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Abstract

Generating talking avatar driven by audio remains
a significant challenge. Existing methods typ-
ically require high computational costs and of-
ten lack sufficient facial detail and realism, mak-
ing them unsuitable for applications that demand
high real-time performance and visual quality.
Additionally, while some methods can synchro-
nize lip movement, they still face issues with
consistency between facial expressions and up-
per body movement, particularly during silent pe-
riods. In this paper, we introduce SyncAnima-
tion, the first NeRF-based method that achieves
audio-driven, stable, and real-time generation of
speaking avatar by combining generalized audio-
to-pose matching and audio-to-expression synchro-
nization. By integrating AudioPose Syncer and Au-
dioEmotion Syncer, SyncAnimation achieves high-
precision poses and expression generation, progres-
sively producing audio-synchronized upper body,
head, and lip shapes. Furthermore, the High-
Synchronization Human Renderer ensures seam-
less integration of the head and upper body, and
achieves audio-sync lip. The project page can be
found at https://syncanimation.github.io/

1 Introduction

In recent years, audio-visual synthesis techniques have gar-
nered significant attention, with audio-driven realistic avatar
generation emerging as a key research focus. Over the
past few years, many researchers have employed GAN- or
SD-based deep generative models to tackle this task [Pra-
jwal et al., 2020; Zhang et al., 2023b; Zhong et al., 2023;
Zhang et al., 2023a; Xu et al., 2024; Wang et al., 2024;
Chen et al., 2024; Xie et al., 2024; Tan et al., 2025]. Among
them, SD-based models, leveraging model parameters and
large-scale datasets, can generate fully animated avatars from
a single reference image. However, their reliance on large-
scale and diverse individual datasets, coupled with over-
whelming computational and time costs, limits their appli-
cability in real-time scenarios such as live streaming or video
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Figure 1: SyncAnimation is the first NeRF-based generative method
that uses audio to create realistic facial and upper-body movement.

conferencing, where high fidelity and real-time rendering are
essential [Guo et al., 2024; Hu, 2024].

Recently, Neural Radiance Fields (NeRF) have been ap-
plied to audio-driven talking avatars [Mildenhall et al., 2021;
Guo et al., 2021; Li et al., 2023; Ye et al., 2023b; Kim et
al., 2024; Peng et al., 2024; Ye et al., 2023al. By associat-
ing NeRF with audio either end-to-end or through interme-
diate representations, these methods enable the reconstruc-
tion of personalized talking avatars with impressive synthesis
quality and inference speed. However, existing approaches,
such as ER-NeRF [Li et al., 2023] and Synctalk [Peng et al.,
2024], focus primarily on achieving precise synchronization
between lip movement and audio, given strong correlation.
Nevertheless, they have yet to tackle the mismatch between
audio and head poses, as well as the challenging association
between audio and facial expressions [Zhang ef al., 2023al,
ultimately reducing the realism of the generated avatar.

In this paper, we highlight the importance of generating
realistic talking avatars driven by audio, focusing on identity
consistency and detail preservation, while facing three critical
challenges that require further attention, shown in Fig. 1: (1).
Pose inconsistency with audio: Generate identical and fixed
poses across different inferred audios (derived from origi-
nal video frames), possibly even exhibiting exaggerated head
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movement in silent segments. (2). Expression inconsistency
with audio: Insufficient attention is given to facial animation
elements beyond lip-syncing, such as eyebrow movement and
blinking, which are crucial to conveying natural expressions
and emotional depth, resulting in unnatural and stiff anima-
tions. (3). Loss of paste-back ability in audio-driven pose
method: Only the head is generated, and the edges of the
body are generated with changes, causing the torso to be
displaced and therefore cannot be attached back to the ori-
gin torso. As mentioned above, audio-driven pose generation
methods cannot achieve upper-body generation, and the lack
of audio-driven expression generation results in inconsistent
expressions. Thus, a fully generative NeRF-based approach
with strong audio correlation is essential for achieving realis-
tic talking avatars.

To address these critical challenges, we propose SyncAn-
imation, a NeRF-based framework focused on audio-driven
rendering of upper body and head . This framework integrates
three core modules: the AudioPose Syncer and AudioEmo-
tion Syncer, which enable stable, precise, and controllable
mappings from audio to head poses and facial expressions,
and the High-Synchronization Human Renderer, which en-
sures seamless integration of head motion and upper-body
movement without post-processing. Together, these modules
form a unified solution for generating dynamic, expressive,
and highly audio-synchronized avatars. In summary, the main
contributions of our work are as follows:

* We propose SyncAnimation, a rendering framework
for audio-driven expression and upper body generation.
This framework generates an avatar that is highly con-
sistent with the audio and displays a diversity of actions,
while supporting both one-shot and zero-shot inference.

L]

We introduce the Audio2Pose and Audio2Emotion mod-
ules to support end-to-end efficient training, enabling
high-precision poses and expression generation, and
progressively generating audio-sync upper body, head,
and lip shapes.

Our algorithm achieves 41 FPS inference on an NVIDIA
RTX 4090 GPU, and to our knowledge, this is the first
real-time audio-driven avatar method capable of generat-
ing audio-sync upper body movement and head motion.

Extensive experimental results show that SyncAnima-
tion successfully generates realistic avatars with the
same scale as the original video and significantly out-
performs existing state-of-the-art methods in both quan-
titative and qualitative evaluations.

2 Related Work

2.1 Paste-Back Generation

GAN- and NeRF-based methods are representative of paste-
back generation. Among them, GAN-based talking head syn-
thesis has primarily focused on generating video streams for
the lip region, creating new visual effects for talking head
avatar[Cheng et al., 2022; Zhang et al., 2023b; Zhong et
al., 2023; Tan et al., 2025]. For example, Wav2Lip [Pra-
jwal et al., 2020] introduced a powerful lip-sync discrimi-
nator to supervise lip movement and penalize mismatched

mouth shapes. IP-LAP [Zhong er al., 2023] proposed an
audio-to-landmark generator and a landmark-to-video model,
using prior landmark and appearance information to recon-
struct lips from a reference image. Recently, EdTalk pre-
sented an effective disentanglement framework, using orthog-
onal bases stored in a dedicated library to represent each spa-
tial component for efficient audio-driven synthesis. With the
rise of NeRF, earlier works [Guo et al., 2021; Ye et al., 2023b;
Li et al., 2023; Peng et al., 2024] have integrated NeRF into
the task of synthesizing talking heads, using audio as the driv-
ing signal. For instance, AD-NeRF [Guo et al., 2021] was
the first to render both the torso and head but suffered from
poor generalization, and the synthesized lip movement some-
times appeared unnatural. ER-NeRF [Li et al., 2023] innova-
tively introduced tri-plane hash encoders and a region atten-
tion module, advocating a fast and precise lip-sync rendering
approach. Geneface [Ye et al., 2023b] and SyncTalk [Peng
et al., 2024] generated a generalized representation based on
extensive 2D audiovisual datasets, ensuring synchronized lip
movement across different audios. The GAN-based methods
map audio to lip-sync but paste other parts, causing blurry
lips (Fig.5). In contrast, NeRF-based methods perform full-
face synthesis but fail to synchronize audio with facial ex-
pressions, head poses, and upper-body movement.

2.2 Joint Generation

Leveraging the fundamental principles of text-to-image dif-
fusion models, recent advances in video generation based
on diffusion techniques have shown promising results [Xu
et al., 2024; Wang et al., 2024; Chen et al., 2024]. V-
Express [Wang et al., 2024] effectively links lip movement,
facial expressions, and head poses through progressive train-
ing and conditional dropout operations, enabling precise con-
trol using audio. Hallo [Xu et al., 2024] adopts a hierar-
chical audio-driven visual synthesis approach, achieving lip
synchronization, expression diversity, and pose variation con-
trol. EchoMimic [Chen et al., 2024] employs a novel training
strategy that incorporates both audios and facial landmarks
for avatar synthesis. The SD-based methods generate audio-
driven talking avatars with poses and facial animations. How-
ever, large-scale training often results in poor resemblance to
the original individual and comes with high computational
costs, making real-time applications like live streaming and
video conferencing challenging. For instance, generating a
one-minute video can take up to half an hour. Additionally,
these methods struggle with audio-motion mismatches when
handling out-of-domain audio, further limiting their suitabil-
ity for real-time use.

3 Method

In this section, we propose SyncAnimation, a generative,
audio-driven model for creating avatars with dynamic head
motion and upper-body movement in Fig. 2. The framework
includes three main components: (1). the AudioPose Syncer
for accurate audio-to-head pose mapping in Sec. 3.1, (2). the
AudioEmotion Syncer for controllable, audio-driven facial
expressions in Sec. 3.2, and (3). the High-Synchronization
Human Renderer for seamless upper-body generation with-
out head pasting in Sec. 3.3.
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Figure 2: SyncAnimation Framework: Given an image and audio, the preprocessing extracts 3DMM parameters for Audio2Pose and Au-
dio2Emotion as references (or noise). It then generates the upper body, head, and lip refinement, ensuring pose consistency and facial
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Figure 3: Audio2Pose reconstructs stable head pose offsets using au-
dio and monocular input. It employs the pre-trained Wav2attr audio
encoder for person-specific audio encoding, integrates a gaussian-
based VAE for diversity, and uses a stability model with high
dropout rate for improved pose reconstruction.

3.1 AudioPose Syncer

Audio-aware Poses Generation. Learning a model to con-
trol head motion from audio is challenging due to two main
issues: (1). The rotation matrix must be orthogonal with
a determinant of 1, but direct prediction can lead to non-
orthogonal matrices, causing errors in rotation and pose re-
construction. (2). There is inherent ambiguity between audio
and motion, leading to jitter or frame skipping in the gener-
ated avatar. We propose AudioPose to address these issues,
as shown in Fig.3. Considering the difficulty in predicting or-
thogonal rotation matrices with a high-dimensional compact
representation, we transform the task into predicting three eu-
ler angles (roll «, pitch 3, and yaw -y). Given rotation matrix
R, the conversion formula is:

a = atan2(Ro1,R11), (= atan2(R32, Ras),

v = atan2(—Ras1, \/R3, + R%;)
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Figure 4: Audio2Emotion reconstructs 3DMM expression offsets
from audio and monocular input. To address weak expression-
audio correlation and blinking periodicity, we replace the diversity
template with a conditional VAE guided by time T, and context-
dependent audio features Ageq.

Rj; denotes the element in the i-th row and j-th column of
the rotation matrix R. The euler angles e = («, 3,7) and
the translation t = (x,y, z) jointly define the head poses,
controlling its orientation and position.

The non-linear transformation of the rotation matrix intro-
duces new challenges, such as gimbal lock (5 =~ £90°) caus-
ing non-invertibility, and pose variations influenced by euler
angles and translations within narrow ranges. In real-world
videos, head poses are confined to small ranges, not extending
to extreme values like £90° or £180°. This insight is incor-
porated into training to address these challenges. Specially,
the prediction range is restricted from (e, t) € (—o0, +00)
to (Ae,At) € (e + A,t+ A), where € and t are the av-
erage poses, and A defines the deviation. To ensure con-
sistency, outputs are converted into a normalized distribution
(Ae, o ae), standardizing the deviation range as follows:

Off (e) = 2°72¢ o (r) = AEAE ()
OAe OAt
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To address the ambiguity between audio and pose in issue 2,
we introduce two conditional vectors Spoee and Dyose. The
overall Audio2Pose prediction pipeline is as follows:

Off (e).,, Off (t). ., = F(g(a), Dyose; Spose) (3

Where F'(-) represents the pose generation model. Both
Dyose and Spe are conditional vectors, with Spos enhanc-
ing pose stability and Do guiding diversity. For g(a),
we use FaceXHuBERT [Haque and Yumak, 2023] as the
audio encoder, as it is more suited than pre-trained mod-
els like DeepSpeech and wav2vec [Hannun et al., 2014;
Baevski et al., 20201, which lack person-specific information.
Audio-only poses prediction (a — Off (e),,q, Off (t),,4)
suffers from ambiguity. To address this, we introduce an
conditional vector Sy, to enhance pose stability by provid-
ing reference poses, reducing the solution space from one-
to-many to many-to-one. During training, the regression loss
updates Spoce, Which is adaptively adjusted to resolve ambigu-
ities. Specifically, at the 7-th frame, gaussian noise is added
to the poses of the (7 — 1)-th frame, which is then encoded
through Multilayer Perceptrons (MLPs) to generate Spose.

Spose = fMLPs([Off (6771),0ff (t‘rfl)] +N(MS; 65)) 4)

where Off (e,_1) and Off (t._1) represent the pose infor-
mation of the (7 — 1)-th frame, and V' (ug, d5) denotes gaus-
sian noise with mean pg and standard deviation dg.

To generate stable yet diverse poses, We further introduce
a diversity-guided conditional vector D, which injects un-
certainty and provides diverse pose templates via Gaussian
sampling. VAE backpropagation improves convergence and
accuracy over single audio regression (Exp. 4.5). To normal-
ize the D5 vector space, we apply the KL-divergence loss:

Li = D (N (1, 83) [N (0, 1) ®)

where N (pp,6%) € RP is the latent distribution, and
N(0,1) is the standard normal distribution. For the poses
generation model F'(-), we use the U-Net architecture [Qian
et al., 2021; Wang et al., 2024], which extracts audio fea-
tures and incorporates Dpose and Speee.  The U-Net gen-
erates a shared feature representation, which is then pro-
cessed by MLPs to predict rotation Off (e), , and translation
Off (t),,4. Reconstruction loss L., is applied to align the
generated poses with the ground truth.

Lreg = || (Off (e), Off (t)) - (Off (€) 4> OFf (t)aud)Hl 6)
Therefore, the final poses generation loss is:
L:pose = /\KLEKL + )\regﬁreg' @)

where Agr and A, are the weights for the VAE and regres-
sion loss terms, respectively.

Audio-guided Upper-body Generation. We generally fol-
low the rendering process in preceding work [Guo er al.,
2021; Li et al., 2023]. Originated from the representation
of neural radiance field, the implicit function is defined as
FnerF : (X,d) — (c,0), where x = (x,y, z) refers to 3D
spatial location and d is the viewing direction. The output ¢
and o determine color value and corresponding density.

To render high-fidelity and realistic scene efficiently, we
employ a 2D-multiresolution hash encoder introduced by [Li
et al., 2023]. A specific encoder designed for position x =
(z,y, 2) projected on plane AB is defined as HAZ : (a,b) —
h, where a and b are projected coordinates, while h2? €
RP represents L levels of features with D dimensions.

To ensure dynamic upper-body generation and consistency
between head motion and upper body movement, the audio-
predicted Off (e), , and Off (t), , are recovered to space
representations e,,g and t,,q via inverse normalization. Sub-
sequently, three trainable coordinates X are deformed as ren-
dering conditions. The implicit function is defined as:

Fupper—body : (Xv €aud, t-‘auda X; Ht) — (Ca 0)» (8)

where H? denote the hash encoder. During training, we opti-
mize the upper-body model by minimizing the error between

C(r) and genuine pixel color C(r) through:

Lupper-body = ||C(r) — C(r)|13. ©9)

3.2 AudioEmotion Syncer

Lifelike Expression Prediction. Audio-driven research of-
ten focuses on lip-sync, neglecting other facial expressions
with weaker audio correlation [Tian ef al., 2025], leading to
unnatural expressions. We use Arkit face blendshapes, se-
mantically rich 3D coefficients, to model the upper face re-
gion b [Peng er al., 2023]. However, for the eyes, b reaches
extreme values (0 or 1) during full eye closure or opening. To
enable full eye closure, we predict the offsets Off (b) relative
to the average b and incorporate stability constraints S, and
diversity guidance Dey, (Fig.4).

oft (b)aud = F(g(a), Dexpa Sexp) (10)

Blinking relies on temporal patterns, making it hard to model
and often causing unnatural behavior like missing blinks. To
address this, we enhance the VAE within the diversity-guided
Dy to capture temporal dependencies by incorporating time
features T'» and sequential audio A, enabling the CVAE to
generate Dy, with strong temporal correlations.

Dexp S fCVAE (Off(b) ‘ T‘r; Aseq) (11)

where T, is encoded via sinusoidal functions and pro-
cessed by an MLP. A is derived by integrating audio
data from n neighboring frames {a,_, ..., a4}, and pro-
cessed through stacked convolutional layers to generate tem-
porally contextualized representations that ensure dynamic
expression continuity. Given the weak audio-expression cor-
relation, we enhance the expression reference by modifying
the input to the stability vector Seyp,. Specifically, the previous
expression b,_; and gaussian noise N (g, dg) are replaced
by the current frame’s expression b..

For the audio-driven expression model, we optimize Leyp
using the following loss function:

Eexp = )\KLEKL + )\regﬁreg (12)

where Ak and A, are weights applied to the CAVE and re-
gression loss terms.
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Method Image Quality Lip Sync Head Motion
PSNRT LPIPS] SSIMT FID] | LMD] AUE] SyncScoref | Diversityf EAR]
Wav2Lip 18.8071  0.2523 0.6571 40.3604 | 52161 4.5499 9.2332 0.0782 0.0535
GAN DINet 18.6620  0.2547 0.6515 34.0215 | 52784 4.4457 7.3138 0.0560 0.0568
IP-LAP 18.7763  0.2438 0.6531 34.8322 | 54905 4.7474 3.4331 0.0444  0.0545
EDTalk 18.7482  0.2896 0.6670 53.7573 | 5.0925 4.8511 7.3092 0.1046  0.0441
ER-NeRF 18.8610  0.2323 0.6799 37.5604 | 3.7192 4.8899 6.1909 0.0935 0.0439
Nerf  SyncTalk 18.8035  0.2287 0.6766 32.9779 | 3.6106 3.6198 7.0865 0.0822  0.0512
GeneFace++ | 19.0344  0.2443  0.6819 40.5045 | 5.3823 4.0530 7.1118 0.0726  0.0504
Hallo 179117  0.2678 0.6305 35.8346 | 6.0491 4.3952 7.2458 0.2166 0.0471
SD V-Express 17.3918  0.2842 0.6121 46.6975 | 6.9958 5.4740 7.4739 0.1039  0.0490
EchoMimic 14.4399  0.4524 0.4562 59.3261 | 8.0643 5.1434 6.0574 0.1864 0.0468
SyncAnimation-One | 21.2323  0.1543 0.7343  20.0567 | 3.2215 3.5485 7.1389 0.2570  0.0357
SyncAnimation-Zero | 21.4006 0.1532 0.7411 21.7353 | 3.1878 3.5515 7.1499 0.2652 0.0386

Table 1: Quantitative comparisons with state-of-the-art methods. ”SyncAnimation-One” refers to one-shot inference, while ”SyncAnimation-
Zero” indicates zero-shot inference using noise of the same dimension. We achieve state-of-the-art performance on most metrics.

Dynamic Head Rendering. We generate realistic head
poses using a technique similar to Sec.3.1. The audio-
predicted Off e 4, Off t,,4, and Off b,,4 are converted to
€aud> taud, and byyq in the original space via inverse normal-
ization. Due to the complexity of head generation, we use
three 2D hash encoders, each operating on a specific plane.
The final geometric feature is obtained by concatenating the
outputs from all three planes. Predicted coefficients control
expressions, and audio features enhance head motion predic-
tion. The implicit function is then defined as:

Fhead : (Xyeaud>taud>baud>ah>7{3) — (6,0)7 (13)
Here, ay, is the audio representation extracted by Hubert [Hsu
et al., 20211, distinct from the one used for predicting poses

and expressions due to different task requirements. The cor-
responding 10SS Lheaq aligns with Lypper-body-

3.3 High-Synchronization Human Renderer

Facial-aware attention. To better utilize audio and ex-
pression information in different facial regions, we apply a
channel-wise attention mechanism [Li et al., 2023]. From the
hash encoders’ output, we obtain attention weights for audio
and expression using two MLPs: Attn,,g and Attney,.

Vgud = Attngg(H3(2)), vexp = Attney(H3(x))  (14)

By applying hadamard product we attain region-aware fea-
tures an gz = Gpz © Vaud and boyrz = bout © Vexp. Such
operation makes sure model can explore useful information
in a disentangled way and thus increase rendering quality.
Fine Lip Optimization. Though audio feature benefits
holistic head rendering, we seek to manually augment atten-
tion weight on lip region due to more relevance. By utilizing
mask technique [Peng e al., 2024], we lower the attention
weight out of lip area. Meanwhile, we use LPIPS loss focused
on lip zone to gain finer result. The process is expressed as:

Liip = Lhead + ALPIPS(P, P). (15)

4 Experiments

4.1 Implementations

Dataset. For fair comparison, the experimental dataset was
obtained from publicly available video collections in [Guo

et al., 2021; Li et al., 2023; Peng et al., 2024] and HDTF
[Zhang et al., 2021]. We collected well-edited video se-
quences in English, French, and Korean, with an average of
6665 frames per video at 25 FPS. Each raw video was stan-
dardized to 512x512, with the a center portrait.
Quantitative Evaluation Metrics We evaluate our method
using widely adopted metrics. For image quality, we em-
ploy full-reference metrics, including Peak Signal-to-Noise
Ratio (PSNR) [Hore and Ziou, 2010], Learned Perceptual Im-
age Patch Similarity (LPIPS) [Zhang erf al., 2018], Structural
Similarity Index Measure (SSIM) [Wang et al., 2004], and
Frechet Inception Distance (FID) [Heusel ef al., 2017]. In
terms of lip and face synchronization, we utilize landmark
distance (LMD) to measure the synchronicity of facial move-
ment [Chen et al., 20181, and Action Unit Error (AUE) to
evaluate the accuracy of facial expressions [BaltruSaitis et
al., 2015]. Furthermore, we introduce Lip Sync Error Confi-
dence (LSE-C), consistent with Wav2Lip, to evaluate the syn-
chronization between lip movement and audio [Prajwal et al.,
2020].For the diversity of head motion generated, a standard
deviation of the embeddings of head motion features is ex-
tracted from the generated frames using Hopenet [Ruiz er al.,
2018]. For eye blink detection, The Eye Aspect Ratio (EAR),
calculated based on the positions of facial landmarks around
the eyes, is utilized to evaluate the naturalness and accuracy
of generated eye movement [Soukupova and Cech, 2016].
Comparison Baselines. We compare SyncAnimation with
two SOTA methods for lip synchronization and motion gener-
ation. For lip synchronization, we include GAN-based meth-
ods like Wav2Lip [Prajwal et al., 2020], DInet [Zhang et al.,
2023b], and IP-LAP [Zhong et al., 2023], as well as NeRF-
based methods such as SyncTalk [Peng et al., 2024], AD-
NeRF [Guo et al., 2021], ER-NeRF [Li et al., 2023], and
GeneFace++ [Ye er al., 2023al. For motion generation, we
compare SyncAnimation with three large-scale stable diffu-
sion models: V-Express [Wang et al., 2024], Hallo [Xu et al.,
2024], and EchoMimic [Chen et al., 2024].

Implementation Details. We train SyncAnimation with sep-
arate steps for upper-body generation, head rendering, and
lip-audio synchronization, using 15k, 12k, and 4k steps, re-
spectively. Each iteration samples 2562 rays and employs
a 2D hash encoder with parameters L = 14 and F' = 1.
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Figure 5: Visual comparison with outputs of baselines. GAN- and NeRF-based methods generate avatar with fixed poses and expressions.
SD-based methods allow expression changes but lack facial detail and pose movement. SyncAnimation uniquely achieves jointly generative,

audio-driven realistic expressions and movable poses.

The AdamW optimizer is used, with learning rates set to 0.01
for the hash encoder and 0.001 for the Audio2Pose and Au-
dio2Emotion modules. The total training time is approxi-
mately 4 hours on an NVIDIA RTX 4090 GPU.

4.2 Quantitative Evaluation

Compare with baseline. We first compare one-shot Syn-
cAnimation (SyncAnimation-One) with several state-of-the-
art methods using the first frame and test audio for driv-
ing. As shown in Tab.1, SyncAnimation-One outperforms
GAN-, NeRF-, and SD-based approaches. (1). In terms
of image quality, SyncAnimation-One achieves superior re-
sults in PSNR, LMD, and FID, indicating better detail preser-
vation. (2). For synchronization, SyncAnimation-One sur-
passes other methods on LMD and AUE, demonstrating ex-
cellent audio-lip synchronization. Although SyncScore lags
behind GAN-based methods due to SyncNet training loss, it
still outperforms NeRF-based methods. (3). SyncAnimation-
One significantly outperforms GAN-, NeRF-, and even SD-
based methods and achieves the lowest EAR error.

Our framework supports both one-shot and zero-shot in-
ference. In zero-shot mode (SyncAnimation-Zero), reference
poses and blendshapes are replaced with gaussian noise. As
shown in Tab.1, SyncAnimation-One (using the first frame as
reference) and SyncAnimation-Zero (using gaussian noise)
perform similarly across all metrics and outperform other
methods, demonstrating that SyncAnimation operates inde-
pendently of reference inputs for identity or information, re-
lying solely on audio cues for dynamic rendering.

4.3 Qualitative Evaluation

In the previous section, we quantitatively demonstrated the
superiority of SyncAnimation. In this section, we visually
assess the quality of generated frames by comparing GAN-,

NeRF-, and SD-based methods with SyncAnimation, as il-
lustrated in Fig.5. Unlike other methods that render the up-
per body but fail to synchronize movement with audio, Syn-
cAnimation excels by producing audio-synced upper-body
movement. Additionally, GAN- and NeRF-based methods
struggle with upper facial expressions during one-shot infer-
ence. Although SD-based methods generate diverse facial
expressions, their reliance on large-scale training often fails
to capture fine details like eyes and lips, causing issues such
as asymmetry, overexposure, missing teeth, unfocused eyes,
and unnatural lip closures. In contrast, SyncAnimation pre-
serves the subject’s identity with superior fidelity and resolu-
tion, accurately reproducing subtle actions like blinking and
eyebrow movement, thanks to the AudioEmotion Syncer. For
a more comprehensive comparison, we recommend watching
the supplementary video.

Classic size Med. scale Max scale Classic size Med. scale Max scale
A~

Figure 6: Visual generation results of the proposed method given
different upper-body scaling expansion

4.4 Upper-body Scaling Expansion

In real-time applications (e.g., news broadcasting and live
teaching), individuals often appear in upper-body. Existing
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Method Image Quality Lip Sync Head Motion
PSNR LPIPS SSIM FID | LMD AUE SyncScore | Diversity EAR
SyncAnimation 20.1038 0.1860 0.6752 26.8092 | 3.0746 2.8812 7.8717 0.2443  0.0405
SyncAnimation-MedScale | 20.2972 0.1685 0.7051 27.4110 | 2.7120 3.7966 7.2024 0.2158 0.0413
SyncAnimation-MaxScale | 21.5558 0.1192 0.7761 22.3477 | 2.0754 4.0455 7.3364 0.1632  0.0406

Table 2: Qualitative comparison with varying upper-body scales

methods [Ye et al., 2023a; Peng et al., 2024] often paste the
rendered head onto the original torso, resulting in unnatural
avatars and limiting applicability. There is a growing demand
for direct upper-body rendering that is highly synchronized
with audio.

We depart from the conventional approach of restricting
upper-body scale and pasting back to the original frame. Syn-
cAnimation directly renders upper-body avatars driven by au-
dio, progressively increasing the upper body proportion in the
rendered images. Image quality and audio consistency met-
rics are shown in Tab.2. As the upper-body scale increases,

1 — EAR -~ Left eye -~ Righteye (a) Wio Stability Constraint D, ,
Ly s/ K-
Only One Blink
EAR: 0.1157 EAR: 0.2024

7 200 400 r (b) W/o Diversity Guidance S,
0.3 g P A i A TN N3 = ;
0.0 r

: ¢ 1538
200 400

0.3 3
0.0 r

T EAR:0.1184 EAR: 0.0986

Figure 7: Ablation Study on Deyp and Sy, in OOD audio inference.
Removing them will result in (a) and (b).

overall image quality improves, but lip-sync consistency and
head motion diversity decline. This suggests that while the
upper body is easier to render, a higher upper-body propor-
tion improves image quality, but reduces focus on the head.
The EAR remains stable due to the periodic time features in
Sexp from Audio2Emotion. As shown in Fig.6, we scale the
rendered avatar to match the original video’s size, demon-
strating that SyncAnimation can generate upper-body avatars
with strong audio correlation and natural poses.

4.5 Ablation Study

In this section, we report ablation studies under the joint
generation setting to validate the effectiveness of our ma-
jor contributions from two perspectives. Additionally, to
demonstrate the adaptability of the SyncAnimation to Out-
of-Domain (OOD) audio, we evaluate the impact of different
backbones on rendering structures under external audio con-
ditions. The results are presented in Tab.3 and Fig.7.

Effectiveness of Dpose and Spose

The Audio2Pose model is key to generating stable and nat-
ural free-form poses. To demonstrate the effectiveness of
the diversity-guided conditional vector Dyes and stability-
guided vector Sy, We evaluate the density metric in static

and dynamic audio, as well as the absolute error at final con-
vergence. As shown in Tab. 3, incorporating Dpose and Spose
either individually or together consistently produces natural
avatar. However, the absence of S leads to unstable head
generation with frequent jittering, resulting in an increased
density metric. On the other hand, excluding D results
in larger absolute poses errors, and the diversity in silent
segments becomes excessively high, making it difficult to
achieve the desired small-scale head motion.

Effectiveness of Dy, and Sy,

In the Audio-driven talking avatar, we evaluate the impact
of the proposed Dey, and Se, on facial expressions, specifi-
cally focusing on blinking behavior. The evaluation metric is
the EAR (Eye Aspect Ratio) calculated for each frame, along
with line plots of blendshapes for the left and right eyes pre-
dicted by the Auido2Pose model. As shown in Fig.7, when
Dexp or Seyp is not incorporated, the rendered image exhibits
either a single blink over the 22-second driven audio or in-
complete eye closures despite EAR fluctuations. Under the
combined effect of D¢y, and diversity-guided S, periodic
fluctuations are guided by Deyp, while S, accentuates each
peak (as illustrated in the comparison between (b) and (c)),
resulting in more natural and rhythmic blinking motion.

Ll-error | Diversity T Diversity|

MR (latest iter) (Normal) (Silence)
W/0 Dpose »Spose 1.4910 None None
Ww/0 Dipoge 0.1677 0.3333 0.2142
W/0 Spose 0.009 0.3067 0.1584
Ours 0.009 0.3117 0.1209

Table 3: Ablation the diversity and L1 error of the proposed Dpose
and Spese in OOD audio inference. Each conditional template con-
tribute largely to generate realistic head motion.

5 Conclusion

In this paper, we propose SyncAnimation, which aims to
achieve three key objectives for modern talking avatars:
generalized audio-to-head poses matching, consistent audio-
to-facial expression synchronization, and jointly generative
upper-body avatars. Our framework integrates AudioPose
Syncer, AudioEmotion Syncer, and High-Synchronization
Human Renderer modules. These components enable the
generation of stable synchronized poses, upper-body move-
ment, and realistic expressions while preserving subject iden-
tity, even from monocular or noisy inputs. Extensive exper-
iments demonstrate that our method achieves the three goals
of modern talking avatars and outperforms existing methods.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

Yujian Liu and Shidang Xu have made equal contributions to
SyncAnimation.

References

[Baevski et al., 2020] Alexei Baevski, Henry Zhou, Abdel-
rahman Mohamed, and Michael Auli. wav2vec 2.0: a
framework for self-supervised learning of speech repre-
sentations. In Proceedings of the 34th International Con-

ference on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[Baltrusaitis et al., 2015] Tadas Baltrusaitis, Marwa Mah-
moud, and Peter Robinson. Cross-dataset learning and
person-specific normalisation for automatic action unit
detection. In 2015 11th IEEE international conference
and workshops on automatic face and gesture recognition
(FG), volume 6, pages 1-6. IEEE, 2015.

[Chen et al., 2018] Lele Chen, Zhiheng Li, Ross K Maddox,
Zhiyao Duan, and Chenliang Xu. Lip movements gener-
ation at a glance. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 520-535, 2018.

[Chen et al., 2024] Zhiyuan Chen, Jiajiong Cao, Zhiquan
Chen, Yuming Li, and Chenguang Ma. Echomimic:
Lifelike audio-driven portrait animations through editable
landmark conditions. arXiv preprint arXiv:2407.08136,
2024.

[Cheng et al., 2022] Kun Cheng, Xiaodong Cun, Yong
Zhang, Menghan Xia, Fei Yin, Mingrui Zhu, Xuan Wang,
Jue Wang, and Nannan Wang. Videoretalking: Audio-
based lip synchronization for talking head video editing
in the wild. In SIGGRAPH Asia 2022 Conference Papers,
pages 1-9, 2022.

[Guo et al., 2021] Yudong Guo, Keyu Chen, Sen Liang,
Yong-Jin Liu, Hujun Bao, and Juyong Zhang. Ad-nerf:
Audio driven neural radiance fields for talking head syn-
thesis. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 5784-5794, 2021.

[Guo et al., 2024] Xun Guo, Mingwu Zheng, Liang Hou,
Yuan Gao, Yufan Deng, Pengfei Wan, Di Zhang, Yufan
Liu, Weiming Hu, Zhengjun Zha, et al. [2v-adapter: A
general image-to-video adapter for diffusion models. In
ACM SIGGRAPH 2024 Conference Papers, pages 1-12,
2024.

[Hannun ef al., 2014] Awni Y. Hannun, Carl Case, Jared
Casper, Bryan Catanzaro, Gregory Frederick Diamos,
Erich Elsen, Ryan J. Prenger, Sanjeev Satheesh, Shubho
Sengupta, Vinay Rao, Adam Coates, and A. Ng. Deep
speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

[Haque and Yumak, 2023] Kazi Injamamul Haque and Zer-
rin  Yumak. Facexhubert: ~ Text-less speech-driven
e(x)pressive 3d facial animation synthesis using self-
supervised speech representation learning. In Proceedings
of the 25th International Conference on Multimodal Inter-
action, ICMI ’23, page 282-291. Association for Comput-
ing Machinery, 2023.

[Heusel et al., 2017] Martin Heusel, Hubert Ramsauer,
Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter.  Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[Hore and Ziou, 2010] Alain Hore and Djemel Ziou. Im-
age quality metrics: Psnr vs. ssim. In 2010 20th inter-

national conference on pattern recognition, pages 2366—
2369. IEEE, 2010.

[Hsu et al., 2021] Wei-Ning Hsu, Benjamin Bolte, Yao-
Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhut-
dinov, and Abdelrahman Mohamed. Hubert: Self-
supervised speech representation learning by masked pre-
diction of hidden units. IEEE/ACM Trans. Audio, Speech
and Lang. Proc., page 3451-3460, October 2021.

[Hu, 2024] Li Hu. Animate anyone: Consistent and control-
lable image-to-video synthesis for character animation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8153-8163, 2024.

[Kim er al., 2024] Gihoon Kim, Kwanggyoon Seo, Sihun
Cha, and Junyong Noh. Nerffacespeech: One-shot audio-
diven 3d talking head synthesis via generative prior. arXiv
preprint arXiv:2405.05749, 2024.

[Li et al., 2023] Jiahe Li, Jiawei Zhang, Xiao Bai, Jun Zhou,
and Lin Gu. Efficient region-aware neural radiance fields
for high-fidelity talking portrait synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 7568-7578, 2023.

[Mildenhall et al., 2021] Ben Mildenhall, Pratul P Srini-
vasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as

neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

[Peng er al., 2023] Zigiao Peng, Haoyu Wu, Zhenbo Song,
Hao Xu, Xiangyu Zhu, Jun He, Hongyan Liu, and Zhaoxin
Fan. Emotalk: Speech-driven emotional disentanglement
for 3d face animation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 20687—

20697, 2023.

[Peng et al., 2024] Zigiao Peng, Wentao Hu, Yue Shi, Xi-
angyu Zhu, Xiaomei Zhang, Hao Zhao, Jun He, Hongyan
Liu, and Zhaoxin Fan. Synctalk: The devil is in the syn-
chronization for talking head synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 666—-676, 2024.

[Prajwal er al., 2020] KR Prajwal, Rudrabha Mukhopad-
hyay, Vinay P Namboodiri, and CV Jawahar. A lip sync
expert is all you need for speech to lip generation in the
wild. In Proceedings of the 28th ACM international con-
ference on multimedia, pages 484—492, 2020.

[Qian et al., 2021] Shenhan Qian, Zhi Tu, Yihao Zhi, Wen
Liu, and Shenghua Gao. Speech drives templates: Co-
speech gesture synthesis with learned templates. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 11077-11086, 2021.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Ruiz et al., 2018] Nataniel Ruiz, Eunji Chong, and James M
Rehg. Fine-grained head pose estimation without key-
points. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pages
2074-2083, 2018.

[Soukupova and Cech, 2016] Tereza Soukupova and Jan
Cech. Eye blink detection using facial landmarks. In 2/st
computer vision winter workshop, Rimske Toplice, Slove-
nia, volume 2, 2016.

[Tan et al., 2025] Shuai Tan, Bin Ji, Mengxiao Bi, and
Ye Pan. Edtalk: Efficient disentanglement for emotional
talking head synthesis. In European Conference on Com-
puter Vision, pages 398-416. Springer, 2025.

[Tian ef al., 2025] Linrui Tian, Qi Wang, Bang Zhang, and
Liefeng Bo. Emo: Emote portrait alive generating expres-
sive portrait videos with audio2video diffusion model un-
der weak conditions. In European Conference on Com-
puter Vision, pages 244-260. Springer, 2025.

[Wang et al., 2004] Zhou Wang, Alan C Bovik, Hamid R
Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600-612, 2004.

[Wang et al., 2024] Cong Wang, Kuan Tian, Jun Zhang,
Yonghang Guan, Feng Luo, Fei Shen, Zhiwei Jiang, Qing
Gu, Xiao Han, and Wei Yang. V-express: Conditional
dropout for progressive training of portrait video gener-
ation. arXiv preprint arXiv:2406.02511, 2024.

[Xie et al., 2024] You Xie, Hongyi Xu, Guoxian Song, Chao
Wang, Yichun Shi, and Linjie Luo. X-portrait: Expressive
portrait animation with hierarchical motion attention. In
ACM SIGGRAPH 2024 Conference Papers, pages 1-11,
2024.

[Xu et al., 2024] Mingwang Xu, Hui Li, Qingkun Su, Han-
lin Shang, Liwei Zhang, Ce Liu, Jingdong Wang, Yao
Yao, and Siyu Zhu. Hallo: Hierarchical audio-driven vi-
sual synthesis for portrait image animation. arXiv preprint
arXiv:2406.08801, 2024.

[Ye et al., 2023a] Zhenhui Ye, Jinzheng He, Ziyue Jiang,
Rongjie Huang, Jiawei Huang, Jinglin Liu, Yi Ren, Xiang
Yin, Zejun Ma, and Zhou Zhao. Geneface++: Generalized
and stable real-time audio-driven 3d talking face genera-
tion. arXiv preprint arXiv:2305.00787, 2023.

[Ye er al., 2023b] Zhenhui Ye, Ziyue Jiang, Yi Ren, Jinglin
Liu, Jinzheng He, and Zhou Zhao. Geneface: General-
ized and high-fidelity audio-driven 3d talking face synthe-
sis. arXiv preprint arXiv:2301.13430, 2023.

[Zhang er al., 2018] Richard Zhang, Phillip Isola, Alexei A
Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 586-595, 2018.

[Zhang er al., 2021] Zhimeng Zhang, Lincheng Li, Yu Ding,
and Changjie Fan. Flow-guided one-shot talking face gen-
eration with a high-resolution audio-visual dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3661-3670, 2021.

[Zhang er al., 2023a] Wenxuan Zhang, Xiaodong Cun, Xuan
Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and
Fei Wang. Sadtalker: Learning realistic 3d motion coef-
ficients for stylized audio-driven single image talking face
animation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8652—
8661, 2023.

[Zhang er al., 2023b] Zhimeng Zhang, Zhipeng Hu, Wenjin
Deng, Changjie Fan, Tangjie Lv, and Yu Ding. Dinet:
Deformation inpainting network for realistic face visually
dubbing on high resolution video. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pages 3543-3551, 2023.

[Zhong et al., 2023] Weizhi Zhong, Chaowei Fang, Yinqi
Cai, Pengxu Wei, Gangming Zhao, Liang Lin, and Guan-
bin Li. Identity-preserving talking face generation with
landmark and appearance priors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9729-9738, 2023.



