoder Encoder

Diffusion
Process

Denoising U-Net

Appearance Feature Head Pose Feature Eye Gaze Feature Add Operation

Features Multiplied by 0 Noised Latent Feature Gaze Latent Feature Frozen

Figure 1: Overview of GazeDiff framework. It consists of two major modules, namely, a gaze feature extractor G and a condition diffusion
model C. G extracts representations from different images. C generates target gaze images based on constructed specific representations.

4 Method
4.1 Self-supervised Gaze Representation Learning

Framework
GazeDiff is a self-supervised representation learning frame-
work for gaze feature extractor training. As shown in Fig-
ure 1, it consists of two parts, a model agnostic gaze fea-
ture extractor G and a conditional diffusion model C. Specif-
ically, G includes a general network and a Fully Connected
(FC) layer, the FC layer maps image features to a specified
dimension. Such an architecture has been widely used in
gaze estimation [Cheng and Bao, 2022; Wang et al., 2022;
Bao and Lu, 2023]. As a result, different gaze estimation
models can be easily inserted into the GazeDiff framework.
Additionally, in order to reduce computational complexity
and accelerate training speed, we use the popular latent diffu-
sion model [Rombach et al., 2022] as C.

Since gaze direction is mainly influenced by head pose
and eye direction, we hope gaze feature extractor can pay at-
tention to the head pose and eye areas information from the
whole image. Thus, we extract multiple images features with
G, and explicitly disentangle the image representations into
appearance representation, head pose representation and eye
direction representation. After that, we manipulate the dis-
entangling representations to construct a gaze-specific repre-
sentation and send it to C as a condition to generate a target
image with specific appearance, head pose and eye direction.
The operational details will be explained later.

4.2 Conditional Diffusion Model
We generate gaze images to enhance the capability of gaze
representations extracted by G. In detail, we freeze the en-
coder and encoder, and fine-tune the denoising U-Net only
as described in Figure 1. First, the encoder E encodes face

image It into a latent representation z = E(It). After the
diffusion process, we got a noised latent representation zt.
Second, we condition the denoising process through cross-
attention (similar to txt-to-image diffusion models [Rombach
et al., 2022]). To be more specific, we project the condi-
tional recombined feature f̃ t to an intermediate representa-
tion τθ(f̃

t) with a gaze specific encoder τθ. Then, we map it
to the intermediate layers of U-Net via Attention(Q,K, V ) =

softmax(QKT

√
d
) · V :

Q = W
(i)
Q · φi (zt) ,K = W

(i)
K · τθ(f̃ t), V = W

(i)
V · τθ(f̃ t)

(3)
Here, φi (zt) indicates a flattened intermediate representa-

tion of U-Net, W (i)
Q , W (i)

K and W
(i)
V are trainable projection

matrices. Next, the U-Net gradually denoises zn to restore
the target latent representation z̃. Finally, the decoder D de-
codes z̃ to a realistic face image Ĩt = D(z̃). We fine-tune C
by minimizing the loss function:

LC = Ext,ϵ,t,f̃t

[∥∥∥ϵ− ϵθ(xt, t, τθ(f̃ t))
∥∥∥2] (4)

4.3 Disentangling Feature Learning Strategy
In order to control the appearance, head pose and eye direc-
tion of generated image, we need to ensure that the condition
of C contains these corresponding information. To achieve
this goal, we input various data pairs and introduce a disen-
tangling feature learning strategy.

A General Manner
In addition to inputting a single face image (we call it base
input data), just like Figure 2 - (a). Easy-to-obtain unlabeled
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Text

Gaze Feature Extractor

Conditional Diffusion Model

(a) (b) (c) (d)

Figure 2: Input data pairs and disentangling feature learning strat-
egy. (a) and (b) are the general input data that are applicable to the
vast majority of facial datasets. (c) and (d) are enhanced data pairs
for the facial datasets with specific collection settings.

facial datasets can usually construct such a hybrid data pair
(Ir, It), which consists of two images from the same iden-
tity with different head poses and eye directions, as shown
in Figure 2 - (b). Wherein, Ir is a reference image, and It

is the target image that is the generate target of conditional
diffusion model C. We respectively perform a Gaussian blur
augmentation Ab and eye region cropping augmentation Ac

on It, then we obtained two augmented images Itb and Itc .
Ab removes appearance and eye direction information, while
retaining the head contour information representing the head
pose. And Ac only retains the eye region image including the
information of eye direction, and losing appearance informa-
tion and head pose information.

As shown in Figure 1, the hybrid data pair is inputted to
GazeDiff. G extracts image features from Ir, Itb and Itc , and
combines the appearance feature fr

a from Ir, the head pose
feature f tb

h from Itb and the eye direction feature f tc
e from

Itc into a new image features f̃ t. Since Ir and It have the
same identity, the generated image based on feature f̃ t should
have the same appearance, head pose and eye direction as It.
Finally, for most facial datasets, We feed base and hybrid data
pairs together into GazeDiff for self-supervised training.

Enhanced Manners
For some special datasets, we can construct enhanced data
pairs to further promote the extraction and disentanglement of
gaze features. Specifically, some facial datasets are collected
synchronously by multiple cameras, such as ETH-XGaze
[Zhang et al., 2020], EVE [Park et al., 2020] and Columbi-
aGaze [Smith et al., 2013]. At the same time, face images
captured by different cameras have different head pose and
the same eye direction. So we can also use the images from
different cameras and a same timestamp to construct addi-
tional data pair to further enhance the ability to extract head

pose information, as shown in Figure 2 - (c). We call this pair
as pose, because pose is used to enhance the disentangling of
head pose. Moreover, there are some datasets collected with
fixed head pose, such as ETH-XGaze and ColumbiaGaze.
Multiple images captured by the same camera have different
eye directions and similar head poses. So we construct a new
data pair as shown in Figure 2 - (d) and call this pair as eye.

4.4 Supervised Gaze Estimation
After the self-supervised gaze representation learning, the
gaze feature learner G pre-trained by GazeDiff can be used
for the task of gaze estimation. When fine-tuning on labeled
gaze datasets, we add a Multi Layer Perceptrons (MLP) as
gaze regressor M to predict 3D gaze direction. We train M
by the loss function:

Lgaze (ĝ, g) = arccos

(
ĝ · g

∥ĝ∥∥g∥

)
(5)

where ĝ is model predicted gaze direction and g is the
ground truth label.

5 Experiments
5.1 Dataset
GazeDiff is a general self-supervised representation learning
framework. Therefore, we use the following datasets in our
experiments as previous methods do: ETH-XGaze [Zhang et
al., 2020], EVE [Park et al., 2020], Gaze360 [Kellnhofer et
al., 2019], GazeCapture [Krafka et al., 2016], ColumbiaGaze
[Smith et al., 2013], MPIIFaceGaze [Zhang et al., 2017b],
EyeDiap [Funes Mora et al., 2014] and VGG-Face2 [Cao et
al., 2018]. More details about above datasets can be found in
the supplementary material.

Respectively, we denote them as DX (ETH-XGaze), DE

(EVE), DG (Gaze360), DC (GazeCapture), DO (Columbi-
aGaze), DM (MPIIFaceGaze), DD (EyeDiap) and DV (VGG-
Face2).

5.2 Baseline Methods
We compare our approach with six following baselines: (i)
SimCLR [Chen et al., 2020], (ii) MoCo v3 [Chen et al.,
2021], (iii) DINO v2 [Oquab et al., 2023], (iv) MAE [He
et al., 2022], (v) DDAE [Xiang et al., 2023], (vi) GazeD-
iff−, (vii) GazeDiff and (viii) Supervised. All methods ex-
cept GazeDiff− load the released pre-trained weights on Im-
ageNet, which means only the parameters of GazeDiff− are
initialized randomly. Supervised method is trained on the an-
notated dataset and serves as the possible performance upper
bound of the self-supervised gaze representation learning, the
other methods are trained according to the self-supervised
paradigm without labels. More details can be found in the
supplementary materials.

5.3 Linear Probe Analysis
We perform linear probe analysis through within-dataset eval-
uation and cross-dataset evaluation, respectively.
Within-dataset Evaluation For the self-supervised methods,
we pre-train in DX, then freeze the pre-trained learner G and
add a FC layer as gaze regressor M for linear-probe analysis
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Figure 3: The experiment results of within-dataset and cross-dataset evaluation. All models are pre-trained in DX.

following [Chen et al., 2020]. We use different proportions
of annotated training data to adapt M and evaluate on the
separate validation data. As for the Supervised method, we
finetune the whole gaze model on different proportions of an-
notated data. We report the experiments results in Figure 3
- (a). As we can see, regardless of whether the pre-trained
weights are loaded, our proposed method GazeDiff outper-
forms other pre-training methods at different percentage of
fine-tuning data. And when fine-tuning on a small subset of
labeled data (such as 0.1% or 10% labels), GazeDiff achieves
the similar performance to Supervised method, which sug-
gesting that the learned representations are very effective for
gaze estimation task.
Cross-dataset Evaluation We perform the cross-dataset
evaluation following [Jindal and Manduchi, 2023]. The gaze
feature learner G is pre-trained in DX, then we finetune the
gaze regressor M on DM and DO separately. In order to
verify the generality of G, we sample a few samples from
each test subject for fine-tuning and evaluate on the remain-
ing samples of the same subject. We conduct 10 times for
each subject on both datasets and report the mean angular er-
rors in Figure 3 - (b) and (c).

We can observe that our GazeDiff is still obviously supe-
rior to other self-supervised pre-training methods. The an-
gular errors decrease as the number of fine-tuning samples
increasing for all methods. Meanwhile, the performance gap
between GazeDiff and Supervised reduces.

5.4 Comparsion with SOTA Gaze Representation
Learning Methods

We compare GazeDiff with existing SOTA supervised
[Cheng and Bao, 2022; Lee et al., 2022; Wang et al., 2022;
Xu et al., 2023; Bao and Lu, 2023; Yin et al., 2024c;
Yin et al., 2025; Zeng et al., 2025] and unsupervised [Yu
and Odobez, 2020; Sun et al., 2021; Du et al., 2023; Jindal
and Manduchi, 2023] gaze representation learning methods.
Since [Bao and Lu, 2024] is limited to multi-view datasets
and its results are not available in DM and DO, we exclude
their method in comparison.

Comparison with Supervised Methods
To compare the quality of learned representations with gaze
labels, we fine-tune the entire gaze estimation network in

Methods Train Data DM DD Avg.

Baseline Random Init. 7.94 8.78 8.36
ImageNet 7.40 8.22 7.81

PureGaze

DX

7.08 7.48 7.28
LatentGaze 7.98 9.81 8.90

CDG† 6.73 7.95 7.34
Xu et al. 6.50 7.44 6.97
PCFGaze 7.40 7.30 7.35

CLIP-Gaze 6.41 7.51 6.96
LG-Gaze 6.45 7.22 6.84

GLA 6.83 7.38 7.11
GazeDiff 6.57 6.95 6.76

Table 1: Comparison of supervised gaze representation learning
methods. The Avg. in the last column means the average error
on both DM and DD. Bold and underline denote the best and the
second-best result among each column. † expresses the model em-
ploys ResNet-50 as backbone.

a supervised manner based on unsupervised pre-training
weights of GazeDiff. Besides, we add two baselines with ran-
dom initialized and ImageNet pre-trained weights as a refer-
ence. Other SOTA methods trained on Dx, then evaluated
on DM and DD, the experimental results on are shown in
Table 1. We can observe that the baseline with ImageNet
pre-training weights shows a performance improvement com-
pared to the baseline with random initialized weights. When
we load the GazeDiff pre-trained weights, the cross-dataset
errors further reduce significantly. Compared with other
SOTA methods, GazeDiff achieves the best performance on
DD and gains the second-best performance on DM. In sum-
mary, GazeDiff derives the best average performance on two
evaluation datasets. This indicates that GazeDiff provides a
excellent initialization parameters for gaze estimation task.

Comparison with Unsupervised Methods
For a fair comparison, we follow the experimental settings of
[Yu and Odobez, 2020; Sun et al., 2021]. Specifically, we
use the leave-one-out (15-fold) and 5-fold cross-validation
for DD and DO. In each fold, we randomly select 50 sam-
ples with labels to fine-tune M and repeat each experiment
for 10 times. Finally, we report the average error in Table 2.
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Methods Pre-train Data DM DO Avg.

Yu et al. DO - 8.9 8.9

Sun et al.
DM 8.5 - 7.8DO - 7.0

ConGaze∗ DM 7.0 - 6.3DO - 5.5

GazeDiff DM 6.1 - 5.7DO - 5.2
GazeCLR(Equiv)

DE

7.0 6.1 6.6
GazeCLR(Inv+Equiv) 6.5 6.6 6.6

GazeDiff 6.4 5.5 6.0

Table 2: Comparison of unsupervised gaze representation learning
methods. ∗ means the method select 100 annotated samples for fine-
tuning.

Note that Yu et al. [Yu and Odobez, 2020], Sun et al. [Sun et
al., 2021] and ConGaze [Du et al., 2023] pre-trained on the
evaluation dataset, [Jindal and Manduchi, 2023] uses DE as
pre-training dataset, so we provide results with the same ex-
perimental setup for each method. The results show that re-
gardless of which dataset is selected for pre-training, GazeD-
iff always achieves the best performance.

5.5 Ablation Study
Next, we conduct detailed ablation studies to explore the
effectiveness of the proposed disentangling feature learning
strategy and the stable performance improvement of GazeD-
iff in different setting.

Ablation Study on Disentangling Feature Learning
Strategy
We proposed disentangling feature learning strategy to focus
on extracting gaze-related features, and mentioned earlier that
datasets with different collection settings can construct differ-
ent input data pairs. For example, we can construct the four
input pairs in Figure 2 on DX. So we pre-train GazeDiff on
DX, and fine-tune gaze model in a supervised manner to an-
alyze the contribution of our learning strategy. Hence, we
report the cross-dataset performance of different pre-training
input manners. Additionally, we also provide the results of
Supervised baseline with ImageNet pre-training weights as a
reference. The experimental results are reported in Table 3.
Compared with the Supervised baseline, we can see that even
with the powerful generation capability of diffusion model,
GazeDiff with base input data (equivalent to autoencoder pre-
training) only achieve a slight improvement of 0.11◦ on the
average error. With regard to our learning strategy, after
adding the hybrid data pair as input, the model gains an ob-
vious improvement of 0.58◦ compared to the GazeDiff with
base input data. Next, we add pose and eye pairs as input,
the cross-dataset performances improve again. The absolute
performance gains brought by pose and eye pairs are 0.25◦
and 0.11◦. Overall, the hybrid data pair contributes the most
to performance enhancement, and this data pair can be con-
structed from a vast majority of facial datasets. Above results
prove that our GazeDiff is a general and effective framework.

Methods Input Data DM DD Avg.base hybrid pose eye

Supervised 7.40 8.22 7.81

GazeDiff

✓ 7.25 8.15 7.70
✓ ✓ 7.10 7.13 7.12
✓ ✓ ✓ 6.83 6.90 6.87
✓ ✓ ✓ ✓ 6.57 6.95 6.76

Table 3: Ablation study results on disentangling feature learning
strategy. There are four input data pairs, base, hybrid, pose and eye
correspond to the Figure 2 - (a) to (d) respectively.

Estimation Task Input type Mean error

head pose blurred image (Ab) 10.30
eye cropped image (Ac) 24.03

eye gaze blurred image (Ab) 12.20
eye cropped image (Ac) 7.53

Table 4: Ablation study results on disentangling augmentation.

Ablation Study on Disentangling Augmentation
We apply Gaussian blur augmentation and eye region crop-
ping to reduce the impact of undesirable information in the
face image. Nevertheless, information remains in blurred and
cropped images, for example, there may be residual head pos-
ture information in the eye region cropped image. We train
models on DX to estimate head pose and eye gaze respec-
tively, then test on DM. The results are reported in Table
4.Ab indeed discards most of eye direction information, and
Ac removes most of head pose information. While it cannot
be entirely eliminated, the network is forced to extract more
accurate poses from blurred images and eye directions from
eye images in order to generate high-precision images.

Ablation Study on Pre-training Datasets
In the previous experiments, in order to maintain consistent
experimental settings with other methods, we only reported
the results of pre-training on the gaze dataset. In this section,
we pre-train on DV, which is a large facial recognition dataset
without gaze annotation, then fine-tune the model on the gaze
dataset to demonstrate the performance in actual applications.
The results are reported in Table 5. We can observe that, the
models with pre-training weights perform consistent better
than the models without pre-training weights on all training
datasets. Then, the models pre-trained on DV have a better
performance than the models pre-trained on DX. This demon-
strates that a more diversity and larger pre-training dataset can
further improve the performance of GazeDiff. It is very prac-
tical and valuable to perform unsupervised gaze pre-training
on a face dataset even without gaze labels.

For more ablation studies on training datasets and network
architectures, please refer to the supplementary materials.

5.6 Visualization Analysis

Visualization of learned feature distributions
Following [Du et al., 2023], We use t-SNE [Van der Maaten
and Hinton, 2008] to visualize the distributions of gaze repre-
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Pre-train Data Train Data DM DD Avg.

- DG 8.32 7.72 8.02
DC 6.35 6.61 6.48

DX
DG 7.30 7.59 7.45
DC 5.23 5.97 5.60

DV
DG 7.06 7.10 7.08
DC 4.96 6.12 5.54

Table 5: Ablation study results on pre-training datasets.

sentation on DM and DD. Models are pre-trained on DX.
Different colors indicate different subjects, and each point
corresponding to one image. We visualize the feature distri-
butions of appearance, head pose and eye direction separately.
The visualization results are shown in Figure 4. For the fea-
ture distributions of GazeDiff on evaluation datasets, it can be
seen that features of the same identity clustered together and
far away from the features of other people. As for head pose
features and eye direction features, they are continuously dis-
tributed and invariant to subject identity. These feature dis-
tributions indicate the image features have been successfully
disentangled into appearance, head pose and eye direction.
Overall, these results show that the representations learned
by GazeDiff are disentangled and can be easily transferred to
unseen datasets.

Latent Interpolations
As shown in Figure 5, we explore G’s feature space and dis-
cover directions that corresponding to semantic attributes of
appearance, head pose and eye direction. By traversing its
feature space, we can interpolate between images, morph-
ing from one head pose to another head pose smoothly, and
the same goes for appearance and eye direction contributes.
For example, we disentangle the image features into appear-
ance feature, head pose feature and eye direction feature. In
order to control the head pose, we linearly interpolate from
one head pose feature fh1

to another fh2
, and keep the ap-

pearance feature and eye feature unchanged. The visualiza-
tion demonstrates that, GazeDiff is trained fully unsupervised
over facial images only, but successfully disentangles the im-
age features into different parts of gaze-related representa-
tions, which proves that the effectiveness of our framework
and proposed disentangling feature learning strategy. more
visualization analysis can be found in the supplementary ma-
terial.

6 Conclusion
We propose a diffusion-based framework (GazeDiff) for self-
supervised gaze representation learning. GazeDiff exploits
the generative power of diffusion models and enhances the
quality, informativeness and interpretability of gaze represen-
tations. In order to guarantee the important head pose and
eye information are learned from face images, we design a
disentangling feature learning strategy. Specifically, we use
Gaussian blur augmentation to keep head pose information
and extract head pose feature. Then, we crop eyes region
to extract eye direction feature. Finally, we take appearance

Text

Appearance Features Head Pose Features Eye Direction Features

M
PI

IF
ac
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e
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Figure 4: Visualization of the representations learned by GazeDiff.
Different colors indicate different subjects, and one scatter corre-
sponding to one image. The first row is the feature distribution of
DM, the second row corresponds to DD.

Text

Figure 5: Latent controllability of appearance, head pose and eye
direction. The red box represents the input images. The first row
represents the results of appearance feature interpolations, the sec-
ond row denotes the results of head pose feature interpolations and
the last row indicates the results of eye direction feature interpola-
tions.

feature from a reference image and combine these features
as a condition to guide the generation. Our method achieves
the SOTA performance in extensive evaluation settings, and
the detailed ablation study and visualization analysis have
demonstrate the generality and effectiveness of our work.

Acknowledgements
This work was sponsored by National Natural Science Foun-
dation of China (62476173), Shenzhen Fundamental Re-
search Fundation(JCYJ20240813142610014) and National
Key R&D Program of China (2023YFE0204200).

Contribution Statement
This work was a collaborative effort by all contributing au-
thors. Guanzhong Zeng and Jingjing Wang made equal con-
tributions to this study and are designated as co-first authors.
Mingyang Zhou serving as the corresponding author, is re-
sponsible for all communications related to this manuscript.

References
[Bachman et al., 2019] Philip Bachman, R Devon Hjelm,

and William Buchwalter. Learning representations by

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

maximizing mutual information across views. Advances
in neural information processing systems, 32, 2019.

[Bao and Lu, 2023] Yiwei Bao and Feng Lu. Pcfgaze:
Physics-consistent feature for appearance-based gaze es-
timation. arXiv preprint arXiv:2309.02165, 2023.

[Bao and Lu, 2024] Yiwei Bao and Feng Lu. Unsupervised
gaze representation learning from multi-view face images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1419–1428, 2024.

[Cao et al., 2018] Qiong Cao, Li Shen, Weidi Xie, Omkar M
Parkhi, and Andrew Zisserman. Vggface2: A dataset
for recognising faces across pose and age. In 2018 13th
IEEE international conference on automatic face & ges-
ture recognition (FG 2018), pages 67–74. IEEE, 2018.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In In-
ternational conference on machine learning, pages 1597–
1607. PMLR, 2020.

[Chen et al., 2021] Xinlei Chen, Saining Xie, and Kaiming
He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 9640–9649,
2021.

[Chen et al., 2024] Xinlei Chen, Zhuang Liu, Saining Xie,
and Kaiming He. Deconstructing denoising diffusion
models for self-supervised learning. arXiv preprint
arXiv:2401.14404, 2024.

[Cheng and Bao, 2022] Yihua Cheng and Yiwei Bao.
Puregaze: Purifying gaze feature for generalizable gaze
estimation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 436–443, 2022.

[Clark and Jaini, 2024] Kevin Clark and Priyank Jaini. Text-
to-image diffusion models are zero shot classifiers. Ad-
vances in Neural Information Processing Systems, 36,
2024.

[Du et al., 2023] Lingyu Du, Xucong Zhang, and Guo-
hao Lan. Unsupervised gaze-aware contrastive learn-
ing with subject-specific condition. arXiv preprint
arXiv:2309.04506, 2023.

[Funes Mora et al., 2014] Kenneth Alberto Funes Mora, Flo-
rent Monay, and Jean-Marc Odobez. Eyediap: A database
for the development and evaluation of gaze estimation al-
gorithms from rgb and rgb-d cameras. In Proceedings of
the symposium on eye tracking research and applications,
pages 255–258, 2014.

[He et al., 2022] Kaiming He, Xinlei Chen, Saining Xie,
Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851,
2020.

[Hudson et al., 2024] Drew A Hudson, Daniel Zoran, Ma-
teusz Malinowski, Andrew K Lampinen, Andrew Jae-
gle, James L McClelland, Loic Matthey, Felix Hill, and
Alexander Lerchner. Soda: Bottleneck diffusion mod-
els for representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 23115–23127, 2024.

[Jindal and Manduchi, 2023] Swati Jindal and Roberto Man-
duchi. Contrastive representation learning for gaze estima-
tion. In Annual Conference on Neural Information Pro-
cessing Systems, pages 37–49. PMLR, 2023.

[Kellnhofer et al., 2019] Petr Kellnhofer, Adria Recasens,
Simon Stent, Wojciech Matusik, and Antonio Torralba.
Gaze360: Physically unconstrained gaze estimation in the
wild. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6912–6921, 2019.

[Krafka et al., 2016] Kyle Krafka, Aditya Khosla, Petr
Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wo-
jciech Matusik, and Antonio Torralba. Eye tracking for
everyone. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2176–2184,
2016.

[Lee et al., 2022] Isack Lee, Jun-Seok Yun, Hee Hyeon Kim,
Youngju Na, and Seok Bong Yoo. Latentgaze: Cross-
domain gaze estimation through gaze-aware analytic latent
code manipulation. In Proceedings of the Asian Confer-
ence on Computer Vision, pages 3379–3395, 2022.

[Mavely et al., 2017] Annu George Mavely, JE Judith,
PA Sahal, and Steffy Ann Kuruvilla. Eye gaze tracking
based driver monitoring system. In 2017 IEEE interna-
tional conference on circuits and systems (ICCS), pages
364–367. IEEE, 2017.

[Mirza and Osindero, 2014] Mehdi Mirza and Simon Osin-
dero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[Oquab et al., 2023] Maxime Oquab, Timothée Darcet, Théo
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