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Non-expansive Fuzzy ALC
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Abstract
Fuzzy description logics serve the representation
of vague knowledge, typically letting concepts
take truth degrees in the unit interval. Expres-
siveness, logical properties, and complexity vary
strongly with the choice of propositional base. The
Łukasiewicz propositional base is generally per-
ceived to have preferable logical properties but of-
ten entails high complexity or even undecidability.
Contrastingly, the less expressive Zadeh proposi-
tional base comes with low complexity but entails
essentially no change in logical behaviour com-
pared to the classical case. To strike a balance
between these poles, we propose non-expansive
fuzzy ALC, in which the Zadeh base is extended
with Łukasiewicz connectives where one side is
restricted to be a rational constant, that is, with
constant shift operators. This allows, for in-
stance, modelling dampened inheritance of proper-
ties along roles. We present an unlabelled tableau
method for non-expansive fuzzy ALC, which al-
lows reasoning over general TBoxes in EXPTIME
like in two-valued ALC.

1 Introduction
Fuzzy description logics (fuzzy DLs; see [Lukasiewicz and
Straccia, 2008] for an overview) model vague knowledge by
replacing the classical two-valued truth set with more fine-
grained alternatives, most commonly with the unit interval.
(Other choices are possible, such as quantales, e.g. [Wild
and Schröder, 2021], or MV-algebras, e,g. [Flaminio et al.,
2013]). Both concepts and roles may be ‘fuzzified’ in this
sense, allowing for the appropriate representation of con-
cepts such as ‘tall person’ or ‘fast car’, and of roles such
as ‘likes’ or ‘supports’. In the design of fuzzy DLs, an im-
portant factor is the choice of propositional base, that is,
of the set of propositional connectives and their interpreta-
tion over the given truth set. Over the unit interval [0, 1],
standard options include Zadeh, Łukasiewicz, Gödel, and
product logic [Lukasiewicz and Straccia, 2008], with the
Zadeh and the Łukasiewicz base having received a compar-
atively large share of the overall attention [Bobillo and Strac-
cia, 2011; Borgwardt and Peñaloza, 2017; Bou et al., 2011;

Hájek, 2005; Kulacka et al., 2013; Stoilos et al., 2007;
Straccia, 2005].

In the Zadeh base, conjunction and disjunction are just in-
terpreted as minimum and maximum, respectively. This has
intuitive appeal but closer analysis has shown that under this
interpretation, the logic in fact remains very close to its two-
valued correspondent. For instance, the problem of decid-
ing whether an ALC concept is satisfiable with truth degree
at least p in Zadeh semantics is equivalent to satisfiability in
two-valued semantics if p ≥ 0.5, and largely trivial, in par-
ticular decidable in linear time, if p < 0.5 [Bonatti and Tet-
tamanzi, 2003; Keller and Heymans, 2009; Straccia, 2001].
The Łukasiewicz base, which uses the additive structure of
[0, 1] to interpret disjunction and conjunction, does not suf-
fer from such deficiencies, and is generally perceived to have
favourable logical properties (in fact, it is determined up to
isomorphism by a set of desirable properties including resid-
uation and axiomatizability [Kundu and Chen, 1998]). On
the other hand, the Łukasiewicz base comes with an increase
in computational hardness. Indeed, the best known upper
bound for concept satisfiability in Łukasiewicz fuzzy ALC
is NEXPTIME [Kulacka et al., 2013; Straccia, 2005] (com-
pared to PSPACE for two-valued ALC [Ladner, 1977]), and
reasoning over general TBoxes in Łukasiewicz fuzzy ALC is
even undecidable [Baader and Peñaloza, 2011].

In the present work, we aim to strike a balance between
these poles, proposing non-expansive fuzzy ALC as a logic
that offers more expressive power than Zadeh fuzzy ALC
but retains the same complexity as two-valued ALC. As the
propositional base, we use an extension of the Zadeh base
where we allow rational truth constants and Łukasiewicz con-
nectives with one argument restricted to be a truth constant;
phrased more simply, the latter effectively just means that we
include constant shift operators (−)⊕c where ⊕ denotes trun-
cated addition and c is a rational constant (one can then also
express truncated subtraction (−)⊖c). For instance, the TBox
axiom

Rich ⊑ ∀ hasChild. (Rich⊖ 0.1)

asserts (debatably, of course) that children of rich people
tend to be even richer than their parents. This propositional
base has been widely used in modal logics that character-
ize behavioural distances, for instance, on probabilistic [van
Breugel and Worrell, 2005] or fuzzy [Wild et al., 2018] sys-
tems, and in particular does ensure non-expansiveness of the
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logic w.r.t. behavioural distance; hence our choice of nomen-
clature.

Our main technical result on non-expansive fuzzy ALC is
decidability of the main reasoning problems in the same com-
plexity as for two-valued ALC; most notably, threshold sat-
isfiability over general TBoxes is (only) EXPTIME-complete,
in sharp contrast with the undecidability encountered for full
Łukasiewicz fuzzy ALC, and in spite of the fact that the se-
mantics of general concept inclusions is pointwise inequality
and thus corresponds to validity of Łukasiewicz implication.
We base this result on an unlabelled tableau calculus. We
construct tableaux using an algorithm that follows the global
caching principle [Goré and Nguyen, 2007] and thus can ter-
minate before the tableau has been fully expanded, offering a
perspective for practical scalability.

Proofs are sometimes omitted or only sketched; full proofs
can be found in the full version [Gebhart et al., 2025].

Further related work The idea of using explicit (rational)
truth constants comes from (rational) Pavelka logic [Hájek,
1995; Pavelka, 1979] For finite-valued Łukasiewicz fuzzy
ALC, the threshold satisfiability problem is PSPACE-
complete [Bou et al., 2011]. Reasoning in fuzzy ALC with
product semantics has also been shown to be computation-
ally hard: Validity over the empty TBox is decidable but
only a lower bound is known [Cerami and Esteva, 2022] and
undecidable under general concept inclusions [Baader and
Peñaloza, 2011]. For a more general classification of the
decidability of description logics under TBoxes depending
on the propositional base, see, for example, [Baader et al.,
2017]. Under the Gödel propositional base, threshold sat-
isfiability (without a TBox) remains in PSPACE [Caicedo et
al., 2017], and decidability is retained even for expressive
fuzzy description logics [Borgwardt and Peñaloza, 2016].
Reasoning in Zadeh fuzzy ALC becomes more involved in
presence of ABoxes with explicit thresholds. An existing
tableau algorithm for this case [Stoilos et al., 2006] (which
does cover general concept inclusions in the sense indicated
above) is quite different from ours; in particular, it updates
labels of tableau nodes after their creation, and relies on al-
most all relevant threshold values being explicitly mentioned
in the ABox. Reasoning methods for Zadeh fuzzy DLs have
been extended to highly expressive DLs [Stoilos et al., 2007;
Stoilos and Stamou, 2014]. In the absence of TBoxes, there
is a tableau algorithm for fuzzy ALC for any continuous
t-norm [Baader et al., 2015]. The tableaux algorithm for
Łukasiewicz fuzzy ALC necessarily applies only the case
without TBoxes, and works in a different way from ours, in
particular is labelled. A preliminary variant of the tableau
calculus for non-expansive fuzzy ALC without TBoxes has
featured in an undergraduate thesis supervised by the second
author [Hermes, 2023].

2 Non-Expansive Fuzzy ALC
We proceed to introduce the fuzzy DL non-expansive fuzzy
ALC. As indicated earlier, it follows the Zadeh interpretation
of conjunction ⊓ and disjunction ⊔ as minimum and maxi-
mum, but includes constant shifts (−) ⊖ c and (−) ⊕ c for

rational constants as additional propositional operators. For-
mal definitions are as follows.
Convention 2.1. Throughout, let ◁ ∈ {<,≤}, ▷ ∈ {>,≥}
and ▷◁ ∈ {<,≤, >,≥}. Whenever we talk about constants
we refer to rational numbers, usually in the unit interval. We
encode a constant by taking the binary representation of the
numerator and denominator of its representation as an irre-
ducible fraction.
Definition 2.2. 1. A signature of a description language
consists of a set NC of atomic concepts and a set NR := {Ri |
i ∈ I} of role names for some index set I .

2. Let (NC,NR) be a signature. Then concepts C,D, . . .
of non-expansive fuzzy ALC are generated by the grammar

C,D ::= p | c | ¬C | C ⊖ c | C ⊓D | ∃R.C

where c ∈ [0, 1] is a constant, p ∈ NC is an atomic concept
and R ∈ NR is a role name.

3. A (fuzzy) interpretation I consists of a set ∆I ̸= ∅
of individuals , a map pI : ∆I → [0, 1] for every atomic
concept p ∈ NC, and a map RI : ∆I ×∆I → [0, 1] for every
role name R ∈ NR.

4. Let I be an interpretation and x ∈ ∆I an individual.
Then we define the valuation of concepts in x with respect to
the interpretation I recursively by

cI(x) = c (¬D)I(x) = 1−DI(x)

(C ⊖ c)I(x) = max(CI(x)− c, 0)

(C ⊓D)I(x) = min(CI(x), DI(x))

(∃R.C)I(x) = sup
y∈∆I

{min(RI(x, y), CI(y))}.

5. A concept assertion is an inequality of the form C ▷◁ c.
A (tableau) sequent is a finite set of concept assertions.

6. We define the (syntactic) size |C| of a concept C induc-
tively by

|p| = 1 |ab | = log2 a+ log2 b

|¬C| = |C|+ 1 |C ⊖ c| = |C|+ |c|+ 1

|C ⊓D| = |C|+ |D|+ 1 |∃R.C| = |C|+ 1.

7. The (syntactic) size of a concept assertion C ▷◁ c is
|C| + |c|, and that of a sequent is the sum of the syntactic
sizes of its elements.
As usual, we define C ⊔ D = ¬(¬C ⊓ ¬D) and ∀R.C =
¬∃R.¬C. We also define C⊕c = ¬((¬C)⊖c). Furthermore
we call ∃R.C ▷ c an existential restriction and ∃R.C ◁ c a
universal restriction.
Remark 2.3. The concept language of non-expansive fuzzy
ALC agrees essentially with a fuzzy modal logic featuring
in a quantitative modal characterization theorem [Wild et
al., 2018]. We could also equivalently define non-expansive
fuzzy ALC as Łukasiewicz ALC where we we keep the weak
connectives, i.e. the Zadeh connectives, and require that at
least one of the arguments of the Łukasiewicz connectives
must be a constant. Recall here that in Łukasiewicz seman-
tics, we have, e.g., strong disjunction ⊕ interpreted as addi-
tion, so our concepts C⊕ c are effectively strong disjunctions
with constants.
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Remark 2.4. For most reasoning problems in fuzzy ALC
with a plain Zadeh base, it has been shown not only that they
have the same complexity as the classical counterpart ALC
but also that logical consequence remains mostly the same
[Bonatti and Tettamanzi, 2003; Keller and Heymans, 2009;
Stoilos et al., 2007; Straccia, 2001]. It has also been noted
that non-implication of falsity is not a useful notion of knowl-
edge base consistency in this setting, and is in determin-
istic linear time while threshold satisfiability is EXPTIME-
complete [Bonatti and Tettamanzi, 2003]. Non-expansive
fuzzy ALC employs a more expressive concept language than
classical ALC and as such is not formally subject to such phe-
nomena; we aim to illustrate in Example 2.10 that there is also
a practical gain in expressiveness over Zadeh fuzzy ALC, in
particular in connection with general TBoxes.
Remark 2.5. In analogy to two-valued notions of bisimilar-
ity, one can give a natural fixpoint definition of behavioural
distance between individuals in interpretations I. Under
this distance, the maps CI : ∆I → [0, 1] become non-
expansive (and in fact even characterize behavioural dis-
tance), a property that fails in Łukasiewicz semantics [Wild et
al., 2018]. This motivates the nomenclature ‘non-expansive
fuzzy ALC’.
Definition 2.6. 1. A TBox T is a set of general concept
inclusions or GCIs for short, which are of the form C ⊑ D.
We say that an interpretation I satisfies the TBox T if for
every GCI C ⊑ D we have:

∀x ∈ ∆I : CI(x) ≤ DI(x)

2. We say that a concept assertion C ▷◁ c is T -satisfiable
if there exists an interpretation that satisfies T and that has an
individual x ∈ ∆I such that CI(x) ▷◁ c. We then also say
that C ▷◁ c is satisfied in x.

3. We say that a sequent Γ is T -satisfiable if there exists
an interpretation that satisfies T and that has an individual x
such that every concept assertion of Γ is satisfied in x. We
then also say that Γ is satisfied in x.

4. We say a concept assertion C ▷◁ c is T -valid if for every
interpretation I that satisfies T and all individuals x ∈ ∆I

we have CI(x) ▷◁ c.
5. We say a sequent Γ is T -valid if every concept assertion

of Γ is T -valid.
6. We define the (syntactic) size of a GCI by the sum of

the syntactic sizes of its concepts and the syntactic size of a
TBox as the sum of the syntactic sizes of its elements.
Remark 2.7. There is also a notion of fuzzy GCIs of the
form C ⊑ D ≥ p [Borgwardt et al., 2015]. In Łukasiewicz
semantics, this GCI is satisfied by an interpretation I iff
for all x ∈ ∆I we have (C =⇒ D)I(x) = min(1, 1 −
CI(x) +DI(x)) ≥ p. However this is clearly equivalent to
min(1, DI(x)+ (1− p)) ≥ CI(x), which would be the GCI
C ⊑ (D ⊕ (1 − p)) in non-expansive fuzzy ALC. Thus we
can restrict ourselves to just handling regular GCIs.

In order to ease working with varying comparison oper-
ators, we define the following operators to turn inequalities
around and to turn strict inequalities into weak inequalities
and vice versa:

Definition 2.8. Let ▷◁ ∈ {<,≤, >,≥}. We define:

▷◁◦:=


<, if ▷◁ = >

≤, if ▷◁ = ≥
>, if ▷◁ = <

≥, if ▷◁ = ≤

▷◁:=


≥, if ▷◁ = >

>, if ▷◁ = ≥
≤, if ▷◁ = <

<, if ▷◁ = ≤

Clearly, C ▷◁ c is T -valid iff C ▷◁◦ c is not T -satisfiable. So
in order to prove the T -validity of C ≥ c or C ≤ c, we have
to check C < c or C > c for T -satisfiability respectively.

Remark 2.9. As noted already for the case of Zadeh
ALC [Stoilos et al., 2006], TBoxes cause substantial addi-
tional difficulties in reasoning algorithms. One reason for
this additional difficulty is that in Zadeh-type logics, TBoxes
cannot be internalized as valid implications: The concept
¬C ⊔D is satisfied by all individuals in an interpretation iff
whenever C has value > 0, then D has value 1, which is
not equivalent to satisfaction of the GCI C ⊑ D. Contrast-
ingly, in Łukasiwicz semantics, the strong disjunction (cf. Re-
mark 2.3) ¬C ⊕ D holds in every individual of an interpre-
tation iff the interpretation satisfies the GCI C ⊑ D; that is,
we can regard TBoxes as demanding satisfaction of top-level
Łukasiewicz implications.

Example 2.10. 1. To better illustrate and understand the
semantics of non-expansive fuzzy ALC, we begin with the
following example:

A ⊑ ∀R. (A⊖ 0.2)

A⊖ 0.2 ⊑ B ⊖ 0.3 B ⊑ (∀R.B)⊖ 0.2

The ⊖ on the right hand side of the GCI A⊖ 0.2 ⊑ B ⊖ 0.3
makes it so B has to be bigger than the left hand side by at
least 0.3 and on the other hand the ⊖ on the left hand side
decreases the value of A which means that the right hand side
has to be at most 0.2 smaller than A. Combined, this tells
us that the value of B is bigger than that of A by at least
0.1. So we could reformulate this as just A ⊑ B ⊖ 0.1. The
GCI A ⊑ ∀R. (A⊖ 0.2) tells us that each R-successor either
has a successorship degree smaller than or equal to 1 minus
the value of A or the value of A in this successor is bigger
than the value of A at this current individual by at least 0.2.
The GCI B ⊑ (∀R.B) ⊖ 0.2 on the other hand tells us that
each R-successor either has a successorship degree smaller
than or equal to 0.8 minus the value of B or the value of B
in this successor is bigger than the value of B of the current
individual by at least 0.2. An example of an inference would
then be that (¬(A⊖0.5))⊔ ((∀R.B)⊖0.2) ≥ 0.8 is T -valid;
this makes use of the GCIs A ⊖ 0.2 ⊑ B ⊖ 0.3 (or rewritten
as A⊕0.1 ⊑ B) and B ⊑ (∀R.B)⊖0.2 and states that either
A is smaller than 0.7 or B is equal to 1 in all R-successors
with non-zero successorship degree.

2. We model social influences on opinions and beliefs (as
a disclaimer, we note that neither this example nor the next
one are meant as realistic formalizations of the respective do-
mains): In this model, individuals are people, the single role
is the interaction IsFriendsWith (abbreviated as IFW) and as
atomic concepts we take opinions people can hold to some
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degree. Our TBox could then look like this:

∀IFW.FootballFan ⊑ FootballFan

∀IFW.(¬FootballFan⊖ 0.4) ⊑ ¬FootballFan⊕ 0.2

∃IFW.(SportsFan⊖ 0.3) ⊑ SportsFan⊕ 0.2

FootballFan ⊑ SportsFan

FootballFan⊖ 0.3 ⊑ ∀IFW.(FootballFan⊕ 0.2)

We can then reason about how much people like sports or
football based on who they interact with and to what degree.
An inference we could then make (using the first and fourth
GCIs) is that (∃IFW.(¬FootballFan) ⊕ 0.4) ⊔ SportsFan ≥
0.7 is T -valid, which means that either you have a close
friend that is not really interested in football or you are a very
big sports fan.

3. We model the influence of scientists: As individuals we
have scientists, as roles we have citation and collaboration
relations CitedBy and CollaboratedWith (or CW for short)
Influence of a scientist. Here the fuzziness of the roles repre-
sents the frequency of collaborations or citations. Our TBox
could then look like this:

∃CitedBy.Influence ⊑ Influence⊕ 0.2

∃CW.(Influence⊖ 0.4) ⊑ Influence

∀CW.Influence ⊑ Influence

Influence ⊑ ∃CitedBy.(Influence⊕ 0.3)

We can then reason about how much citations and col-
laborations affect influence. For instance, from the above
we may infer (using the second and fourth GCIs) that
(∀CW.(¬Influence ⊕ 0.4) ⊕ 0.6) ⊔ (∃CitedBy.(Influence ⊕
0.3)) ≥ 0.8 is T -valid, which means the influence of col-
laborators of a scientist has an impact on the citations of the
scientist.

3 Tableaux Calculus for TBoxes
Having introduced our language and the concept of T -
satisfiability, we now construct an unlabelled tableau calcu-
lus and prove EXPTIME-completeness of determining if a
sequent is T -satisfiable. We start by finding a more easily
computable notion of T -satisfiability: Let A ⊑ B be a GCI
from a TBox T and Γ be a sequent. Then for any interpre-
tation I, we have that A ⊑ B is satisfied in I iff for all in-
dividuals x, there exists a constant c such that AI(x) ≤ c
and BI(x) ≥ c. The latter formulas can be rewritten as
((¬A⊕c)⊓(B⊕(1−c)))I(x) ≥ 1. Checking this formula for
all possible c would not yield a terminating algorithm, how-
ever as it turns out it suffices to check this for finitely many
constants:
Definition 3.1. Let T = {Ci ⊑ Di | i = 1, . . . , n} be
a TBox and Γ be a sequent. Let Z be the intersection of
the unit interval and the additive subgroup of the rationals
generated by 1 and the constants appearing in Γ and T . Put
ϵ = 1

2 min(Z \ {0}) and Z ′ = Z ∪ {z + ϵ | z ∈ Z \ {1}}.
The concept assertion associated to T and Γ is T ≥ 1 where
T = (

dn
i=1

⊔
z∈Z′(¬Ci ⊕ z) ⊓ (Di ⊕ (1− z))).

Lemma 3.2. Let T be a TBox and let Γ be a sequent. Then Γ
is satisfiable under T iff there exists an interpretation where

Γ is satisfied by some individual and each individual satis-
fies T ≥ 1 where T is the concept assertion associated to T
and Γ.

Proof sketch. ’If’ is trivial by the above argumentation.
’Only if’ can be shown by transforming an arbitrary inter-
pretation satisfying Γ under T into one where all atomic con-
cepts in all individuals and all roles have values in Z ′ by ei-
ther keeping them as is if they already were in Z ′ or taking
the closest value in Z ′ \ Z otherwise. One can then show
by induction that concept assertions containing only values
of Z on their right hand side and subconcepts of Γ and T on
their left hand side cannot distinguish between these interpre-
tations and that T ≥ 1 is satisfied in every individual.

Definition 3.3. For ◁ ∈ {<,≤} and ▷ ∈ {>,≥}, we put

◀(◁,▷):=

{
<, if (◁, ▷) = (≤,≥)

≤, otherwise.

Remark 3.4. The ◀(◁,▷) operator is used to obtain a non-
strict inequality if at least one of the inputs is a strictly greater
or smaller than. This will be useful when determining if a pair
of inequalities is solvable or not; explicitly, if we have p ≤ c
and p ≥ d we cannot find a valid value for p if c < d and in
all other cases p ◁ c and p ▷ d we cannot find a valid value
for p if c ≤ d.

If T ≥ 1 is the associated concept assertion for the TBox T
and a sequent Γ, this gives us the tableau calculus of Table
1. The axioms (Ax 1), (Ax 0) and (Ax p) assert that the truth
value of an atomic concept cannot be larger than 1, smaller
than 0 or in an empty interval. The axiom (Ax c) asserts that
c ◁ d is satisfiable only if this constraint actually holds for
the constants c, d. The (⊓ ▷), (⊓ ◁) and (¬ ▷◁) rules are
the usual fuzzy propositional rules. The (⊖ ◁) rule asserts
that we can add c to both sides of a concept assertion with-
out affecting satisfiability, as long as the assertion is not al-
ready unsatisfiable by the fact that C ⊖ c would have to be
smaller than 0. The (⊖ ▷) rule also asserts that we can add
c to both sides of the concept assertion. However, this time
we have to be careful not to apply this to concept assertions
that are always satisfied, i.e. assertions saying that the left
hand side should be greater than or equal to 0. We have to
avoid this case, as otherwise these trivial assertions could be
transformed into unsatisfiable ones, e.g. the satisfiable con-
cept assertion 0 ⊖ 1 ≥ 0 would be transformed into 0 ≥ 1,
which is not satisfiable. The rule (∃R) first takes all uni-
versal restrictions of some role R ∈ NR and one existential
restriction ∃R.C ▷ c. We then filter out all universal restric-
tions ∃R.Dj ◁ dj that can be trivially satisfied by finding
a value e for the role R such that e ▷ c but e ◁ dj . This
means we only have universal restrictions ∃R.Dj ◁ dj left
with dj ◀(◁j ,▷) c. We then take these universal restrictions
and the existential restriction, remove their ∃R. part, and add
T ≥ 1, while dropping the remaining context S, to see if we
can create an individual satisfying these constraints.

Definition 3.5. 1. The propositional rules of the calculus
are all rules except (∃R).
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Tableau Rules

(Ax 1) S,p▷c
⊥ (if c ▷ 1, p ∈ NC) (Ax 0) S,p◁c

⊥ (if c ◁ 0, p ∈ NC) (Ax c) S,c◁d
⊥ (if c ◁◦ d)

(Ax p) S,p◁c,p▷d
⊥ (if c ◀(◁,▷) d, p ∈ NC) (⊓ ▷) S,C⊓D▷c

S,C▷c,D▷c (⊓ ◁) S,C⊓D◁c
S,C◁c S,D◁c

(¬ ▷◁) S,¬C▷◁c
S,C▷◁◦1−c (⊖ ◁) S,C⊖c◁d

S,C◁d+c,d◁◦0 (⊖ ▷) S,C⊖c▷d
S,C▷d+c (if d ▷ 0)

(∃R)
S,{∃R.Dj◁jdj |1≤j≤n},∃R.C▷c

{Dj◁jdj |dj◀(◁j,▷)
c,j∈{1,...,n}},C▷c,T≥1 (if c ▷ 0 and S does not contain any ∃R.D ◁ d)

Table 1: Tableau Calculus for T ≥ 1 and Γ

2. As usual, for each rule we take all its possible instances
for concrete constants, concepts, and sets of concept asser-
tions, and say the the rule is applicable to a sequent if the
sequent matches the premise of an instance of the rule, satis-
fying possible side conditions of the rule.

3. When we say we apply a rule to a sequent, we mean
that we take the conclusions of a rule instance whose premise
matches the sequent.

4. A sequent is saturated if no propositional rules can be
applied to it.
The idea of a global caching algorithm to construct a tableau
is to cache all the labels of its nodes, and whenever a new
node with an already encountered label would be created, we
instead create an edge to the already existing node with that
label, thus obtaining a directed graph, possibly with cycles.
As we will see later, this will ensure the algorithm terminates
in exponentially many steps.
Definition 3.6. 1. A tableau graph G consists of

• a directed graph (V G, EG) consisting of a set V G of
nodes and a set EG ⊆ V G × V G of edges;

• a root node rG ∈ V G;
• and for each node v ∈ V G a label LG(v), which is a set

of concept assertions or ⊥.
2. A node v ∈ V G in a tableau graph G is an AND-node if

its label LG(v) is saturated, and otherwise an OR-node. We
denote by AG the set of AND-nodes and by OG the set of
OR-nodes.
Definition 3.7. Let G be a tableau graph and v ∈ V G be a
node.

1. A propositional rule has been applied to v in G if the
labels of the child nodes of v are exactly the conclusions of
an application of an instance of this rule to the label of v.

2. The rule (∃R) has been applied to v in G if the labels of
the child nodes of v are exactly the conclusions of all possible
applications of this rule (maybe none) to the label of v.

3. We call G a tableau for a sequent Γ and T ≥ 1 if the
root node rG has the label LG(r) = Γ ∪ {T ≥ 1}, a proposi-
tional rule has been applied to all OR-nodes and the rule (∃R)
has been applied to all AND-nodes.
The next goal is to prove soundness and completeness of
this tableau calculus and then termination and its complex-
ity bound.

Definition 3.8. Let G be a tableau for Γ and T ≥ 1.

1. A marking Gc := (V Gc , EGc) of G is a full subgraph
of (V G, EG) where

• rG ∈ V Gc ;
• for v ∈ V Gc , v ∈ AG, we have w ∈ V Gc for all (v, w) ∈

EG; and
• for v ∈ V Gc , v ∈ OG, we have w ∈ V Gc for some

(v, w) ∈ EG.

2. A marking is consistent if it does not contain a node
with label ⊥.

3. We call G open if there exists a consistent marking, and
closed otherwise.

As we will see later, a consistent marking of a tableau is
a postfixpoint of a functional. We now show that an open
tableau for Γ and T ≥ 1 can be used to construct an inter-
pretation that satisfies T and where some individual satisfies
Γ. We construct such an interpretation by first considering
Gc-saturation paths:

Definition 3.9. Let Gc be a marking of a tableau G and
v0 ∈ V Gc . A Gc-saturation path from v0 is a finite se-
quence v0, v1, . . . , vn such that for all 0 ≤ i < n we have
(vi, vi+1) ∈ EGc , {v0, . . . , vn−1} ⊆ OG, and vn ∈ AG.

Remark 3.10. The above definition implies that a node is an
AND-node iff it has a Gc-saturation path of length 0. Fur-
thermore, all nodes have a Gc-saturation path, as we would
otherwise need to have some infinite path that only visits OR-
nodes. However, since all rules that can be applied to an OR-
node decrease the syntactic size of concepts in the label, such
a path cannot exist.

Definition 3.11. We call a sequent Γ clashing if at least one
of the following holds:

1. p ▷ c ∈ Γ for some p ∈ NC, c ▷ 1 or p ◁ c ∈ Γ for some
p ∈ NC, c ◁ 0;

2. p ◁ c ∈ Γ, p ▷ d ∈ Γ for some p ∈ NC, c ◀(◁,▷) d;

3. c ◁ d ∈ Γ for some c ◁◦ d.

We now prove completeness of the tableau calculus by ex-
tracting an interpretation from a consistent marking:

Theorem 3.12. Let Γ be a sequent and T be a TBox with
associated concept assertion T ≥ 1. If there exists an open
tableau G for Γ and T ≥ 1, then Γ is T -satisfiable.
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Proof sketch. We directly construct an interpretation I from
a consistent marking Gc of the open tableau G by contracting
the marking along Gc-saturation paths:

1. Put ∆I := AG ∩ V Gc .

2. For every x ∈ ∆I , we put the value of atomic concepts
as any value satisfying all the concept assertions in its corre-
sponding label. We can do this since the label of an x ∈ V Gc

can never be clashing.

3. We take for every x, y ∈ ∆I and role name R ∈ NR all
the nodes along Gc-saturation paths starting at a child node
of x and ending with y and by investigating their labels deter-
mine which node corresponds to which existential restriction
in x. We then find a value for RI(x, y) that is large enough to
satisfy all these existential restrictions but small enough such
that all universal restrictions ∃R.D ◁ d are either satisfied by
the value of the transition or D ◁ d is part of the label of a
child node of x that has a Gc-saturation path ending with y.

By induction on C, we have CI(x) ▷◁ c for every x ∈ ∆I and
every C ▷◁ c ∈ L(y) where y ∈ V Gc has a Gc-saturation path
ending with x. Investigating maximal Gc-saturation paths
and the tableau rules, we notice that T ≥ 1 must therefore
always be satisfied in every x ∈ ∆I and that Γ is satisfied
in some τ ∈ ∆I where there is a Gc-saturation path starting
with the root node rGc and ending at τ .

Next, we prove soundness:

Theorem 3.13. The above tableau calculus is sound. That is,
if Γ is T -satisfiable, then every tableau for Γ and T ≥ 1 has
a consistent marking, where T ≥ 1 is the concept assertion
associated to T and Γ.

Proof sketch. Let G be a tableau for Γ and T ≥ 1. The label
of the root rG can never be ⊥, and by checking the rules one
by one, we see that they create some satisfiable conclusion or,
in the case of the rule (∃R), only satisfiable conclusions from
a satisfiable premise. This shows that for all nodes with sat-
isfiable label, there is at least one child node for an OR-node
that has a satisfiable label and all child nodes of AND-nodes
have satisfiable labels. This means that if we start at the root
node rG we always have at least one child with a satisfiable
label or all children have a satisfiable label for AND-nodes,
as is required to construct Gc.

The procedure and proof for the EXPTIME bound and termi-
nation is inspired by [Goré and Nguyen, 2013, Section 5]. It
is a construction of the least fixpoint of a functional calcu-
lating unsatisfiable nodes. More specifially, we start with the
node with label ⊥ as the only unsatisfiable node and then ap-
ply the functional to the set of unsatisfiable nodes until we
reach a fixpoint. A node is then in this least fixpoint iff its
label is T -unsatisfiable. This entails the following tight com-
plexity bound:

Theorem 3.14. Algorithm 1 is an EXPTIME decision proce-
dure for checking satisfiability of the concept assertions in Γ
with regards to a TBox T .

Proof. Let Γ be a sequent, T ≥ 1 be the concept assertion
associated to T and Γ and G a tableau for Γ and T ≥ 1.

1. By investigating the rules and the design of the concept
assertion associated to T and Γ, one can show that there are at
most 2O(n3) possible labels, where n is the syntactic size of Γ
and T . More specifically, there are 2O(n) possible labels aris-
ing from applying rules to Γ, and for every GCI C ⊑ D in T ,
there are 2O(n2) possible labels that can be obtained from the
corresponding conjunct ⊔z∈Z′(¬C⊕ z)⊓ (D⊕ (1− z)) ≥ 1

in T . Since we have at most O(n) GCIs, we thus have 2O(n3)

possible labels that arise from the TBox, and multiplying with
the 2O(n) labels of Γ, we obtain at most 2O(n3) labels.

2. We now immediately have that Algorithm 1 terminates
after at most 2O(n3) steps, since there are 2O(n3) nodes in G.

3. The condition rG /∈ Unsat is equivalent to the existence
of a consistent marking for G, where Unsat is the set of un-
satisfiable nodes as computed in Algorithm 1: For v ∈ AG

we have v /∈ Unsat iff v does not have ⊥ as its label and for
all nodes w ∈ V G with (v, w) ∈ EG we have w /∈ Unsat.
Similarly for v ∈ OG we have v /∈ Unsat iff there exists a
w ∈ V G with (v, w) ∈ EG and w /∈ Unsat. Taking all the
nodes that are not in Unsat then by definition is a consistent
marking iff rG /∈ Unsat. This also shows that a consistent
marking is a postfixpoint of some functional, as Algorithm 1
calculates the least fixpoint for Unsat.

Theorem 3.15. Checking a sequent Γ for T -satisfiability is
EXPTIME hard.

Proof. We reduce ALC satisfiability under a TBox, which is
known to be EXPTIME hard [Schild, 1994], to T -satisfiability
in non-expansive fuzzy ALC: Let Γ be a set of concepts and
T be a TBox for ALC. Let Γ′ := {C ≥ 1 | C ∈ Γ} and
T ′ := T . If Γ is satisfiable under T in ALC by some inter-
pretation I, we obtain an interpretation I ′ for non-expansive
fuzzy ALC by putting ∆I′

:= ∆I and

pI
′
(x) :=

{
1 if x ∈ pI

0 otherwise

RI′
(x, y) :=

{
1 if (x, y) ∈ RI

0 otherwise.

We then obviously have Γ′ is satisfiable under T ′, as the eval-
uation of concepts is the same in this case as in non-fuzzy
ALC. On the other hand, if Γ′ is satisfiable under T ′ by
some interpretation I ′ in non-expansive fuzzy ALC, then we
obtain an interpretation I for ALC by ∆I := ∆I′

, x ∈ pI

iff pI
′
(x) > 0.5 and (x, y) ∈ RI iff RI′

(x, y) > 0.5. One
can then prove CI′

(x) > 0.5 iff x ∈ CI for all concepts
C of regular ALC by induction. This then implies that Γ is
satisfiable under T .

Remark 3.16. We can modify Algorithm 1 as in [Goré and
Nguyen, 2013, Section 6] to decide and propagate satisfiabil-
ity or unsatisfiability on the fly when constructing the tableau.
After expanding a node, we immediately mark it as unsatis-
fiable if the node has label ⊥, if the node is an OR-node and
all child nodes are marked as unsatisfiable or if the node is an
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Algorithm 1: checking satisfiability in non-expansive fuzzy ALC
Input: a sequent Γ and an associated concept assertion T ≥ 1 for a TBox T and Γ
Output: true if all concept assertions of Γ are satisfiable under the TBox T , false otherwise

1 construct a tableau G for Γ and T ≥ 1;
2 Unsat := ∅, Queue := ∅;
3 if ∃v⊥ ∈ V G : LG(v⊥) = {⊥} then
4 Unsat := {v⊥}, Queue := {v⊥};
5 while Queue ̸= ∅ do
6 remove some w from Queue;
7 forall p ∈ V G : (p, w) ∈ EG do
8 if (p /∈ Unsat and p ∈ AG or p ∈ OG, ∀(p, q) ∈ EG : q ∈ Unsat) then
9 add p to Unsat and Queue;

10 if rG ∈ Unsat then
11 return false;
12 else
13 return true;

AND-node and at least one child node is marked as unsatisfi-
able. On the other hand we mark a node with a non-⊥ label
as satisfiable if the node is an OR-node and at least one child
node is marked as satisfiable or if the node is an AND-node
and all child nodes are marked as satisfiable. If a node has
been marked in this way, we propagate these results upward,
i.e. we check these conditions again for all parent nodes and
if their status changed we propagate again and so on. Thus
we can stop expanding the tableau whenever we can decide if
the root node is satisfiable or not instead of constructing the
full tableau. One can also make propagation an optional step
that can be applied instead of expanding the graph as seen in
[Goré et al., 2010a] and [Goré et al., 2010b].

Remark 3.17. For readability, we have so far elided ABoxes
from the technical development. As usual, a fuzzy ABox
consists of concept assertion C(a) ▷◁ c and role assertions
R(a, b) ▷◁ c, with the expected semantics, where a, b ∈ Ni

for a dedicated name space Ni of individuals, which denote
elements of the domain. The calculus is extended to handle
ABoxes in a straightforward manner by just initializing the
run of the tableau procedure with additional root nodes for
the individuals mentioned in the ABox, containing all con-
cepts asserted for the respective individual and connected by
edges reflecting the role assertions. The complexity remains
unaffected.

4 Conclusion
We have introduced the description logic non-expansive fuzzy
ALC, which lies between the Łukasiewicz and Zadeh vari-
ants of fuzzy ALC, notably featuring constant shift operators.
In particular in connection with general TBoxes, expressivity
is markedly increased in comparison to Zadeh fuzzy ALC;
nevertheless, we have shown that the complexity of reason-
ing remains EXPTIME, the same as for two-valued ALC in
sharp contrast to the undecidability encountered in the case
of Łukasiewicz fuzzy ALC [Baader and Peñaloza, 2011].
Future work will partly concern coverage of additional fea-

tures, in particular transitive roles, inverses, and nominals.
These have been integrated fairly smoothly into the less ex-
pressive Zadeh variant in earlier work [Stoilos et al., 2007;
Stoilos and Stamou, 2014]; for non-expansive fuzzy ALC,
the degree of adaptation to the tableau system required to ac-
commodate these features remains to be explored.
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Rafael Peñaloza. Reasoning in expressive Gödel descrip-
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